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Abstract. Recent advances in manipulating single electron spins in quantum
dots have brought us close to the realization of classical logic gates, where binary
bits are encoded in spin polarizations of single electrons. Here, we show that
a linear array of three quantum dots, each containing a single spin polarized
electron, and with nearest neighbor exchange coupling, acts as a NAND gate.
The energy dissipated during switching this gate is the Landauer–Shannon
limit of kTln(1/pi) (T = ambient temperature andpi = intrinsic gate error
probability). With present day technology,pi = 10−9 is achievable above
1 K temperature. Even with this small intrinsic error probability, the energy
dissipated during switching is only∼21kT, while today’s nanoscale transistors
dissipate about 40 000–50 000kT when they switch.
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1. Introduction

The primary threat to progressive downscaling of electronic devices in accordance with the
celebrated Moore’s law [1] is the excessive energy dissipation that takes place when a device
switches between logic levels. If electronic devices continue to shrink without reducing energy
dissipation, thermal management will ultimately fail resulting in chip meltdown. Conventional
devices have a fundamental drawback in this regard since they encode information in charge
(or voltage/current levels determined by charge). Charge is a scalar quantity that has only
a magnitude. Therefore, binary logic bits 0 and 1 must be demarcated by a difference in
the magnitude of the charge stored in the device. Switching between logic bits would then
mandate changing this magnitude, which invariably involves current flow and associated power
dissipation ofI 2R (I = current andR = resistance in the path of the current).

Spin, on the other hand, is a pseudo vector that has both a magnitude and a polarization.
The polarization can be madebistableby placing the electron in a dc magnetic field, so that only
two polarizations—parallel and anti-parallel to the field—are stable. They can encode the bits 0
and 1. Switching between them requires simply flipping the spin without physically moving the
charge in space and causing a current flow. This can reduce energy dissipation significantly.

In this paper, we first show rigorously how a universal Boolean logic gate (the NAND
gate) can be realized based on this idea. Although the basic idea was proposed many years
ago [2], this is the first quantum mechanical calculation establishing the gate’struth table. Next,
we present an estimate of the energy dissipated during switching. The energy dissipated in
switching this gate is found to be the minimum allowed by the laws of thermodynamics, namely
the Landauer–Shannon limit [3].

2. A single spin Boolean NAND gate

Consider a linear array of three single electron containing quantum dots shown in figure1.
The quantum mechanical wavefunctions of electrons in nearest-neighbor dots overlap in space
causing exchange coupling between them. A weak global magnetic field makes the spin
polarization in each dot bistable, because the polarization can be either parallel or anti-parallel
to the global field. These two stable polarizations encode the classical binary bits 1 and 0,
respectively.

The two peripheral dots A and C host the two input bits and the central dot B hosts the
output bit. Input data are provided by orienting the spins in A and C in the desired directions
(parallel or anti-parallel to the global magnetic field) with local magnetic fields generated by
inductors, as in magnetic random access memory (MRAM) chips. These inductors are placed
in the vicinity of the input dots (or wrapped around them). We will show that when the system
relaxes to the ground state, the output spin polarization in dot B always conforms to the NAND
function of the inputs according to the truth table (table1).

The output can be read with a variety of techniques that are capable of single spin
detection [4]–[6].

If the charging energy (intradot Coulomb repulsion) within each dot is sufficiently strong,
then at half-filling (1 electron per dot), the three-spin array in figure1 can be described by the
Heisenberg Hamiltonian [7, 8].

