CHAPTER 4: A PATH TRACING AND DEFORMITY
ESTIMATION METHODOLOGY FOR REGISTRATION
OF THORACIC CT IMAGE SEQUENCES

The chapter presents a methodology which involves an automatic registration
process for tracing deformity paths of the thoracic region between full inhale and
exhale positions based on Hessian-matrix based feature detector and Haar
wavelets based descriptor along with Optical Flow Motion (OFM) estimation
based point tracker technique. The proposed work presents a unique and
innovative arrangement of methods to compute the average deformation of the
thoracic region from all anatomical positions. Often clinical studies on image
based respiratory systems either suffer road blocks or yield inconsistent results
due to artifacts from a variety of subjects’ erratic breathing patterns. This leads to
loss of resources and time to ultimately get inconclusive and potentially wrong
results. This work can be seen as an automatic way of computing average thoracic
deformation for a set of diverse subjects. In an image sequence, corresponding
control point pairs or landmarks can be used to define the internal deformations
with respect to time, point of view or modality. Defining enough number of
control points in a thoracic image temporal sequence to describe the deformations
happening in it is a tedious task. This inspired the use of automatic definition of
control points in the proposed work. The credibility and performance of the above

proposed method is demonstrated by its exemplary experimental results.

The proposed methodology registers consecutive, equidistant frames in a
temporal, thoracic CT image sequence starting from full inhale to full exhale

positions by assessing the transformations happening in the image over time for a
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group of test subjects through all three anatomical positions (APs). The sequences
are such that the first and last frames of a sequence are the most deformed frames
with respect to each other i.e. first frame is the full inhale frame and the last one is
the full exhale frame. The number of these frames depends upon the time gap
considered between acquiring of these frames. Larger the time gap, lesser would
be the number of frames in the sequence from start to finish. These frames are
compared and contrasted against each other to find common landmark set of
points between them. They would be same points in different frames at different
(may be) coordinate locations. These points serve as input to an OFM estimation
based point tracking algorithm which would track a point from the first temporal
frame up until the last frame in the sequence it appears in, (few points were not
found to carry through all the frames from start to finish (as we later found out in
the process)). This process is completed for remaining points in the common
landmark point set throughout the sequence. One of the frames is considered as a
‘base’ or ‘reference’ and rest of the frames are registered with respect to the
reference/base. In the proposed method, the full inhale frame which is the first one
has been considered as the reference frame as a default for all subjects through all
APs. The distances each point cover between temporally ordered frames of the
sequence from its starting frame to the last frame it is observed in is estimated
using its coordinate values in those respectively ordered frames. Average
translation values are calculated for the point set for all test subjects through all
three APs. These point set average translations summed up over the complete
sequence give an estimation of the deformations happened from first to last frame
of the temporal image sequence. Each point in the common landmark point cloud

has been traced through frames and optical flow determined for it.
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4.1 Introduction

Accounting for organ motion in image based lung cancer radiation treatment is
considered as an important challenge in medical imaging [Goitein, M., 2004].
Lung deformations have been constant focus of studies for the verification of
medical imaging equipments and for medical training purposes for a long period
of time and still, physiologically speaking, very little is understood about the
respiratory movement [Stevo, N. et al., 2009]. The movement of the lung is
passive; a result of the movement of other parts of the body, such as the
diaphragm and the thoracic cage, and it is not possible to observe the lung
directly, as it would collapse if the thoracic cage is opened. The clinical relevance
of this research is diverse. Respiratory motion is related to the function of the lung
and therefore a diagnostic value in itself [Ehrhardt, J. ef al., 2011]. Furthermore,
breathing induced organ motion potentially leads to image artifacts and to position
uncertainty in image guided procedures. Particularly in radiotherapy planning of
thoracic and abdominal tumors, the respiratory motion causes important
uncertainties and is a significant source of error [Keall, P. J. et al, 2006].
Therefore, there has been a large and continuing growth in studies and
applications of 4D CT images for motion measurement, radiotherapy treatment
planning, as well as functional investigations [Reinhardt, J. M. et al., 2008]. “A
non-invasive method to describe lung deformations was proposed using NURBS
surfaces based on imaging data from CT scans of actual patients” [Stevo, N. et al.,
2009; Tsui, B. M. W. et al, 2000]. V. B. Zordan and associates created an
anatomical inspired, physically based model of human torso for the visual
simulation of respiration [Zordan, V. B. et al., 2004]. It has been shown that

