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a b s t r a c t

The aim of the present paper is to study the thermoelastic interactions in an
unbounded elastic medium with a spherical cavity in the context of four different
theories of thermoelasticity, namely: the classical coupled dynamical thermoelasticity,
the extended thermoelasticity, the temperature-rate-dependent thermoelasticity and the
thermoelasticitywithout energy dissipation in a unifiedway. The cavity surface is assumed
to be stress free and is subjected to a smooth and time-dependent-heating effect. The
solutions for displacement, temperature and stresses are obtained with the help of
the Laplace transform procedure. Firstly the short-time approximated solutions for four
different theories have been obtained analytically. Then following the numerical method
proposed by Bellman et al. [R. Bellmen, R.E. Kolaba, J.A. Lockette, Numerical Inversion of
the Laplace Transform, American Elsevier Pub. Co., New York, 1966] for the inversion of
Laplace transforms, the numerical values of the physical quantities are also computed for
the copper material and results are displayed in graphical forms to compare the results
obtained for the theory of thermoelasticity without energy dissipation with the results of
other thermoelasticity theories.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The generalized thermoelasticity theories have been developed with the aim of removing the paradox of infinite speed
of heat propagation inherent in the classical coupled dynamical thermoelasticity theory, see Biot [2]. In the generalized
theories, the governing equations involve thermal relaxation times and they are of hyperbolic type. The extended
thermoelasticity theory by Lord and Shulman [3] which introduces one relaxation time in the thermoelastic process and the
temperature-rate-dependent theory of thermoelasticity by Green and Lindsay [4] which takes into account two relaxation
times are two well established generalized theories of thermoelasticity. Several experimental studies [5–7] indicate that
the thermal relaxation time effects can be of relevance in the cases involving a rapidly propagating crack tip, a localized
moving heat source with high intensity, shock wave propagation, laser processing technique etc. Subsequently, several
investigations [8–15] based on these generalized theories were carried out.

Recently, Green and Nagdhi [16–18] have proposed three other different models of thermoelasticity in an alternative
way. In one of these models [17] the significance is that the internal rate of production of entropy is taken to be identically
zero, i.e., there is no dissipation of thermal energy. This theory is known as the theory of thermoelasticity without
energy dissipation. In the development of this theory, the thermal displacement gradient is considered as a constitutive
variable, whereas in the conventional development of thermoelasticity the temperature gradient is taken as a constitutive
variable. The Uniqueness theorem in the case of a linearized version of this theory is given by Green and Nagdhi [17] and
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Nomenclature

u displacement,
τij stress tensor,
∆ dilatation,
∇

2 Laplacian operator,
λ, µ Lame’s elastic constants,
T temperature deviation from a reference temperature T0,
ρ mass density,
K thermal conductivity of the material,
cv specific heat at constant strain,
γ = (3λ + 2µ)αt , αt coefficient of linear thermal expansion,
δij Kronecker delta symbol,
α1, α2 thermal relaxation times.

Chandrasekharaiah [19] independently. Later on, Chandrasekharaiah [20] studied free planeharmonicwaveswithout energy
dissipation in an unbounded body. Sharma and Chauhan [21] investigated a problem concerning thermoelastic interactions
without energy dissipation due to body forces and heat sources. Mukhopadhyay [22] tackled a problem concerning the
thermoelastic interactions without energy dissipation in an unbounded medium with a spherical cavity subjected to
harmonically varying temperature. Othman and Song [23] have investigated the effect of rotation on the reflection of
magneto-thermoelastic waves under thermoelasticity without energy dissipation. In another study, Othman and Song [24]
have discussed the reflection of plane waves from an elastic half-space under hydrostatic initial stress without energy
dissipation.

In the present problem an attempt has been made to study the thermoelastic interactions in an isotropic elastic
medium with a spherical cavity subjected to a time-dependent-heating effect in the context of four different theories of
thermoelasticity in a unified way. Analytical solutions for the distributions of the field variables: displacement, temperature
and stresses are found outwith the help of the Laplace transformprocedure. This is then followed by the numerical inversion
of the transformed solution in the space–time domain. The numerical results are presented graphically to compare the
nature of variations of the variables under different theories of thermoelasticity.