HHeisenberg=

∑
〈i j 〉

J‖

i j σziσz j +
∑
〈i j 〉

J⊥

i j

(
σxiσx j +σyiσy j

)
+

∑
input dots

σzih
inputs
zi +

∑
i

σzih
global
zi ,
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Figure 1. A single spin NAND gate: an array of three spin polarized single
electrons, each housed in a quantum dot, realizes the NAND gate when
the entire array is placed in a static magnetic field and allowed to relax to
the thermodynamic ground state. Wavefunctions of nearest-neighbor electrons
overlap (see row (a)) resulting in nearest-neighbor exchange coupling. The two
peripheral spins A and C are input bits and the central spin B is the output
bit. Downspin polarization (parallel to the static magnetic field) corresponds
to logic bit 1 and upspin (anti-parallel to the magnetic field) to logic bit 0.
When the spin polarizations in dots A and C are aligned externally to conform
to the desired input bits, and the system is allowed to relax to the ground state,
the spin polarization in dot B always corresponds to the NAND function of the
inputs. Shown in panels (a)–(d) are the spin configurations in all three dots
corresponding to the four possible input combinations of a primitive NAND gate.
Panel (e) shows a ‘spin wire’ (with fan out) in which the spin signal is replicated
in every other dot.

where theσs are Pauli spin matrices. We assume that the lowest orbital states in the quantum
dots are occupied. If excitation to the higher orbital states is not accompanied by spin flip,
then the higher states do not matter in the ensuing analysis, since logic bits are encoded in the
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Table 1. Truth table of the NAND gate.

Input 1 (A) Input 2 (C) Output (B)

1 1 0
0 0 1
0 1 1
1 0 1

spin and not the orbital quantum number. Even if the rate of transition between orbital states is
moderately high [9], the rate of spin flip is still very small [10], indicating that most excitations
are not accompanied by spin flips. Consequently, the excited states are not important in our
context. We adopt the convention that the direction of the local and the global magnetic fields
is thez-direction. The last two terms in the above equation account for the Zeeman energies
associated with these fields. The first two terms account for exchange interaction between
nearest neighbors (the angular brackets denote summation over nearest neighbors). We will
assume the isotropic case whenJ⊥

i j = J‖

i j = J, whereJ is the exchange energy, which is non-
zero if the wavefunctions in dotsi andj overlap in space.

The spins in the quantum dots are polarized in either the +z or −z-direction, which we
designate as ‘upspin’ (↑) and ‘downspin’ (↓) states, respectively. We will assume that the
upspin state (aligned anti-parallel to the global magnetic field) encodes bit 0 and downspin
state (parallel to the global field) encodes bit 1.

The three-spin basis states representing the spin configurations in the three-dot array are
|↓↓↓〉 , |↓↓↑〉 , |↓↑↓〉 , |↓↑↑〉 , |↑↓↓〉 , |↑↓↑〉 , |↑↑↓〉 and |↑↑↑〉, where the first entry is the
spin polarization in dot A, the second in dot B and the third in dot C. These eight basis functions
form a complete orthonormal set. The matrix elements〈φm|HHeisenberg|φn〉 are given in the matrix
below, where theφm,n are the three-electron basis states enumerated above.

2J − hA − hC − 3Z 0 0 0 0 0 0 0
0 −hA + hC − Z 2J 0 0 0 0 0
0 2J −2J − hA − hC − Z 0 2J 0 0 0
0 0 0 −hA + hC + Z 0 2J 0 0
0 0 2J 0 hA − hC − Z 0 0 0
0 0 0 2J 0 −2J + hA + hC + Z 2J 0
0 0 0 0 0 2J hA − hC + Z 0
0 0 0 0 0 0 0 2J + hA + hC + 3Z

.
In the above matrix,Z is one-half of the Zeeman splitting energy associated with the global
magnetic field, while 2hA and 2hC are Zeeman splitting energies in the input dots caused by the
local magnetic fields that write input data. If the local magnetic field is in the same direction as
the global field and writes bit 1, then the correspondingh is positive; otherwise, it is negative.
The quantityJ is always positive (to guarantee that the singlet state composed of two coupled
electrons has lower energy than the triplet state, as it should be).

