
CHAPTER 5: DEFORMABLE THORACIC CT IMAGES 

SEQUENCE REGISTRATION USING STRAIN ENERGY 

MINIMIZATION 

 

The idea of deformable image registration (DIR) has been explored for a thoracic 

CT (computed tomography) image database of ten subjects. Thoracic CT image 

acquisition for clinical interventions requires a well-defined procedure which has 

already been underlined on the basis of field expertise and past experiences. 

Despite strict adherence to the procedure, the acquired images are prone to 

distortions and artefacts. This might happen due to organ motion during breathing 

process (at times even in breath-hold procedures), slight (even involuntary) 

movements or acquisition variations in supine and prone positions etc. An 

intensity differences based energy minimization method has been proposed. The 

moving image is transformed in the process such that it gets maximum alignment 

with the fixed image. This is achieved by energy minimization of the moving 

image in an iterative process. It is a simpler and more practical method for 

thoracic CT image registration than the prevalent approaches. This has been 

shown by lower mean registration errors for the patient data; the errors were as 

such axial: 0.283±0.08, coronal: 0.784±0.32 & sagittal: 0.66±0.2 pixels. This 

registration of moving image onto the fixed image in the sequence will help in 

minimizing the adverse effects of the otherwise present discrepancies, phase 

errors and discontinuity artifacts that might have crept in during the acquisition. 

The proposed method begins with a pair of images of same dimensions; these 

images are part of an image sequence and have considerable temporal difference 

between them. The image sequence has been acquired as a part of the breathing 
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process. Of the two, image appearing earlier in the temporal timeline is considered 

as the target image and the one appearing later is considered as the source image. 

These both images represent the extremes of a breathing cycle such that the first 

image is full inhale and the last image is full exhale. These both images have their 

own specific energy signatures. Both these images have to be registered against 

each other. For the registration process, no direct comparisons between images are 

done; instead the source image is independently transformed in such a way that 

the transformed image has minimum intensity difference with the target image. It 

is an iterative process (as can be referred to in fig. 5.2), at each stage of which 

transformed versions of source image are compared to the target image for 

intensity difference of zero or less than a third decimal place value. If none of the 

two conditions are met, the transformed image goes into further transformation 

and the process continues until the source image is transformed to a level that it 

satisfies previously laid conditions. In our experiments, SNR (signal to noise 

ratio), PSNR (peak SNR), mean SSIM (Structural SIMilarity) index & NCC 

(Normalized Cross Correlation) have been used to estimate and establish 

increased similarity between the later transformed – target image pair in 

comparison to previous source – target image pair. Mean Registration Error 

( ) is used as the quantitative measure for the evaluation of performance. The 

obtained for the dataset was found to be considerably lower than more 

traditional and prevalent transforms such as affine and b-splines based 

approaches. 

5.1 Introduction 

Organ motion pertaining to breathing can lead to image artefacts and position 

uncertainties during image guided clinical interventions. A particular case for 
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such image guided interventions (IGI) can be the radiotherapy planning of 

thoracic and abdominal tumours; the respiratory motion causes important 

uncertainties and is a significant source of error [Keall, P. J. et al., 2006]. During 

a process of image acquisition, slight movement from the subject can translate 

into potential discrepancies in the acquired image sequence. Images in such an 

acquired sequence more than often end up out of sync and prove to be not of 

much use for both medical application and/or research purposes. A non-invasive 

method to describe lung deformations was proposed using NURBS surfaces based 

on imaging data from CT scans of actual patients [Tsui, B. M. W. et al., 2000]. 

Image registration has recently started playing an important role in this scenario; it 

helps in the estimation of any motion caused due to breathing during acquisition 

and the description of the temporal change in position and shape of the structures 

of interest by establishing the correspondence between images acquired at 

different phases of the breathing cycle [Ehrhardt, J. et al., 2011]. 