2. Problem formulation: Governing equations

We consider an infinitely extended homogeneous isotropic elastic medium with a spherical cavity of radius, ‘a’.
The center of the cavity is taken to be the origin of the spherical polar co-ordinate system (r, θ, ϕ). The stress
strain temperature relations and the generalized heat conduction equation in the context of the theory of classical
coupled thermoelasticity (CTE), extended thermoelasticity (ETE), temperature-rate-dependent thermoelasticity (TRDTE)
and thermoelasticity without energy dissipation (TEWOED) can be written in a unified way as follows:

τij = λ∆δij + 2µeij − γ

(
T + α2

∂T
∂t

)
δij (1)

(
Kδ1k + K ∗δ2k

)
∇

2T = ρcv

[
δ1k

(
∂

∂t
+ α1

∂2

∂t2

)
+ δ2k

∂2

∂t2

]
T + γ T0

[
δ1k

(
∂

∂t
+ α1ζ

∂2

∂t2

)
+ δ2k

∂2

∂t2

]
∆. (2)

Here K ∗ is an additional material constant characteristic of the theory of thermoelasticity without energy dissipation
(Green and Nagdhi [17]).

Here Eqs. (1) and (2) reduce to the equations of different theories of thermoelasticity as follows:
I. CTE: k = 1, α1 = 0, α2 = 0,
II. ETE: k = 1, α2 = 0, α1 > 0, ζ = 1
III. TRDTE: k = 1, α2 ≥ α1 > 0, ζ = 0
IV. TEWOED: k = 2, α2 = 0.
For our present problem (due to spherical symmetry) the displacement and temperature components are assumed to be

functions of r and time t only, so that the non-zero strain components are

err =
∂u
∂r

, eθθ = eϕϕ =
u
r
.

The non-zero stresses are then obtained as

τrr = λ

(
∂u
∂r

+
2u
r

)
+ 2µ

∂u
∂r

− γ

(
1 + α2

∂

∂t

)
T (3)
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τθθ = τϕϕ = λ

(
∂u
∂r

+
2u
r

)
+ 2µ

u
r

− γ

(
1 + α2

∂

∂t

)
T . (4)

The stress equation of motion is:

∂

∂r
τrr +

2
r
(τrr − τθθ ) = ρ

∂2u
∂t2

. (5)

Now, we introduce the following dimensionless variables and quantities

c21 =
λ + 2µ

ρ
, R =

r
a
, U =

u
a
, η =

c1
a
t, Z =

T
T0

, α′

1 =
c1
a

α1,

α′

2 =
c1
a

α2, a0 =
aK ∗

Kc1
, a1 =

γ T0
λ + 2µ

, a2 =
aρcvc1

K
, a3 =

aγ c1
K

,

σRR =
τrr

λ + 2µ
, σϕϕ =

τϕϕ

λ + 2µ
, λ1 =

λ

(λ + 2µ)
.

Eqs. (2)–(5) then reduce to the dimensionless forms as:

(δ1k + a0δ2k)
(

∂2

∂R2
+

2
R

∂

∂R

)
Z

= a2

(
δ1k(

∂

∂η
+ α′

1
∂2

∂η2
) + δ2k

∂2

∂η2

)
Z + a3

(
δ1k(

∂

∂η
+ α′

1ζ
∂2

∂η2
) + δ2k

∂2

∂η2

) (
∂U
∂R

+
2U
R

)
(6)

∂

∂R

(
∂U
∂R

+
2U
R

)
− a1

(
1 + α′

2
∂

∂η

)
∂Z
∂R

=
∂2U
∂η2

(7)

σRR =
∂U
∂R

+ 2λ1
U
R

− a1

(
1 + α′

2
∂

∂η

)
Z (8)

σϕϕ = λ1
∂U
∂R

+ (λ1 + 1)
U
R

− a1

(
1 + α′

2
∂

∂η

)
Z . (9)

3. Boundary conditions

The surface of the cavity, i.e., R = 1 is assumed to be stress free and is subjected to a time-dependent-heating effect so
that the boundary conditions are taken as:

σRR|R=1 = 0 (10)

Z |R=1 = F(η) (11)

where F(η) is a function of η.
Initially the medium is at rest and undisturbed and the initial conditions are:

U(R, η)|η=0 =
∂

∂η
U(R, η)

∣∣∣∣
η=0

= 0

Z(R, η)|η=0 =
∂

∂η
Z(R, η)

∣∣∣∣
η=0

= 0

σRR(R, η)|η=0 =
∂

∂η
σRR(R, η)

∣∣∣∣
η=0

= 0.