In the appendix, we tabulate the eight eigenenergiesEn (n = 1, . . . ,8) and the corres-
ponding eigenstates

ψn = cn
1 |↓↓↓〉 + cn

2 |↓↓↑〉 + cn
3 |↓↑↓〉 + cn

4 |↓↑↑〉 + cn
5 |↑↓↓〉 + cn

6 |↑↓↑〉 + cn
7 |↑↑↓〉 + cn

8 |↑↑↑〉

= [cn
1, c

n
2, c

n
3, c

n
4, c

n
5, c

n
6, c

n
7, c

n
8]
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of the three-dot system obtained by evaluating the eigenvalues and eigenvectors of the above
8×8 matrix. This exercise has been carried out for four cases:hA = ±h andhC = ±h which
correspond to the four possible input combinations, and therefore the four entries in the truth
table of the NAND gate.

In the appendix, we also show that if we apply sufficiently strong local magnetic fields
to orient the spins in input dots A and C to the desired directions (i.e.|hA| = |hC| = h � J),
and allow the system to relax to the ground state, then the spin polarization in the output
dot B will always represent the result of NAND Boolean logic operation on the input bits. In
other words, the three-dot systemrealizes a NAND gatewhenever it is in the ground state.
Ground state relaxation is the central idea in some types of artificial neural networks and
similar ideas are found in other contexts ([11]; the logic gate idea with quantum dashes was
communicated by P Bakshi in a private communication) as well. Applying local magnetic fields
exclusively to specific quantum dots that host the input bits is difficult and requires sophisticated
shielding techniques and extreme spatial resolution. We visualize using spin polarized scanning
tunneling microscope tips for this purpose, which can concentrate a magnetic field over a single
quantum dot. A magnetic shield can be wrapped around each dot for further field containment.
This is a difficult engineering challenge but not unachievable because of any fundamental
physical laws.

Once the NAND gate is realized, we need only one other component to implement any
arbitrary Boolean logic circuit. That element is a ‘spin wire’ which will ferry spin signal
unidirectionally from one gate to another. A spin wire consists of a linear array of quantum
dots with clock pads between them (figure1(e)). When the clock signal at a given pad is high,
the potential barrier between the two flanking dots is lowered, and their resident electrons
are exchange coupled. This renders their spins anti-parallel [12]. Therefore, by sequentially
clocking the barriers, we can replicate the spin bit in every other dot and transmit the spin signal
along the wire unidirectionally [13].

3. Gate errors

It is the natural tendency of any physical system to relax to the ground state, which is the basis
of the NAND operation. However, once a system relaxes to ground state, it need not stay there
forever. If it gets out of the ground state, and it does because of noise and fluctuations [14], it will
produce wrong results and cause errors in computation. We will compute this error probability
next.

Consider a system which is thermodynamically coupled to its environment that allows it to
relax to the ground state. Once the system has attained equilibrium with the environment, the
probability of finding the system in any particular state is given by the Fermi–Dirac occupation
probability. This probability isnotunity for the ground state. If we approximate the Fermi–Dirac
statistics with the Boltzmann statistics, then the ratio of the probabilities of the gate being in an
excited state and the ground state is exp[−(Eexcited− Eground)/kT]. We can call this the error
probability Perror associated with being in the excited state, since straying from the ground state
causes an error in the result. The total error probability is the sum ofPerror carried out over all
excited states. We will call this total error probability theintrinsic gate error probabilitypi since
it accrues from the intrinsic dynamics of the gate (thermodynamics). In order to calculatepi, we
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must first find the energy differences between the ground state and the excited state. Referring
to the energy eigenstates tabulated in the appendix, we find:

Case I—when inputs are [1 1]: Here E1 − Eground≈ 4J − 2Z and E2 − Eground≈ 2h + 2Z +
2J ≈ 2h, if we take into account the fact thath � J, Z. Because of the last inequality, we only
have to worry about the first excited stateE1, since the second excited stateE2 is far above in
energy thanE1.

Case II—inputs are [0 0]: Here, E1 − Eground≈ 4J + 2Z and E2 − Eground≈ 2h − 2Z + 2J ≈

2h, if we again take into account the fact thath � J, Z. Therefore, the same considerations as
case I apply and we only need to worry about the first excited state.

Cases III and IV—inputs are [0 1] or [1 0]: In these cases also, we need to worry only about
the first excited states as long ash � J, Z, since the second excited states are far above in
energy than the first excited states. Here,E1 − Eground≈ 2Z.