breathing motion is not a robust and 100% reproducible process [Nehmeh, S. A. et
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al., 2004; Vedam, S. S. ef al., 2004] and now there is a widespread common
consent that it would be useful to use prior knowledge of respiratory organ motion

3

and its “variability to improve radiotherapy planning and treatment delivery”

[Blackall, J. M. et al., 2006].

The framework that has been acquired in this article is that the constituents
of a thoracic image sequence with starting frame as the full inhale and ending
frame as the full exhale are compared to find a set of common feature points, only
distinction in them being different coordinate values (may be) and that they exist
in different temporal frames. These common feature points are collectively called
as the corresponding feature set. This feature set then serves as input to an OFM
estimation algorithm as control point cloud corresponding to the thoracic image
sequence. The estimation algorithm then traces the deformation in the thoracic

image sequence right through initial to final frame.

The role of image registration techniques is increasing in these
applications. Image registration enables the estimation of the breathing-induced
motion and the description of the temporal change in position and shape of the
structures of interest by establishing the correspondence between images acquired
at different phases of the breathing cycle. A variety of image registration
approaches have been used for respiratory motion estimation in recent years
[Sarrut, D. ef al., 2006]. Image Registration is the alignment/overlaying of two or
more images so that the best superimposition can be achieved. These images can
be of the same subject at different points in time, from different viewpoints or by
different sensors. This way the contents from all the images in question can be
integrated to provide richer information. It helps in understanding and thus

reducing the differences occurred due to variable imaging conditions. Most
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common applications of Image Registration include remote sensing (integrating
information for GIS), combining data obtained from a variety of imaging
modalities (combining a CT and an MRI view of the same patient) to get more
information about the disease at once, cartography, image restoration etc. An
image registration method targets to find the optimal transformation that aligns
the images in the best way possible. If the underlying transformation model
allows local deformations, i.e. nonlinear fields’ u(x), then it is called Deformable

Image Registration (DIR) [Muenzing, S. E. A. et al., 2014].

Image registration has been categorized into two kinds based on the type
of image it is being applied for. The two kinds of images are Rigid Images and
Deformable Images. Rigid images are those of structures with rigid morphological
properties e.g. bones, buildings, geographical structures etc. Deformable images
are those of structures shape and size of which can be modeled after tangible
physically deformable models [Sotiras, A. et al., 2013]. Rigid image registration
although is an important aspect of registration it is not the topic of discussion in
this article. Since the discussion is about Medical Image Registration and almost
all anatomical parts or organs of the human body are deformable structures, the

concentration here is on DIR [Oliviera, F. P. M. & Tavares, J. M. R. S., 2012].

One of the three basic categories of physical models [Modersitzki, J.,
2004] conceptually utilized in this article is the Diffusion models. Thirion,
inspired by Maxwell’s Demons [Thomson, W. 1874], proposed to perform image
matching as a diffusion process, his work in turn inspired most of the work done
in image registration using diffusion models [Thirion, J. P., 1998]. J. M. Peyrat &
associates used multi-channel Demons to register time-series of cardiac images by

enforcing trajectory constraints [Peyrat, J. M. et al., 2008]. Each time instance
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was considered as a different channel while the estimated transformation between
successive channels was considered as constraint. B. T. T. Yeo and associates
[Yeo, B. T. T. et al., 2010] derived Demons forces from the squared difference
between each element of the Log-Euclidean transformed tensors while taking into

account the reorientation introduced by the transformation.