4. Solution of the problem

Applying the Laplace transform on time to Eqs. (6)–(9) reduces them to

(δ1k + a0δ2k)
(

∂2

∂R2
+

2
R

∂

∂R

)
Z̄ = a2

(
δ1k(p + α′

1p
2) + δ2kp2

)
Z̄ + a3

(
δ1k(p + α′

1ζp
2) + δ2kp2

) (
∂Ū
∂R

+
2Ū
R

)
(12)

∂e
∂R

− a1
(
1 + α′

2p
) ∂Z

∂R
= p2U (13)
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σ RR = e − 2(1 − λ1)
U
R

− a1(1 + α′

2p)Z̄ (14)

σ ϕϕ = λ1e + (1 − λ1)
U
R

− a1(1 + α′

2p)Z (15)

where, p is the Laplace transform parameter and e =
∂U
∂R +

2U
R .

The Laplace transform of (10) and (11) yields:

σ RR|R=1 = 0 (16)

Z̄
∣∣
R=1 = F̄(p), (17)

F(p) being the Laplace transform of the function F(η).
Decoupling Eqs. (12) and (13) and solving we get the general solutions for ē and Z̄ bounded at infinity as

ē =
1

√
R

[
A1K1/2(m1R) + A2K1/2(m2R)

]
(18)

Z =
1

√
R

[
B1K1/2(m1R) + B2K1/2(m2R)

]
. (19)

HereAi, Bi are arbitrary constants, independent ofR, K1/2(miR) aremodified Bessel functions andm1,m2 satisfy the following
equation:

(δ1k + a0δ2k)m4
−

[
δ1k

{
a2(1 + ε)p + (1 + a2α′

1 + a2εα′

1ζ + a2εα′

2)p
2}

+ δ2k {a0 + (1 + ε)a2} p2
]
m2

+ a2p3
{
δ1k +

(
δ1kα

′

1 + δ2k
)
p
}

= 0 (20)

where, ε =
γ 2T0

ρ2cvc21
is the thermoelastic coupling constant.

Now we use the relation
d
dR

K1/2(mR) =
1
2R

K1/2(mR) − mK3/2(mR)

and Eqs. (18), (19) and (13) to obtain the relations between the constants Ai and Bi as

Bi = FiAi, i = 1, 2

where Fi =
m2

i − p2

a1(1 + α′

2p)m
2
i
, i = 1, 2. (21)

The solutions for displacement and stresses are obtained from Eqs. (12)–(15), (18) and (19) as follows:

U = −
1

√
R

[
1
m1

A1K3/2(m1R) +
1
m2

A2K3/2(m2R)
]

(22)

σ RR =
1

√
R
[A1σR1 + A2σR2] (23)

σ ϕϕ =
1

√
R

[
A1σϕ1 + A2σϕ2

]
(24)

where,

σRi =
[
1 − a1(1 + α′

2p)Fi
]
K1/2(miR) +

2(1 − λ1)

miR
K3/2(miR), i = 1, 2

σϕi =
[
λ1 − a1(1 + α′

2p)Fi
]
K1/2(miR) −

(1 − λ1)

miR
K3/2(miR), i = 1, 2.

The constants A1 and A2 are obtained with the help of the boundary conditions (16) and (17) as follows:

A1 = −
σ 0
R2F(p)

σ 0
R1F2K1/2(m2) − σ 0

R2F1K1/2(m1)
,

A2 =
σ 0
R1F(p)

σ 0
R1F2K1/2(m2) − σ 0

R2F1K1/2(m1)

where,

σ 0
Ri =

[
1 − a1(1 + α′

2p)Fi
]
K1/2(mi) +

2(1 − λ1)

mi
K3/2(mi), i = 1, 2.
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5. Short-time approximated solution

The distributions of displacement, temperature and stresses in the physical domain (R, η) are determined by inverting
the expressions for Ū, Z̄, σ̄RR, σ̄ϕϕ and using the inverse Laplace transforms. But because of the dependency ofm1, andm2 on
p, it is extremely difficult to carry out this operation exactly for all values of p. Therefore we will now confine our attention
to obtain the short-time approximated solutions of the field variables for which we assume that p is large.