Since the total error probability is

pi =

∑
all excited states

Perror =

7∑
m=1

e−(Em−Eground)/kT
≈ exp[−(E1 − Eground)/kT],

we obtain E1 − Eground= kTln(1/pi). Considering the four cases above, it is obvious that
we need two conditions to be fulfilled: (i)Z = (1/2)kTln(1/pi) (case III or IV), and (ii)
4J − 2Z = 4J − kTln(1/pi)= kTln(1/pi) (case I), which yieldsJ = (1/2)kTln(1/pi). These
conditions determine the values ofJ andZ required to restrict the intrinsic gate error probability
to not more thanpi at a temperatureT.

There is actually a second source of gate errors caused by random, spontaneous spin flips
that occur outside the computation sequence because of extraneous influences causing spin
relaxation. We call the associated gate error probability theextrinsicerror probabilitype since it
accrues from extrinsic factors. It is easy to see thatpe = 1− exp[−T/T1] whereT is the clock
period andT1 is the spontaneous spin flip time in a single quantum dot (for a single electron
uncoupled with its neighbors). There are reports ofT1 = 170 ms–1 s in GaAs quantum dots [10]
at low temperatures and nearly 1 s in organic nanostructures [15] at even 100 K.

We emphasize thatT1 is the spin relaxation time of a single electron in an isolated quantum
dot that isuncoupledto any of its nearest neighbors. When relaxation to ground state takes place
in the logic gates during computation, each electron is exchange coupled to its nearest neighbors.
This relaxation is governed by the many-body relaxation of coupled spins. The single particle
spin relaxation can be orders of magnitude slower than the many body spin relaxation. This is
well known in the context of the transverse relaxation timeT2 [16]. Therefore, the relaxation to
ground state can occur in a time much shorter thanT1 That means that the clock frequency is
not limited by 1/T1, but can be much higher.

In [13], we showed that the relaxation to ground state occurs when the clock signal is high
and the nearest neighbors are coupled by exchange interaction. During this time, the relaxation
rate is the many body rate 1/T∗

1 which is much higher than the single particle rate 1/T1. When
the clock signal is low, the system is in the standby state, and we would not like the spin to flip
spontaneously during this time since that would cause an error. However, in the standby state,
each electron is uncoupled to its neighbors and hence the spin flip rate is 1/T1 � 1/T∗

1 .
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The rate 1/T∗

1 is obviously the upper limit on the clock frequency, since otherwise the
relaxation to ground state will not be complete before the clock signal changes. The extrinsic
error probability will be then limited bype = 1− exp[−T∗

1 /T1] ≈ T∗

1 /T1 if T∗

1 � T1.
The intrinsic and extrinsic error probabilities are not related to each other and are

independent quantities. The net error probability that error correction schemes will have to
contend with is the larger ofpi andpe. Modern error correction algorithms can handle net error
probabilities as high as 3% [17].

4. Energy dissipation during switching

The maximum energy dissipated during switching the NAND gate is the largest energy
difference between any two of the four ground states corresponding to the four input
combinations shown in figures1(a)–(d). By considering all the four ground state energies (see
appendix), the largest energy difference between any two ground states is 2Z (corresponding to
switching between the states in figures1(a) and (b)), which we have just shown iskTln(1/pi).
Therefore, the maximum energy dissipated during switching iskTln(1/pi). This is the well-
known Landauer–Shannon limit [3].

It is interesting to note that when we switch between some of the states (e.g. between figures
1(b) and (c)), the energy dissipated islessthan the Landauer–Shannon limit ofkTln(1/pi). This
happens because ofinteractionsbetween the spins (internal feedback) which make all three
spins act in concert as a single entity. A similar situation was addressed in [18].

In the energy calculation, we purposely ignored the energy cost of generating the local
magnetic fields and the energy dissipated in the clock pads. These costs can be made arbitrarily
small, certainly much smaller thankTln(1/pi), by adopting adiabatic schemes [19].