Image Registration is the alignment/overlaying of two or more images so 

that the best superimposition can be achieved. These images can be of the same 

subject at different points in time, from different viewpoints or by different 

sensors. This way the contents from all the images in question can be integrated to 

provide richer information. It helps in understanding and thus reducing the 

differences occurred due to variable imaging conditions. Most common 

applications of Image Registration include remote sensing (integrating 

information for GIS), combining data obtained from a variety of imaging 

modalities (combining a CT and an MRI view of the same patient) to get more 

information about the disease at once, cartography, image restoration etc. An 

image registration method targets to find the optimal transformation that aligns 
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the images in the best way possible. Image registration methods can be broadly 

classified into three basic classes, landmark (or point) based registration 

[Mcgregor, B., 1998; Rohr, K. et al., 2001; Bookstein, F. L., & Green, W. D., 

1993], segmentation based registration [Sull, S., & Ahuja, N., 1995; Feldmar, J., 

& Ayache, N., 1996; Jain, A. K. et al., 1996] and the image intensity based 

registration [Szeliski, R., & Coughlan, J., 1994; Kybic, J., & Unser, M., 2003] 

depending on them being more cost efficient, fast and flexible over the others with 

respect to the image family it is being used to register and the application of the 

registration process. It is further categorized into two kinds based on the type of 

image it is being applied for. The two kinds of images are Rigid Images and 

Deformable Images. Rigid images are those of structures with rigid morphological 

properties e.g. bones, buildings, geographical structures etc. If the underlying 

transformation model allows local deformations, i.e. nonlinear fields’ u(x), then it 

is called Deformable Image Registration (DIR) [Muenzing, S. E. A. et al., 2014]. 

Deformable images are those of structures shape and size of which can be 

modelled after tangible physically deformable models [Sotiras, A. et al., 2013]. 

Rigid image registration although is an important aspect of registration it is not 

the topic of discussion in this article. Since the discussion is about Medical Image 

Registration and almost all anatomical parts or organs of the human body are 

deformable structures, the concentration here is on DIR [Oliviera, F. P. M. & 

Tavares, J. M. R. S., 2012]. 

The proposed methodology is based on intensity based registration. It is 

fully automatic in its mode of operation and helps in faster and more accurate 

image registration in comparison to pure landmark based registration methods. 

This factor gives our method an upper hand when it comes to real-life medical 
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image registration problems. The intensity based energy minimization 

methodology seems more practical, stable and cost efficient for deformable 

images in comparison to landmark based or segmentation based methodologies 

for similar purposes. The method is simpler and faster than its contemporaries 

because the energy function is worked upon directly without solving large matrix 

system assemblies. 

5.2 Background 

The background study of this chapter initially includes a study of few most 

prominent proposed algorithms in the direction of study of the energy 

minimization based non-linear elastic image registration and its applications. Then 

the proposed methods relating to image registration of thoracic CT images are 

discussed. The propositions are categorically discussed keeping in mind their 

acute relevance and their year of occurrence. Propositions occurring at a later 

instant in timeline are given higher priority in terms of detailed discussion in 

comparison to earlier works to establish better context. These methods are 

compared in a tabular format in table D.1 in Appendix D. 

 Pennec and associates [Pennec, X. et al., 2005] suggested a statistical 

regularization framework for non-linear registration based on the concept of 

Riemannian Elasticity. In the proposed method, elastic energy has been 

interpreted as the distance of the Green-St. Venant strain tensor to the identity, 

which in turn reflects the deviation of the local deformation from a rigid 

transformation. By changing the usually employed Euclidean metric for a more 

suitable Riemannian one, a consistent statistical framework has been defined to 

quantify the amount of deformation. These statistics were then used as parameters 

in a Mahalanobis distance to measure the statistical deviation from the observed 
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variability, giving a new regularization criterion that is called the statistical 

Riemannian elasticity. It was found that this new criterion is able to handle 

anisotropic deformations and is inverse-consistent. Preliminary results and 

observations showed that it can be quite easily implemented in a non-rigid 

registration algorithm. 