With the help of Maclaurin’s series expansions and neglecting the higher powers of small terms we get the rootsm1,m2
of Eq. (20) as follows:
(I) For the case of ETE, TRDTE and TEWOED:

mi = b0i p + b1i + b2i
1
p
, i = 1, 2. (25)

(II) For the case of CTE:

m1 = b01p + b11 + b21
1
p

(26)

m2 =

[
v1p

1
2 +

v2
√
p

+
v3√
p3

]
(27)

where,

b0i =

√(
a0i

)
, i = 1, 2

b1i =
a1i

2
(
a0i

) 1
2
, i = 1, 2

b2i =
4a2i a

0
i −

(
a1i

)2
8

(
a0i

) 3
2

, i = 1, 2

a0i =
A2 + (−1)i+1

√
C

2A5
, i = 1, 2

a1i =
A1

√
C + (−1)i+1 (A1A2 − 2A3A5a2)

2A5
√
C

, i = 1, 2

a2i = (−1)i+1 1
4A5

[
(A1)

2

√
C

−
(A1A2 − 2A3A5a2)2

√
C3

]
, i = 1, 2

v1 =

√(
a12

)
, v2 =

1
2

a22√
a12

, v3 = −
1
8

(
a22

)2(
a12

) 3
2

A1 = δ1ka2 (1 + ε) , A2 = δ1k
(
1 + a2α′

1 + a2εα′

1ζ + a2εα′

2

)
+ δ2k (a0 + (1 + ε) a2) , A3 = δ1k

A4 = (δ1kα
′

1 + δ2k), A5 = δ1k + a0δ2k, C = (A2)
2
− 4a2A4A5.

Now substituting the value ofm1 andm2 from Eqs. (25)–(27) in the expressions for displacement, temperature and stresses
and using expression

Kv(z) ≈

√
π

2z
e−z

[
1 +

4v2
− 1

8z
+

(
4v2

− 1
) (

4v2
− 9

)
2! (8z)2

+ · · ·

]
weobtain, after a long calculation, the short-time approximated solutions for the distributions of displacement, temperature
and stresses in the Laplace transform domain (R, p) as follows:

(I) For the case of ETE, TRDTE & TEWOED:

Ū =
2a1
RD1

2∑
i=1

2∑
j=1

(−1)i+1 e−mi(R−1)
[

Uij

pj+2

]

Z̄ =
2

RD1

2∑
i=1

2∑
j=1

(−1)i e−mi(R−1)
[

Zij
pj+2

]
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σ̄RR =
2a1
RD1

2∑
i=1

2∑
j=1

(−1)i e−mi(R−1)

[
SRij
pj+1

]

σ̄ϕϕ =
2a1
RD1

2∑
i=1

2∑
j=1

(−1)i e−mi(R−1)

[
Sϕ

ij

pj+1

]
.

(II) For the case of CTE:

Ū =
2a1
DC1R

{
e−m1(R−1)

[
UC11

p4
+

UC12

p5

]
− e−m2(R−1)

[
UC21

p
9
2

+
UC22

p5

]}

Z̄ =
2

DC1R

{
−e−m1(R−1)

[
ZC11
p3

+
ZC12
p4

]
+ e−m2(R−1)

[
ZC21
p3

+
ZC22
p4

]}
σ̄RR =

2a1
DC1R

{
−e−m1(R−1)

[
X11

p3
+

X12

p4

]
+ e−m2(R−1)

[
X21

p3
+

X22

p4

]}
σ̄ϕϕ =

2a1
DC1R

{
−e−m1(R−1)

[
Y11

p3
+

Y12

p4

]
+ e−m2(R−1)

[
Y21

p3
+

Y22

p4

]}
where, we take the expression for the heating effect F(η) of the boundary condition (11) as:

F(η) = η2e−αη for η ≥ 0, α > 0

(the positive constant α being responsible for the velocity of changes in temperature on the boundary).
In the above solutions the following notations for i = 1, 2 have been used:

Fi1 =
(a0i − 1)

a0i
, Fi2 =

a0i(
a1i

)2 , i = 1, 2

Si1 = 1 − Fi1, Si2 =
2(1 − λ1)

b0i R
−

(
Fi2 +

1
2
b1i
b0i

Si1

)
, i = 1, 2

S0ij = Sij
∣∣
R=1, i, j = 1, 2

D1 = S011F21 − S021F11

D2 = S011F22 + S012F21 − S022F11 − S021F12 −
1
2

[
S011F21

b12
b02

− S021F11
b11
b01

]
B11 = S021, B21 = S011, B12 = S022 − 3αS021 −

D2

D1
S021, B22 = S012 − 3αS011 −

D2

D1
S011

Ui1 =
α′

2Bi1

b0i
, Ui2 =

Bi1(
b0i

)2 [
α′

2

(
1
R

−
b1i
2

− b1i

)
+ b0i

]
+ Bi2

α′

2

b0i
, i = 1, 2

Zi1 = Fi1Bi1, Zi2 =

(
Fi2 −

b1i
2b0i

)
Bi1 + Fi1Bi2, i = 1, 2

SRi1 = Si1α′

2Bi1, SRi2 = Bi1(Si1 + α′

2Si2) + Bi2α
′

2Si1, i = 1, 2
Sϕ

i1 = ϕi1α
′

2Bi1, Sϕ

i2 = Bi1(ϕi1 − α′

2ϕi2) + Bi2α
′

2ϕi1, i = 1, 2

DC1 =
S011 − F11(

a12
)2

DC2 = F21S012 +
1

2
(
a12

)2


(
v2b01 − v1b01

(
a12

)2
− a22v1b01

)
S011 − b01F11(2a

2
2 − v2) − 2v1b01F12 + v1b11F11

v1b01


UC11 =

(
a12

)−5
2 , UC12 =

(
a12

)−5
2

 2 − b11R

2b01R
(
a12

) 1
2

 +
(2a22 − v2)DC1 − 6αDC1v1 − 2v1DC2

2b01v1DC1
−

b11(
b01

)2


UC21 =
(
a12

)−
1
2 S011, UC22 =

(
a12

)−
1
2 S011

1
Rv1

ZC11 =
F11(
a12

)2 , ZC12 =
F11

2(a12)2

[
(2a22 − v1)DC1 − 6αDC1v1 − 2v1DC2

v1DC1
−

b11
b01

]
+

F12(
a12

)2
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ZC21 = −
S011(
a12

)2 , ZC22 =
1

2
(
a12

)2 [[
v2

v1
+ 6α +

2DC2

DC1
+ 2

[(
a12

)2
+ a22

]]
S011 − 2S012

]

X11 =
S11(
a12

)2 , X12 =
S12(
a12

)2 +
(2a22 − v2)DC1 − 6αDC1v1 − 2v1DC2

2(a12)2v1DC1
S11

X21 =
S011(
a12

)2 , X22 =
1(
a12

)2 S011 [
2a22 − v2

2v1
− 3α −

DC2

DC1

]
+

1(
a12

)2 S012
Y11 =

ϕ11(
a12

)2 , Y12 =
(2a22 − v2)DC1 − 6αDC1v1 − 2v1DC2

2(a12)2v1DC1
ϕ11 −

ϕ12(
a12

)2
Y21 =

S011(
a12

)2 , Y22 =
1

2
(
a12

)2
v1

[
2(λ1 − 1)v1

(
a12

)2
+ 2a22v1 + v2

(
a12

)2
+ 2v1S011

]
.

5.1. Laplace inversion

For the inversion of the Laplace transforms obtained above we use the convolution theorem of the Laplace transform and
the following formulae [25].

L−1

[
e−

a
p

pv+1

]
=

(
t
a

)v/2

Jv
(
2
√
at

)
, Re(v) > −1, a > 0

L−1

[
e

a
p

pv+1

]
=

(
t
a

) v
2

Iv
(
2
√
at

)
, Re(v) > −1, a > 0

L−1

[
e−a

√
p

p
v
2 +1

]
= (4t)

v
2 iverfc

(
a

2
√
t

)
, v = 0, 1, 2, . . .

where, Jv and Iv are the Bessel function and modified Bessel functions of order v and of the first kind respectively.
It can be proved that b21 > 0 and b22 < 0 for the cases of ETE & TRDTE, b11 = b12 = b21 = b22 = 0 for the case of TEWOED and

b02 = 0, b12 → ∞, b22 → ∞ for the case of CTE. Therefore the final solutions for the field variables in the physical domain
(R, η) are obtained as follows:
(I) For the case of ETE & TRDTE:

U =
2a1
RD1

2∑
j=1

{
e−b11(R−1)

[
η1

b21(R − 1)

] j+1
2

Jj+1 (z1)H (η1)U1j − e−b12(R−1)
[

η2

−b22(R − 1)