A safer and more accurate evaluation of the respiratory movement will
help in the selection of the appropriate medicine, the determination of the
effectiveness of a treatment, to reduce the number of cases of clinical trial,
observe the progress of rehabilitation treatments, among other possible
applications. The present work uses a novel and never-tried-before automatic

approach for deformity estimation in a temporal sequence of thoracic CT images.

4.2 Background

The background study of this chapter includes detailed discussion of prominent
works and algorithms studied in the process of proposition of this method. The
algorithms and earlier proposed methods under discussion are categorically
ordered keeping in mind their acute relevance and year of
occurrence/proposition/publication to the scientific community. Propositions
occurring at a later instant in timeline are given higher priority in discussion in
comparison to earlier works to establish better context. These methods are

compared in a tabular format in table C.1 in Appendix C.

D. Sarrut and associates [Sarrut, D. et al., 2006] proposed to “simulate an
artificial four-dimensional (4-D) CT image of the thorax during breathing”. It was
performed by deformable registration of two CT scans acquired at inhale and

exhale breath-hold. Breath-hold images were acquired with the ABC (Active
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Breathing Coordinator) system. Dense deformable registrations were performed.
The method was a minimization of the sum of squared differences (SSD) using an
approximated second-order gradient. Gaussian and linear-elastic vector field
regularizations were compared. A new preprocessing step, called a priori lung
density modification (APLDM), was proposed to take into account lung density
changes due to inspiration. It consisted of modulating the lung densities in one
image according to the densities in the other, in order to make them comparable.
Simulated 4-D images were then built by vector field interpolation and image re-
sampling of the two initial CT images. A variation in the lung density was taken
into account to generate intermediate artificial CT images. The Jacobian of the
deformation was used to compute voxel values in Hounsfield units. The accuracy
of the deformable registration was assessed by the spatial correspondence of
anatomic landmarks located by experts. APLDM produced statistically
significantly better results than the reference method (registration without
APLDM preprocessing). The mean +standard deviation of distances between
automatically found landmark positions and landmarks set by experts were
2.7+¢1.1 mm with APLDM, and 6.34+3.8 mm without. Inter-expert variability was
2.3+1.2 mm. The differences between Gaussian and linear elastic regularizations
were not statistically significant. In the second experiment using 4-D images, the
mean difference between automatic and manual landmark positions for
intermediate CT images was 2.6£2.0 mm. The generation of 4-D CT images by
deformable registration of inhale and exhale CT images was found to be feasible.
This might lower the dose needed for 4-D CT acquisitions or might even help to
correct 4-D acquisition artifacts. Such a 4-D CT model could be used to propagate

contours, to compute a 4-D dose map, or to simulate CT acquisitions with an
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irregular breathing signal. It could serve as a basis for 4-D radiation therapy
planning. Despite these encouraging and fruitful projections, further work was
found to be needed to make the simulation more realistic by taking into account

hysteresis and more complex voxel trajectories.

N. Stevo and associates [Stevo, N. et al., 2009] proposed a method for
registration of temporal sequences of coronal and sagittal images obtained from
magnetic resonance (MR). They suggested that for each image in coronal and
sagittal MRI sequences, the information contained in the intersection segment
would be determined, and the matching would be done to determine the best
sagittal images for each coronal image and vice-versa. The final MR image
registration would be the determination of the best images in a sequence that fits a
chosen image in another sequence. One of the registration approaches used was
determining the distance between the images by comparing pixel by pixel and
combining these differences in a single value. The other one was Fourier
Transform based, since fourier description of an edge is also used for template
matching. The resulting pairs from both algorithms were different. It was noticed
that both pairs have a satisfactory visual registration. The temporal sequence of
images represented discrete instants in time, and such an almost perfect fitting is
considered very rare. The temporal registration algorithm based on pixel by pixel
comparison and Fourier transform showed several satisfactory results, however it
was found not possible to overcome the temporal low rate of image acquisition.
One of the future works according to the authors could be the definition of a new

registration algorithm combining pixel comparison and time segmentation.