 Bao Zhang and associates [Zhang, B. et al., 2011] proposed a three-

dimensional elastic image registration methodology based on strain energy 

minimization with its application to prostate magnetic resonance imaging. The 

registration algorithm was also applied on ten sets of human prostate data, each 

with two typical deformation states (one with 0 cc of air and the other with 40–60 

cc of air inflated in the endorectal coil balloon). There were a total of 200-400 

landmarks used to derive the transformation depending on the size of each 

prostate. They described it as a novel 3-D elastic registration procedure that is 

based on the minimization of a physically motivated strain energy function that 

requires the identification of similar features (points, curves, or surfaces) in the 

source and target images. The Gauss-Seidel method was used in the numerical 

implementation of the registration algorithm. The registration procedure was 

validated on synthetic digital images, MR images from prostate phantom, and MR 

images obtained on patients. Registration errors were assessed by averaging the 

displacement of a fiducial landmark in the target to its corresponding point in the 

registered image. The registration error on patient data was 1.8±0.7 pixels. 

Registration also improved image similarity (normalized cross-correlation) from 

0.72±0.10 to 0.96±0.03 on patient data. Registration results on prostate data in 

vivo demonstrated that the registration procedure could be used to significantly 

improve both the accuracy of localized therapies such as brachytherapy or 

110 



external beam therapy and can be valuable in the longitudinal follow-up of 

patients after therapy. 

 Ronald W. K. So and associates [So, R. W. K. et al., 2011] proposed a 

technique for non-rigid image registration of brain magnetic resonance images 

using graph-cuts. A graph-cut based method was proposed for non-rigid medical 

image registration on brain magnetic resonance images. In this proposal the non-

rigid medical image registration problem has been reformulated as a discrete 

labelling problem. They modelled the non-rigid registration as a multi-labeling 

problem by Markov random field. The image registration problem was therefore 

modeled by two energy terms based on intensity similarity and smoothness of the 

displacement field. The MRF energy was minimized using graph-cuts algorithm 

via α expansions. The registration results of the proposed method were compared 

with two state-of-the-art medical image registration approaches: free-form 

deformation based method and demons method. In addition, the registration 

results were also compared with that of the linear programming based image 

registration method. The proposed method was found to be more robust against 

different challenging non-rigid registration cases with consistently higher 

registration accuracy than those three methods, and gives realistic recovered 

deformation fields. 

 Andrew R. Dykstra and associates [Dykstra, A. R. et al., 2012] proposed a 

method which co-registers high-resolution preoperative MRI with postoperative 

computerized tomography (CT) for the purpose of individualized functional 

mapping of both normal and pathological (e.g., interictal discharges and seizures) 

brain activity. The proposed method accurately (within 3 mm, on average) 

localizes electrodes with respect to an individual's neuroanatomy. Furthermore, 
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they outlined a principled procedure for either volumetric or surface-based group 

analyses. The method was demonstrated in five patients’ data with medically-

intractable epilepsy undergoing invasive monitoring of the seizure focus prior to 

its surgical removal. Accuracy of the method was found within 3mm of average. 

The straight-forward application of this procedure to all types of intracranial 

electrodes, robustness to deformations in both skull and brain, and the ability to 

compare electrode locations across groups of patients makes this procedure an 

important tool for basic scientists as well as clinicians. 

 H. P. Heinrich and associates [Heinrich, H. P. et al., 2013] proposed a 

MRF-Based Deformable Registration and Ventilation Estimation of Lung CT. In 

the proposed method three major challenges associated with lung ct registration 

viz. large motion of small features, sliding motions between organs and changing 

image contrast due to compression are addressed and potentially higher quality of 

discrete approaches is preserved. First, an image-derived minimum spanning tree 

is used as a simplified graph structure, which coped well with the complex sliding 

motion and allowed to find the global optimum very efficiently. Second, a 

stochastic sampling approach for the similarity cost between images is introduced 

within a symmetric, diffeomorphic B-spline transformation model with diffusion 

regularization. The complexity is reduced by orders of magnitude and enables the 

minimization of much larger label spaces. In addition to the geometric transform 

labels, hyper-labels are introduced, which represent local intensity variations in 

this task, and allow for the direct estimation of lung ventilation. The 

improvements are validated in accuracy and performance on exhale-inhale CT 

volume pairs using a large number of expert landmarks. The three challenges 

posed in the beginning are met. 
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 Keita Nakagomi and associates [Nakagomi, K. et al., 2013] proposed a 

segmentation based registration methodology which uses multi-shape graph cuts 

with neighbour prior constraints for lung segmentation from a chest CT volume. 