] j+1
2

Ij+1 (z2)H (η2)U2j

}

Z =
2

RD1

2∑
j=1

{
−e−b11(R−1)

[
η1

b21(R − 1)

] j+1
2

Jj+1 (z1)H (η1) Z1j + e−b12(R−1)
[

η2

−b22(R − 1)

] j+1
2

Ij+1 (z2)H (η2) Z2j

}

σRR =
2a1
RD1

2∑
j=1

{
−e−b11(R−1)

[
η1

b21(R − 1)

] j
2

Jj (z1)H (η1) SR1j + e−b12(R−1)
[

η2

−b22(R − 1)

] j
2

Ij (z2)H (η2) SR2j

}

σϕϕ =
2a1
RD1

2∑
j=1

{
−e−b11(R−1)

[
η1

b21(R − 1)

] j
2

Jj (z1)H (η1) S
ϕ

1j + e−b12(R−1)
[

η2

−b22(R − 1)

] j
2

Ij (z2)H (η2) S
ϕ

2j

}
.

(II) For the case of TEWOED:

U =
2a1
RD1

2∑
j=1

{
η
j+1
1

(j + 1)!
H (η1)U1j −

η
j+1
2

(j + 1)!
H (η2)U2j

}

Z =
2

RD1

2∑
j=1

{
−

η
j+1
1

(j + 1)!
H (η1) Z1j +

η
j+1
2

(j + 1)!
H (η2) Z2j

}

σRR =
2a1
RD1

2∑
j=1

{
−

η
j
1

(j)!
H (η1) SR1j +

η
j
2

(j)!
H (η2) SR2j

}

σϕϕ =
2a1
RD1

2∑
j=1

{
−

η
j
1

(j)!
H (η1) S

ϕ

1j +
η
j
2

(j)!
H (η2) S

ϕ

2j

}
.
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(III) For the case CTE:

U =
2a1
DC1R

{
e−b11(R−1)H(η1)

[
(η1)

3

6
UC11 +

(η1)
4

24
UC12

]
−

[
(4η)

7
2 i7erfc(η3)UC21 + (4η)4i8erfc(η3)UC22

]}
Z =

2
DC1R

{
e−b11(R−1)H(η1)

[
(η1)

2

2
ZC11 +

(η1)
3

6
ZC12

]
+

[
(4η)2i4erfc(η3)ZC21 + (4η)3i6erfc(η3)ZC22

]}
σRR =

2a1
DC1R

{
e−b11(R−1)H(η1)

[
(η1)

2

2
X11 +

(η1)
3

6
X12

]
+

[
(4η)2i4erfc(η3)X21 + (4η)3i6erfc(η3)X22

]}
σϕϕ =

2a1
DC1R

{
e−b11(R−1)H(η1)

[
(η1)

2

2
Y11 +

(η1)
3

6
Y12

]
+

[
(4η)2i4erfc(η3)Y21 + (4η)3i6erfc(η3)Y22

]}
where,

ηi = η − b0i (R − 1) , zi = 2
√

(−1)i+1 b2i (R − 1)
[
η − b0i (R − 1)

]
, for i = 1, 2

η3 =
v1(R − 1)

2
√

η

and erfc(x) is the associated complementary error function of nth degree defined by:

erfc(x) =
2

√
π

∫
∞

x
e−u2du,

inerfc(x) =

∫
∞

x
in−1erfc(ξ)dξ, n = 1, 2, . . .

i0erfc(x) = erfc(x).

From the solutions obtained as above we observe that solutions for the distributions of displacement, temperature and
stresses in the cases of ETE, TRDTE and TEWOED consist of two coupled waves propagating with the finite speeds 1

b0i
, for

i = 1, 2. The wave propagating with speed 1
b01

is predominantly an elastic wave and the wave propagating with the speed
1
b02

is predominantly a thermal wave. The solutions of all the variables are continuous in nature. However, the analytical

solutions of the field variables indicate that as compared to the cases of ETE and TRDTE, in the case of TEWOED the waves
propagate without attenuation, which is obviously a characteristic feature of this theory.

For the case of CTE, it is noticed from the expressions of b0i that b
0
2 = 0, which implies that the thermal wave propagates

with infinite speed in the case of CTE. For this case the solutions of all the variables consist of two parts. The first parts
involving the term H(η) represent the contribution due to the elastic wave front traveling with finite speed 1

b01
with

exponential attenuation, whereas the second parts of the solutions are of diffusive nature which is because of the parabolic
nature of heat transport equation for this case.