5. Temperature of operation

The requirementJ = Z = (1/2)kTln(1/pi) will also determine the maximum temperature at
which we can operate the logic gates if we are limited to specific values ofJ or Z and
wish to limit pi to a specific value. Present technological constraints limit the exchange
coupling strengthJ to about 1 meV in semiconductor quantum dots [20] and to about 6 meV
in molecules [21]. Therefore, with semiconductor quantum dot implementation,T = 1.1 K if
we want pi = 10−9 and T = 6.5 K if pi = 0.03, which is the maximum error probability that
may be handled with the most sophisticated error correction schemes available today [17].
Conversely, if we operate at 1.1 K, thenpi can be as low as 10−9 in semiconductor quantum
dot-based systems. Room temperature operation will requireJ = 270 meV withpi = 10−9 and
J = 46 meV with pi = 0.03. Neither value ofJ is achievable with semiconductor quantum
dots or molecular magnets at present, which unfortunately precludes room temperature
operation with present day technology. Future technological advances may make room
temperature operation feasible.

If we operate at 1.1 K withpi = 10−9, thenZ = gµB Bglobal = kTln(1/pi)= 1 meV. Here,
g is the g-factor of the quantum dot material andBglobal is the magnetic flux density of the
global magnetic field. We can makeBglobal small by using materials with largeg-factors. If
we use InSb1−xNx, which is predicted to have ag-factor of 900 [22], then Bglobal = 0.04 T if
Z = 1 meV.
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The local magnetic fields needed to write input bits in dots A and C need to be
approximately 10 times larger than the global field (see appendix). Therefore, the local field
strengths need not exceed 0.4 T, which should be within reach of MRAM technology [23].

Finally, one concern is that using a material with giantg-factor may adversely affect
the spin flip time. But it will affectT1 and T∗

1 almost equally. Therefore, the extrinsic error
probability pe = T∗

1 /T1, will not change by much. IfT∗

1 goes down, then the maximum clock
frequency 1/T∗

1 will increase commensurately.

6. Conclusion

We have shown that a simple linear array of three spins in quantum dots, with nearest-neighbor
exchange coupling, realizes the universal classical Boolean NAND gate, if placed in a global
dc magnetic field and allowed to relax to the thermodynamic ground state. Recent advances
in single spin electronics, allowing control over single electrons, has brought us close to the
realization of such computing elements [24]–[26]. The energy dissipated during switching
between states is∼21kT with an intrinsic error probability as low as 10−9 which is much better
than the 40 000–50 000kT dissipated in present day transistor-based gates [27]. The temperature
of operation is∼1 K due to present constraints in quantum dot technology. At this temperature,
the energy dissipated during switching is∼3× 10−22 J if pi = 10−9. This can extend Moore’s
law easily into the next few decades. We also point out that realization of these gates does not
require phase coherence of spin, which is difficult to preserve over long times. This paradigm is
completely classical unlike quantum computing; therefore, these gates are considerably easier
to implement than quantum gates.
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Appendix

We tabulate below the eight many-body eigenenergies (En) and the eigenstates (ψn) of the
three-spin array for the four cases corresponding to the four input combinations shown in
figures1(a)–(d).

Case I: hA=hC=h> 0: this is the case when the input bits are [1 1] and the situation
corresponds to figure1(a) (the first entry in the truth table of the NAND gate). The eight
eigenenergiesEn and eigenstatesψn are shown in tableA.1.
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Table A.1. Eigenenergies and eigenstates when the inputs are [1 1]; hA = hC =

h> 0.

Eigenenergies (En) Eigenstates (ψn)

−J − h − Z −11 [0,2/β1, α1/(Jβ1),0,2/β1,0,0,0]
2J − 2h − 3Z [1,0,0,0,0,0,0,0]
−J + h + Z −12 [0,0,0,2/β3,0,−α3/(Jβ3),2/β3,0]
−Z [0,1/

√
2,0,0,−1/

√
2,0,0,0]

Z [0,0,0,−1/
√

2,0,0,1/
√

2,0]
−J − h − Z +11 [0,2/β6, α6/(Jβ6),0,2/β6,0,0,0]
−J + h + Z +12 [0,0,0,2/β7,0,−α7/(Jβ7),2/β7,0]
2J + 2h + 3Z [0,0,0,0,0,0,0,1]

where

11 =

√
(h + J)2 + 8J2,

12 =

√
(h − J)2 + 8J2,

α1 = −J − h −11,

α3 = J − h +12,

α6 = −J − h +11,

α7 = J − h −12,

βn =

√
(αn/J)2 + 8.