A novel graph cut algorithm has been proposed that can take into account multi-

shape constraints with neighbor prior constraints, and reports on a lung 

segmentation process from a three-dimensional computed tomography (CT) 

image based on this algorithm. It is a novel segmentation algorithm that improves 

lung segmentation for cases in which the lung has a unique shape and pathologies 

such as pleural effusion by incorporating multiple shapes and prior information on 

neighbour structures in a graph cut framework. The efficacy of the proposed 

algorithm is demonstrated by comparing it to conventional one using a synthetic 

image and clinical thoracic CT volumes. 

5.3 Method 

5.3.1 Preparation 

The dataset used comprised of a total (3×10)×10 i.e. 300 thoracic CT images 

across 10 subjects. All images were anonymized and all procedures followed were 

in accordance with the ethical standards of the responsible committee on human 

experimentation (institutional and national) and with the Declaration of Helsinki 

1975, as revised in 2008 (5). Informed consent was obtained from all patients for 

being included in the study. All patients or legal representatives signed informed 

consent. The images lie between CT phases 0-5 i.e. end-inspiration to end-

expiration in timestamp range t00→t05. The image dimensions lie between 

396×396 to 432×400 pixels. There were 6 frames from a temporal thoracic image 

sequence each for every Anatomical Plane (AP)  i.e. Axial (supine), Coronal and 

Sagittal for all the 10 subjects acquired simultaneously with a gap of 0.1 second 

113 



starting from time t= 0.1 to 0.6 seconds. All images were identified as 

where , (x, y) are the x & y 

coordinates in the Cartesian plane and AP signifies the three anatomical planes of 

view i.e. Axial (a), Coronal (c) and Sagittal (s). Suppose the 3rd frame from 

coronal AP for subject ‘case 9’, would be notified as . A view of the 

image database is shown in the table 5.1 for representational purposes. 

Table 5.1: All three anatomical viewpoints for all the 10 subjects at time t=0.1 & 0.6 sec 

 
ANATOMICAL PLANES (T & S Images) 

 

 
Axial Coronal Sagittal 

1 

                 

2 

                     

3 

                   

4 

                 

5 

                     

6 

                 

7 

                  

8 

                      

9 

                 

10 

                    
 

5.3.2 Proposed Methodology 

What we have is a temporal sequence of images starting from time t=0.1 to t=0.6 

seconds. It starts from the end- inspiration phase and continues up to the end-
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expiration phase of the breathing cycle. The last image of the aforementioned 

sequence being diametrically most deformed with respect to the first image. We 

have proposed a method to register these two images with respect to each other. 

The two images are the target  and the source images  at t=0.1 and t=0.6 

sec. respectively. These images belong to the same domain Ω and are related 

through a transformation . This transformation is such that the resulting 

transformed image ′  has the minimum energy distribution difference in terms 

of a similarity measure with the target image , this has been shown in fig. 5.1. In 

simpler terms it can be stated as: ‘a transformation sought such that the 

transformed image has minimum intensity difference with the target image’. 

 

Figure 5.1: Overview of the proposed methodology 
 

There is a potential energy associated with an elastic system at a time. 

Since, the images involved in the study are of a human body organ, they can be 

categorized as non-rigid or deformable images and the energy principles of elastic 

systems are applicable to this set of images. Potential energy of an elastic two 

dimensional system at static equilibrium is pure strain energy; it can be defined as 

[Ugural, A. C., & Fenster, S. K., 2003]: 
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  (5.1) 

where Ω is the image dimension,  is the tensile stress (engineering constant),  is 

the shear modulus, together they are called the Lame’ constants;  and  are 

normal strains in the x and y directions respectively,  is the shear strain in the 

x-y plane pointing towards the y direction and ‘e’ is the unit change in image 

dimensions. 

 The Poisson’s ratio value for Lung tissue averages close to 0.46 [Al-

Mayah, A. et al., 2008; Brock, K. K. et al., 2005; Sundaram, T. A., & Gee, J. C., 

2005, Zhang, T. et al., 2004]. In equation 5.1, the first term ‘ ’ can be ignored 

since it is two order lower than the rest of the terms. This makes the energy 

expression independent of tensile stress : 

   

 

this can be further simplified to: 

  (5.2) 

 

Suppose u, v are the displacements in x and y directions respectively. Normal 

strain is defined as  in the direction ‘ ’ (a= x, y); shear strain  

in the plane a-b would be the sum of angle of shear (for smaller degrees of shear). 