Edward Castillo and associates [Castillo, E. et al., 2010] suggested a four-

dimensional deformable image registration (4D DIR) algorithm, referred to as 4D
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local trajectory modelling (4DLTM) and it was applied to thoracic 4D computed
tomography (4DCT) image sets. The proposed method exploited the incremental
continuity present in 4DCT component images to calculate a dense set of
parameterized voxel trajectories through space as functions of time. The spatial
accuracy of the 4DLTM algorithm was compared with an alternative registration
approach in which component phase to phase (CPP) DIR is utilized to determine
the full displacement between maximum inhale and exhale images. Cubic
polynomials were found to provide sufficient flexibility and spatial accuracy for
describing the point trajectories through the expiratory phases. The resulting
average spatial error between the maximum phases was 1.25 mm for the 4DLTM
and 1.44 mm for the CPP. The 4DLTM method was found to capture the long-
range motion between 4DCT extremes with higher spatial accuracy (lesser spatial

error).

J. Ehrhardt and associates [Ehrhardt, J. et al., 2011] proposed a statistical
modeling for 4D respiratory lung motion using diffeomorphic image registration.
It was an approach to generate a mean motion model of the lung based on thoracic
4D computed tomography (CT) data of different patients to extend the motion
modeling capabilities. The modeling process consisted of three steps: an intra-
subject registration to generate subject-specific motion models, the generation of
an average shape and intensity atlas of the lung as anatomical reference frame,
and the registration of the subject-specific motion models to the atlas in order to
build a statistical 4D mean motion model (4D-MMM). In all steps, a symmetric
diffeomorphic nonlinear intensity-based registration method was employed. The
model was evaluated by applying it for estimating respiratory motion of ten lung

cancer patients. The prediction was evaluated with respect to landmark and tumor
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motion, and the quantitative analysis resulted in a mean target registration error
(Trg) of 3.3£1.6 mm. With regard to lung tumor motion, it was shown that
prediction accuracy is independent of tumor size and motion amplitude in the
considered data set. The statistical respiratory motion model was found to be
capable of providing valuable prior knowledge in many fields of applications.
Authors also presented two examples of possible applications of the proposed

method in radiation therapy and image guided diagnosis.

A K. Sato and associates [Sato, A. K. et al., 2011] proposed a method for
registration of temporal sequences of coronal and sagittal MR images through
respiratory patterns. This work discussed the determination of the breathing
patterns in time sequence of images obtained from magnetic resonance (MR) and
their use in the temporal registration of coronal and sagittal images. A time
sequence of this intersection segment of orthogonal coronal and sagittal sequences
were stacked, defining a two-dimension spatio-temporal (2DST) image. An
interval-Hough transform algorithm was used to search for synchronized
movements with the respiratory function. A greedy active contour algorithm
would adjust small discrepancies originated by asynchronous movements in the
respiratory patterns. The results of the proposed method in the form of
synchronized sequences were compared with the pixel-by-pixel comparison
method. The proposed method increased the number of registered pairs

representing composed images and allowed an easy check of the breathing phase.

G. Xiong and associates [Xiong, G. et al., 2012] proposed a method for
tracking the motion trajectories of junction structures in 4D CT images of the
lung. It was hailed as a novel method to detect a large collection of natural

junction structures in the lung and use them as the reliable markers to track the
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lung motion. The image intensities within a small region of interest surrounding
the center were selected as its signature. Under the assumption of the cyclic
motion, the trajectory was described by a closed B-spline curve and search for the
control points by maximizing a metric of combined correlation coefficients. Local
extremas were suppressed by improving the initial conditions using random walks
from pair-wise optimizations. Several descriptors were also introduced to analyze
the motion trajectories. The method was applied to 13 real 4D CT images. More
than 700 junctions in each case were detected with an average positive predictive
value of greater than 90%. The average tracking error between automated and
manual tracking was in the sub-voxel category and smaller than the published

results using the same set of data.