Note that the eigenenergiesEn depend onZ, but the eigenstatesψn do not. In tableA.1,
the eigenenergies are arranged in ascending order (i.e. the first entry is the ground state and the
last entry is the highest excited state),provided h� J and J> Z/2. The reason to ensure the
first inequality will become clear now.

Note that the ground state wavefunction is the entangled state

ψ11
ground=

2

β1
|↓↓↑〉 +

α1

Jβ1
|↓↑↓〉 +

2

β1
|↑↓↓〉.

However, when the inputs are [1 1], or [↓,↓], we want the output to be [0], or [↑] since this is
the situation shown in figure1(a). Therefore, thedesiredground state is the unentangled state

ψ11
desired= |↓↑↓〉.

Obviously, we can makeψ11
ground≈ ψ11

desiredif∣∣∣ α1

2J

∣∣∣ =
h + J +

√
(h + J)2 + 8J2

2J
� 1,

i.e. if h � J. In other words, the three-spin configuration in figure1(a) will become the ground
state if we makeh � J. In that case, whenever we apply the inputs [1, 1] to the input dots A and
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Table A.2. Eigenenergies and eigenstates when the inputs are [0 0];hA = hC =

−h< 0.

Eigenenergies Eigenstates

−J − h + Z −11 [0,0,0,2/β3,0, α3/(Jβ3),2/β1,0]
2J − 2h + 3Z [0,0,0,0,0,0,0,1]
−J + h − Z −12 [0,2/β3 −α3/(Jβ3),0,2/β3,0,0,0]
−Z [0 − 1/

√
2,0,0,1/

√
2,0,0,0]

Z [0,0,0,−1/
√

2,0,0,1/
√

2,0]
−J − h + Z +11 [0,0,0,2/β6,0,−α6/(Jβ6),2/β6,0]
−J + h − Z +12 [0,2/β7, α7/(Jβ7),0,2/β7,0,0,0]
2J + 2h − 3Z [1,0,0,0,0,0,0,0]

C and let the system relax thermodynamically to the ground state (by emitting phonons, etc), it
will reach the state in figure1(a) where the output bit (in dot B) will be [0] andwe will have
realized the first entry in the truth table of the NAND gate.

Case II: hA = hC = −h< 0: This is the case when the input bits are [0 0] and the situation
corresponds to figure1(b). For this case, the eigenenergies and eigenstates are obtained by
replacing the quantityh in tableA.1 with −h.

In this case, the ground state wavefunction is the entangled state

ψ00
ground=

2

β1
|↓↑↑〉 +

α1

Jβ1
|↑↓↑〉 +

2

β1
|↑↑↓〉,

whereas the desired state shown in figure1(b) is the unentangled state

ψ00
desired= |↑↓↑〉.

Once again, we can makeψ00
ground≈ ψ00

desiredif we make|α1/2J| � 1, orh � J. Then, if we apply
inputs [00] to dots A and C, and let the system relax to the ground state, dot B will have output
[1] corresponding to figure1(b), and we will have realized the second entry in the truth table of
the NAND gate. All we need for this to happen ish � J.

Case III : −hA = hC = h> 0: This is the case when the input bits are [0 1] and the situation
corresponds to figure1(c). In this case, the eigenenergies and eigenstates are more complicated
and given in tableA.3, where

θ1 = J
[
9(h/J)2 − 10 + 3i

√
3(h/J)6 + 12(h/J)4 + 69(h/J)2 + 27

]1/3
,

θ2 = −
4J2

3θ1

[
(h/J)2 + 7/3

]
,

θ3 =
2θ1

3
+

3θ2

2
= 2iIm

(
2θ1

3

)
,

θ4 =
2θ1

3
−

3θ2

2
= 2Re

(
2θ1

3

)
,
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Table A.3. Eigenenergies and eigenstates when the inputs are [0 1];−hA = hC =

h> 0.