Thus,  and , similarly  . Exacting these values to 

equation 5.2: 

  (5.3) 
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So, the expression for energy function ‘U’ in equation 5.1 has been reduced to 

strictly a strain energy function in equation 5.3, the equation 5.3 hence can be 

rewritten for  as: 

                 (5.4) 

The strain energy ‘ ’ minimization requires that over the image boundary 

conditions between the source and the target images: 

 
 (5.5) 

 

Such that the minimization constraint can be expressed in terms of intensity 

difference between the transformed image ′  and the target image (T) over the 

image dimensions’ (Ω) as: 

 
 (5.6) 

 

117 



 

Figure 5.2: Flowchart of the iterative process in the registration procedure 
 

It is an iterative process; as we can see in the fig 5.2, during the iteration, each 

time a transformed image is obtained, it is compared against the fixed image and 

an intensity difference mapping and value is calculated. These intensity 

differences are checked at each step. If very little or negligible change (say up to 

third decimal place) is observed, the iteration is stopped and the finally 

transformed image is considered as the required registered image. In case of 

progressively changing intensity differences for consecutive iterations, the 

iteration is continued until the stopping factor comes into play. 
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5.4 Results and Discussion 

Iterative energy minimization using intensity differences across the image 

boundaries yield a transformed image ( ) which was pitted against the actual 

target image ( ) at different stages of the iteration to assess the level of 

transformation. Out of the ten subjects’ data at hand, the coronal AP of subject 

‘case 3’ has been chosen to elaborate and demonstrate the proposed technique 

with results. The transformed image ( )  after the complete registration process 

showed an increase of 51.64% SNR (signal-to-noise ratio) value with respect to 

the target image ( ) in comparison to the source image ( ) with respect to target 

image. The change in PSNR (peak SNR) value was recorded at 41.64% in  in 

comparison to  pair. A new metric called the SSIM (Structural Similarity) 

index has been used [Wang, Z. et al., 2004]. It has been used to estimate and 

measure the similarity between two images. It has been used as a deciding metric 

which would give a percentage similarity between the two images in question i.e. 

the fixed and the moving image and the fixed-transformed image pair. The mean 

SSIM index for the  pair was calculated at 0.4975, the same index for the  

pair came at 0.735. Along with similarity measures such as SNR, PSNR and m-

SSIM, NCC (normalized cross-correlation) has been used to demonstrate as to 

how close the transformed image ( ) has come to the target image ( ) as a result 

of the registration process. The NCC value for  pair was estimated at 0.8817, 

for the  pair it was calculated at a higher value of 0.9749 which further helps 

in establishing the closeness of the transformed image to the target source and 

hence, the proposed methodology as an efficient deformable image registration 

approach. 
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Figure 5.3: The iterative process graphical results on ‘case 3’ coronal AP 

The earlier discussed iterative process and how it results in the finally registered 

image has been shown in the fig. 5.3. Figure 5.3(a) & (b) are the fixed and moving 

images respectively, they are also the diametrically opposite images of a breathing 

cycle (i.e. full inhale and full exhale) in a respiration process. Figure 5.3(c) is the 

intensity difference mapping (IDM) of (a) & (b) before the iteration starts. 

Transformation is applied to the moving image and transformed image is 

obtained. An IDM and corresponding value is calculated for the newly 

transformed moving image and the fixed image. Changes in IDM and value for 
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current and previous stage is observed, if the change is zero or negligible in 

comparison to the intensity difference value at either of the two stages of the 

iteration, the iteration is stopped there and last transformed image is the registered 

image. Figure 5.3(d) is the transformed image at the 7th iteration, 5.3(e) is its 

IDM with respect to the fixed image. In this particular instance of subject ‘case 3’, 

it took 174 iterations to obtain the finally registered image which is the fig. 5.3(l); 

5.3(m) is the final IDM indicating minimal difference of the registered image with 

respect to the fixed image indicating a seamless and smooth registration process. 