Yongbin Zhang and associates [Zhang, Y. et al., 2013] proposed a method
for modeling respiratory motion to reduce motion artifacts in 4D CT images. A
patient-specific respiratory motion model was proposed, based on principal
component analysis (PCA) of motion vectors obtained from deformable image
registration, with the main goal of reducing image artifacts caused by irregular
motion during 4D CT acquisition. Displacement vector fields relative to a
reference phase were calculated using an in-house deformable image registration
method. The authors then used PCA to decompose each of the displacement
vector fields into linear combinations of principal motion bases. These projections
were parameterized using a spline model to allow the reconstruction of the
displacement vector fields at any given phase in a respiratory cycle. Finally, the
displacement vector fields were used to deform the reference CT image to
synthesize CT images at the selected phase with much reduced image artifacts.

The initial large discrepancies across the landmark pairs were significantly
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reduced after deformable registration, and the accuracy was similar to or better
than that reported by state-of-the-art methods. The motion model was used to
reduce irregular motion artifacts in the 4D CT images of three lung cancer
patients. Visual assessment indicated that the proposed approach could reduce
severe image artifacts. The proposed approach was found able to mitigate shape
distortions of anatomy caused by irregular breathing motion during 4D CT

acquisition.

B. Fuerst and associates [Fuerst, B. et al, 2014] proposed a patient-
specific biomechanical model for the prediction of lung motion from 4-d ct
images. It was an approach to predict the deformation of the lungs and
surrounding organs during respiration. Basically a computational model of the
respiratory system, which comprises an anatomical model extracted from
computed tomography (CT) images at end-expiration (EE), and a biomechanical
model of the respiratory physiology, including the material behavior and
interactions between organs. The method was then tested on five public datasets.
Results showed that the model was able to predict the respiratory motion with an
average landmark error of 3.40+1.0 mm over the entire respiratory cycle. The
estimated 3-D lung motion may be constituted as an advanced 3-D surrogate for

more accurate medical image reconstruction and patient respiratory analysis.

4.3 Method

4.3.1 Preparation

The dataset used comprised of a total (3x6)x10 i.e. 180 thoracic CT images across
10 subjects. There were 6 frames from a temporal thoracic image sequence each

for every Anatomical Plane (AP) i.e. Axial (supine), Coronal and Sagittal for all
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the 10 subjects acquired simultaneously with a gap of 0.1 second starting from
time t= 0 to 0.6 seconds. All images were identified as I§F(x,y,t) where
{N,t eER*|1<N<10,01<t<1} and (x,y) are the coordinates in the
Cartesian plane, t being the timestamp at which the particular frame/image was
recorded, N would be the number assigned to the test subject and AP signifies the
three anatomical planes of view i.e. Axial (a), Coronal (c¢) and Sagittal (s). So, the
sixth subject’s Coronal CT image acquired at t=0.3 sec would be identified as
I§(x,y,0.3). Samples of images used from all viewpoints and all subjects from
timestamps 0.1 to 0.6 seconds are summarized in Table 4.1.

Table 4.1: Working database through all anatomical planes from t=0.1 to 0.6 sec
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4.3.2 Proposed Methodology

The procedure acquired is as such that a temporal thoracic image sequence from
time t=0.1 to 0.6 sec is taken such that first frame of the sequence is the full inhale

frame and the last frame is full exhale frame. This paper uses the Speeded up

86



Robust Feature detector (SURF) [Bay, H. ef al., 2006, 2008] to obtain a feature
set comprising of common feature points throughout the image sequence. It
detects and describes the feature set irrespective of any scaling and /or rotation in
the corresponding images. SURF provides better approximations in comparison to
previously proposed schemes with respect to repeatability, distinctiveness, and
robustness, yet can be computed and compared much faster than any other state of
the art feature detector. These feature sets are then fed into the OFM estimation
algorithm to identify the deformation path throughout the temporal sequence, be it

peripheral or local.