6. Numerical results and conclusions

Now for the illustration of the problemwe follow the numericalmethod proposed by Bellman et al. [1] (see the Appendix)
for the inversion of Laplace transforms and compute the numerical values of physical quantities like displacement,
temperature and stresses from Eqs. (19) and (22)–(24) for different values of R (R > 1) (programming language C++ has
been used here). The results are plotted in Figs. 1–4. The material chosen is the copper material, the physical data for which
is given as:

ε = 0.0168, λ = 1.387 × 1012 dyne/cm2, µ = 0.448 × 1012 dyne/cm2.

We take α′

1 = 0.01, α′

2 = 0.02.
In case of TEWOED theory, K ∗ is a material constant, characteristic of the theory. We have chosen K ∗

=
cv(λ+2µ)

4
(Chandrasekharaiah and Srinath [26]).

Figs. 1–4 represent the radial distributions of displacement, temperature, radial stress and circumferential stress for four
theories of thermoelasticity (i.e., (TEWOED), (ETE), (TRDTE) and (CTE)) at the non-dimensional time η = 0.5 and α = 2.
It is observed from these figures that the distinction of (TEWOED) from other three theories is very prominent for all the
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Fig. 1. Radial distribution of displacement at η = 0.5.

Fig. 2. Radial distribution of temperature at η = 0.5.

Fig. 3. Radial distribution of radial stress at η = 0.5.

field variables. The temperature field shows no significant distinction for cases of (ETE) and (TRDTE), but the disagreement
of these two theories with (CTE) and (TEWOED) is significant. The values of all the variables in the case of (TEWOED) are
very high as compared to the values in the cases of other theories.
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Fig. 4. Radial distribution of circumferential stress at η = 0.5.

Appendix

Let the Laplace transform of the function u(t) be given by

F̄(p) =

∫
∞

0
u(t)e−ptdt, p > 0. (A.1)

We assume that u(t) is sufficiently smooth to permit the approximate method we apply.
Putting x = e−t in Eq. (A.1) we get

F̄(p) =

∫ 1

0
xp−1g(x)dx (A.2)

where u(− log x) = g(x).
Applying the Gaussian quadrature formula to (A.2) yields

N∑
i=1

Wix
p−1
i g(xi) = F̄(p) (A.3)

where xi ’s (i = 1, 2, 3 . . .N) are the roots of the shifted Legendre polynomial PN(x) = 0 andWi’s (I = 1, 2, 3 . . .N) are the
corresponding weights.

Eq. (A.3) can be written as :

W1x
p−1
1 g(x1) + W2x

p−1
2 g(x2) + W3x

p−1
3 g(x3) + · · ·WNx

p−1
N g(xN) = F̄(p). (A.4)

We now put p = 1, 2, . . . ,N in Eq. (A.4), then the resulting equations become
W1g(x1) + W2g(x2) + W3g(x3) + · · ·WNg(xN) = F̄(1)
W1x1g(x1) + W2x2g(x2) + W3x3g(x3) + · · ·WNxNg(xN) = F̄(2)
. . .

W1xN−1
1 g(x1) + W2xN−1

2 g(x2) + W3xN−1
3 g(x3) + · · ·WNxN−1

N g(xN) = F̄(N). (A.5)
Therefore from (A.5) we get g(xi) as:g(x1)

g(x2)
. . .

g(xN)

 =

 W1 W2 . . . WN
W1x1 W2x2 . . . WNxN
. . . . . . . . . . . .

W1xN−1
1 W2xN−1

2 . . . WNxN−1
N


−1 

F̄(1)
F̄(2)
. . .

F̄(N)

 . (A.6)

Therefore g(x1), g(x2), . . . , g(xN) are known.
For N = 7 we have:

The roots of the shifted Legendre polynomial Corresponding weights
x1 = 0.02555604382862 0.06474248308443
x2 = 0.12923440720030 0.13985269574463
x3 = 0.29707742431130 0.19091502525255
x4 = 0.500000000000000 0.20897959183673
x5 = 0.702922575688698 0.190915025252559
x6 = 0.870765592799697 0.139852695744638
x7 = 0.974553956171379 0.064742483084435.
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From equations in (A.6) we can calculate the discrete values of g(xi) i.e. u(ti) and finally using interpolation we obtain the
displacement component u(t).
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