Figures 5.3(f) and (g) are the transformed and IDM (with the fixed image) images 

at 20th iteration; figs. 5.3(h) and (i) are the transformed and IDM (with the fixed 

image) at the 55th iteration; similarly 5.3(j) and (k) are the same at the 130th 

iteration. Figure 5.3(n) and (o) are the deformation vector and deformation field 

representations respectively for the finally registered image. 

 Figure 5.4 shows the energy minimization process for subject ‘case 3’ 

coronal AP, the iterative process continues until a finally registered image is 

obtained at 174
th

 iteration (that is where the minimization process stops). The 

initial descent was observed as fast with respect to iterations until 110
th

 iteration, 

after which the minimization process progresses with diminutive changes in 

intensity differences. It finally picks up at 124
th

 iteration until to finally finish the 

process at 174
th

. 
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Figure 5.4: Energy minimization vs. Iterations for ‘case 3’ coronal AP 

 

Table 5.2: SNR, pSNR, m-SSIM, NCC for all subjects under study from all APs; S-T 

is the source-target pair, R-T is registered-target pair for proposed method 

Similarity estimation of S-T and R-T using various metrics for all subjects 

 
Axial Coronal Sagittal 

    
 

S-T R-T S-T R-T S-T R-T 

       SNR 

(dB) 
16.23±1.48 16.29±1.96 12.51±1.37 16.29±1.62 12.62±1.3 16.13±1.6 

PSNR 

(dB) 
20.52±1.14 20.58±1.62 15.35±1.36 19.13±1.6 16.33±1.5 19.83±1.8 

m-

SSIM 

index 

0.744±0.05 0.742±0.04 0.49±0.08 0.58±0.12 0.57±0.13 0.64±0.14 

NCC 0.964±0.01 0.969±0.01 0.85±0.03 0.93±0.02 0.89±0.03 0.95±0.03 

 

The proposed technique was practically implemented on all the subject data at 

hand i.e. three anatomical positions across ten subjects. After obtaining the finally 

registered images for complete dataset, they were pitted against the fixed images 

122 



of their own sequence’s respective sub-datasets. Similarity metrics such as SNR, 

pSNR, mean-SMIM index and NCC were calculated and compared for each S-T 

and R-T pairs for improvements (if any) which might suggest closeness of the 

registered image towards the fixed image. The observations are collected in table 

2, they are average values over the complete dataset through all APs; all similarity 

metrics clearly seem to improve from S-T to R-T image pair for all subjects. 

Where there are significant changes in the case of coronal and sagittal APs, 

respective changes are not as notable in axial AP’s data, this can be explained by 

usually comparatively smaller deformations in the ‘anterior-posterior’ direction. 

 

 

Figure 5.5: mean Registration error (pixels) for all 10 subjects through all APs 

 

As can be seen in the figure 5.5, the mean registration errors ( ) obtained for 

all the subjects involved in the test have been plotted through all three APs. 

Without the scope of any significant deformations comparable with coronal and 

sagittal APs, lowest mean registration errors were recorded for axial APs after 
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using all the tested transforms. The proposed method yielded least mean  (for 

all APs) while followed by b-spline and affine transforms in order. Not relying on 

landmark based features to establish correspondences instead applying purely 

intensity difference based energy minimization can be attributed for these results. 

5.5 Conclusion 

A novel, practically more feasible and accurate deformable image registration 

methodology for thoracic image sequences has been proposed. It could be a boon 

for real-life applications such as image acquisition for radiotherapy planning of 

thoracic lesions, dosimetric evaluation, tumour growth progression (with time) 

and determination of subject-specific deformable motion models. 

 An effort has been made to model elastic image deformations after real life 

2D elastic object deformations such that all the constituents of that object are 

constantly in spontaneous motion and are not at equilibrium. Motion of 2D elastic 

objects due to internal forces has been used as an inspiration to determine 

deformations in thoracic CT images. Results from our study showed average 

target registration error of less than 1 pixel over the entire thoracic ct image 

volume. Such an accurate registration of thoracic ct images obtained in the 

deformed state can be useful in treatment planning and also for longitudinal 

evaluation of progression/regression in patients with lung cancer. Although the 

utility of this method has been shown for ct image volume, the method can be 

applied to images of any other imaging modalities as well. 
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