Optical flow has been successfully applied to motion estimation of
points/point clouds and other point set surface definitions over a temporal
sequence [Sun, D. et al., 2014]. It performs better than its contemporaries while
tracing deformations that are realistic and guides the user in manipulation of real-
world objects. It also allows the user to specify the deformations using either sets
of points or line segments, the later useful for controlling curves and profiles
present in the image. For each of these techniques, it provides simple closed-form
solutions that yield fast deformations, which can be performed in real-time. The
proposed methodology aims to track and estimate the deformations by tracking
the transition of the interest points through the sequence from full inhale to full

exhale frame. The overall process can be referred to in Figure 4.1.
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Figure 4.1: The proposed framework structure

A novel scale- and rotation-invariant detector and descriptor, has been coined as
Speeded-Up Robust Features (SURF) by Herbert Bay et.al in 2006 [Bay, H. et al.,
2006] and 2008 [Bay, H. et al, 2008]. It provides better approximations in
comparison to previously proposed schemes with respect to repeatability,
distinctiveness, and robustness, yet can be computed and compared much faster.
Focus is on scale and in-plane rotation-invariant detection and descriptions. These
seem to offer a good compromise between feature complexity and robustness to
commonly occurring photometric deformations in thoracic images. Skewing,
anisotropic scaling, and perspective effects are assumed to be second order
effects, that are covered to some degree by the overall robustness of the
descriptor. For guaranteed invariance to any scale changes the input thoracic
images are analyzed at different scales. The detected interest points are provided
with a rotation and scale-invariant descriptor. The detector is based on Hessian
matrix based on its good performance in accuracy [Bay, H. ef al., 2008]. Blob-like
structures are detected at locations with maximum determinant. In comparison to
the Hessian-Laplace detector [Mikolajczyk, K. & Schmid, C., 2001] Hessian

determinant is used for scale selection [Lindeberg, T., 1998].
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Figure 4.2: The working model of SURF

Given a point @ = (x, y) in an image /)", the Hessian matrix Hia, o) at scale o is
defined as follows

A Lxx (a,0) ny (a,0)

H(a,0)= ny(a,a) Lyy(a’o-) 4.1

where L (a,o) is the convolution of the Gaussian second derivative g (G%az

with the image 7" at point a, similarly for L (a,0)and L (a,0).

Though, Gaussians are optimal for scale-space analysis [Koenderink, J. J., 1984],
they have to be made discrete and cropped in practice. This results in loss in
repeatability of the detector for thoracic CT image rotations around odd multiples

of w/4.

The SURF method consists of multiple stages to obtain relevant feature
points from a sequence of thoracic images. The single SURF stages are (as shown

in fig 4.2):

1. An integral image is constructed for each frame of the input thoracic
image sequence, it allows for fast computation of box type convolution

filters [Viola, P. & Jones, M., 2001]. This enables very few memory
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accesses and hence results in drastic improvement in computational time
[Cornelis, N. & Gool, L. V., 2008], which is especially crucial when we

are dealing with a sequence of images. An integral image 7, z(a) at a

location a= (x, y)" represents the sum of all pixels in the input image / ol

within a rectangular region formed by the origin and a

i<x j<y

1 (a)= 1Y (i, ) (4.2)

i=0 j=0

=

2. Candidate feature points are searched by the creation of a Hessian scale-
space pyramid (SURF detector). Approximation of the Hessian as a
combination of box filters allows fast filtering. High contrast feature
points are selected.

3. Feature vector is calculated (SURF descriptor) based on its characteristic
direction to provide rotation invariance. Feature vector is normalized for
immunity to changes in lighting conditions.

4. Matching of descriptor vectors between the thoracic image sequence
frames using distance measures such as Mahalonobis distance and

Euclidean distances etc.