Eigenenergies Eigenstates

−θ4 − 2J/3− Z + (
√

3i/2)θ3 [0, π (1)3 /(J2π
(1)
4 ),2π (1)1 /(Jπ (1)4 ),0,4/π (1)4 ,0,0,0]

−θ4 − 2J/3 + Z + (
√

3i/2)θ3 [0,0,0, π (2)3 /(J2π
(2)
4 ),0,2π (2)1 /(Jπ (2)4 ),4/π (2)4 ,0]

−θ4 − 2J/3− Z − (
√

3i/2)θ3 [0, π (3)3 /(J2π
(3)
4 ),2π (3)1 /(Jπ (3)4 ),0,4/π (3)4 ,0,0,0]

−θ4 − 2J/3 + Z − (
√

3i/2)θ3 [0,0,0, π (4)3 /(J2π
(4)
4 ),0,2π (4)1 /(Jπ (4)4 ),4/π (4)4 ,0]

2J − 3Z [1,0,0,0,0,0,0,0]
2J + 3Z [0,0,0,0,0,0,0,1]
θ4 − 2J/3− Z [0, π (7)3 /(J2π

(7)
4 ),2π (7)1 /(Jπ (7)4 ),0,4/π (7)4 ,0,0,0]

θ4 − 2J/3 + Z [0,0,0, π (8)3 /(J2π
(8)
4 ),0,2π (8)1 /(Jπ (8)4 ),4/π (8)4 ,0]

π
(1)
1 = −θ4/2− 2J/3 + 2h + (

√
3i/2)θ3,

π
(1)
2 = −θ4/2− 2J/3− Z + (

√
3i/2)θ3,

π
(1)
3 =

[
π
(1)
2

]2
+ 2π (1)2 (Z + J + h)+ 4Jh+ 2J Z − 4J2 + Z2 + 2hZ,

π
(2)
1 = π

(1)
1 ,

π
(2)
2 = π

(1)
2 + 2Z,

π
(2)
3 =

[
π
(2)
2

]2
+ 2π (2)2 (−Z + J + h)+ 4Jh− 2J Z − 4J2 + Z2

− 2hZ,

π
(3)
1 = π

(1)
1 −

√
3iθ3,

π
(3)
2 = π

(1)
2 −

√
3iθ3,

π
(3)
3 =

[
π
(3)
2

]2
+ 2π (3)2 (Z + J + h)+ 4Jh+ 2J Z − 4J2 + Z2 + 2hZ,

π
(4)
1 = π

(2)
1 −

√
3iθ3,

π
(4)
2 = π

(2)
2 −

√
3iθ3,

π
(4)
3 =

[
π
(4)
2

]2
+ 2π (4)2 (−Z + J + h)+ 4Jh− 2J Z − 4J2 + Z2

− 2hZ,

π
(7)
1 = θ4 − 2J/3 + 2h,

π
(7)
2 = θ4 − 2J/3− Z,

π
(7)
3 =

[
π
(7)
2

]2
+ 2π (7)2 (Z + J + h)+ 4Jh+ 2J Z − 4J2 + Z2 + 2hZ,

π
(8)
1 = π

(7)
1 ,

π
(8)
2 = π

(7)
2 + 2Z,
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π
(8)
3 =

[
π
(8)
2

]2
+ 2π (8)2 (−Z + J + h)+ 4Jh− 2J Z − 4J2 + Z2

− 2hZ,

π
(n)
4 =


[
π
(n)
3

]2

J4
+

4
[
π
(n)
1

]2

J2
+ 16


1/2

, (n = 1, . . .,8).

The ground state wavefunction is given by the entangled state

ψ01
ground=

π
(1)
3

J2π
(1)
4

|↓↓↑〉 +
2π (1)1

Jπ (1)4

|↓↑↓〉 +
4

π
(1)
4

|↑↓↓〉,

whereas the desired state shown in figure1(c) is the unentangled state

ψ01
desired= |↑↓↓〉.

Once again, we can makeψ10
ground≈ ψ10

desired if we makeh � J. Therefore, if we apply inputs
[0 1] to dots A and C and let the system relax to the ground state, dot B will have output [1]
corresponding to figure1(c), and we will have realized the third entry in the truth table of the
NAND gate.

Case IV: −hA=hC= −h< 0. This is the case when the input bits are [1 0] and the situation
corresponds to figure1(d). The eigenenergies do not change from tableA.3 since they depend
onh2 and are therefore insensitive to the sign ofh. However, the eigenstates are sensitive to the
sign ofh and change. The eight eigenstates can be found by replacingπ (q)p by π̂ (q)p where,

π̂ (q)p (h)= π (q)p (−h), (p = 1, . . . ,4,q = 1, . . . ,8).

The ground state wavefunction is given by the entangled state

ψ10
ground=

π̂
(1)
3

J2π̂
(1)
4

|↓↓↑〉 +
2π̂ (1)1

Jπ̂ (1)4

|↓↑↓〉 +
4

π̂
(1)
4

|↑↓↓〉,

while the desired state shown in figure1(d) is the unentangled state

ψ10
desired= |↓↓↑〉.

It is easy to check that we can makeψ10
ground≈ ψ10

desiredif we makeh � J. Therefore, if we apply
inputs [10] to dots A and C and let the system relax to the ground state, dot B will have output
[1] corresponding to figure1(d), and we will have realized the fourth and final entry in the truth
table of the NAND gate.

In conclusion, what we have shown here is that if we place a three-spin array with nearest-
neighbor exchange coupling in a dc magnetic field, and align the spins in the two peripheral
dots (designated as input ports) with sufficiently strong local magnetic fieldBlocal such that
the Zeeman splitting in the inputs dots 2h = gµB Blocal is much larger than 2J, then the spin
polarization in the output (central) dot will always conform to the NAND function of the two
inputs, once the array relaxes to the thermodynamic ground state. This realizes a ‘single-spin-
NAND-gate’.
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Figure A.1. Probabilities as a function of the ratioh/J when the inputs bits
are [1 1].

Figure A.2. Probabilities as a function of the ratioh/J when the inputs bits
are [0 0].

One final issue that needs to be resolved is the following. In order for the NAND gate to
work correctly, we need thath � J. How large should the ratioh/J be? Note from tableA.1 that
the ground state approaches the unentangled state| ↓↑↓〉 if |α1/(Jβ1)| → 1 and|2/β1| → 0. Let
us defineP↓↑↓ = |α1/(Jβ1)|

2 andP↓↓↑ = P↑↓↓ = |2/β1|
2 sinceα1/(Jβ1) is the amplitude of the

| ↓↑↓〉 component and 2/β1is the amplitude of the| ↓↓↑〉 or | ↑↓↓〉 components in the ground
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Figure A.3. Probabilities as a function of the ratioh/J when the inputs bits
are [0 1].

Figure A.4. Probabilities as a function of the ratioh/J when the inputs bits are
[1 0].

state wavefunction. In figureA.1, we plot these quantities as a function of the ratioh/J. Note
that |α1/(Jβ1)| → 1 and|2/β1|0 whenh/J > 10. Therefore, in case I, we needh/J > 10 to
make the ground state nearly indistinguishable from the unentangled state| ↓↑↓〉.

In figuresA.2–A.4, we plot the equivalent quantities for cases II, III and IV, respectively.
Once again, we find that ensuringh/J > 10 is sufficient.
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Therefore, in all cases, it is adequate to have the strengths of the local magnetic fields
writing inputs bits no more than 10 times stronger than the global magnetic field. If the global
magnetic flux density is 0.04 T, it is sufficient to have the local magnetic flux density 0.4 T.
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