Optical flow is the pattern of apparent motion of objects, surfaces, and edges
in a visual scene caused by the relative motion between an observer (an eye or a
camera) and the scene [Warren, D. H. & Strelow, E. R., 1985]. In recent times, the
term optical flow has been co-opted by computer vision experts to incorporate
related techniques from image processing and control of navigation, such as
motion detection, object segmentation, time-to-contact information, focus of

expansion calculations, luminance and motion compensated encoding and stereo
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disparity measurement [Beauchemin, S. S. & Barron, J. L., 1995]. Sequences of
ordered thoracic images allow the estimation of motion as either instantaneous
image velocities or discrete image displacements [Aires, K. R. et al., 2008].
Barron et.al provided a performance analysis of a number of optical flow
techniques. It emphasizes the accuracy and density of measurements [Barron, J. L.

etal., 1994].

Suppose we have a continuous thoracic image frame [ ]A;,P (x, ,2); f(x,y.t) refers

to the gray-level of (x, y) at time t. It represents a dynamic thoracic image as a

function of position and time. Few assumptions also work in hindsight:

e The detected feature point moves but does not actually change intensity.
e Feature point at location (x, y) in frame i is the feature point at (x+AXx,
y+Ay) in frame i+/ (detailed in figure 4.3).
For making computation simpler and quicker the real world three dimensional (3-
D+time) objects are transferred to a (2-D-+time) case. Then the thoracic image can
be described by the 2-D dynamic brightness function of /(x, y,?). Provided that in
the neighbourhood of the feature point, change of brightness intensity does not

happen in the motion field, following expression can be used:
I(x,y,t)=1(x+,y+,t+) (4.3)

Taylor series is used for the right-hand side of the above equation, to obtain

I(x+c$c,y+éjz,t+5t)=I(x,y,t)+gAx+gAy+gAt+ Higher order terms (44)
o oy

From equations 4.3 and 4.4; neglecting the higher order terms,
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of ol ol
— Ax+—Ay+—Ar=0
- awa (4.5

Dividing the terms in equation 4.5 by Az on both sides (to get the equation in

terms of X, y component velocity)

ol ol ol
— A = =0 ,
o A : YA = (4.6)

A/ —y NSy
where /Az_VX’ At—Vy,thus,

O
—V +—=V +—=0
x oyt a 7

Where 7, and v, are the x and y components of velocity or optical flow of

[
I(x,y,1); Z—i, 2—yand %being the spatio-temporal derivatives of /(x, y,?)

Iy +1v, =-I (4.8)
Vector representation being

Viy==-I, (4.9)

Where VIis the spatial gradient of brightness intensity and v is the optical flow
(velocity vector) of the previously detected feature points, /, being the time

derivative of the brightness intensity.

Frames 1 2 3 N

R O O
(:Y) (x+Axy, y*Ayy) "]

(x+AXy2, y+AYn2)

Timestamp t t+1 t+2 t+(N-1)

Figure 4.3: Flow of a common feature point (x, y) through a sequentially
temporal thoracic image sequence with N frames, arrows indicate the

changing velocity vector v
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4.4 Results and Discussion

The feature detector/descriptor implemented on the temporal image sequence
gave out matching feature points among the six continuous frames of the thoracic
continuous temporal image sequence (0.1<7<0.6) where ¢ is the timestamp of
frames in the sequence for all Anatomical Positions (AP) with average translation

values. The average translation between inter-frame durations for all common

points ‘P’ from the initial to final frame:

P P P
zf’/ Zf/ Zf“/
A N A, dyrng ="/

Below figures (4.4 to 4.6) indicate the image registration process from the

sequence for all test subjects through all three APs.
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Figure 4.4: Image sequence frames and the registered image for all subjects-
Axial
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Figure 4.5: Image sequence frames and the registered image for all subjects-
Coronal

Ii(x,y,0.1-0.6) I5(x,y,0.1-0.6) I50(x,y,0.1 - 0.6)

O ~

Figure 4.6: Image sequence frames and the registered image for all subjects-
Sagittal

Though the proposed method was applied on all the subject data at hand, for
representation purposes, subject ‘case 5’ sagittal AP data has been extensively
used (as can be seen in fig. 4.7 to 4.11). The temporal sequence starting from t=0
to t=0.6 s is considered with a gap of 0.1 seconds between two consecutive frames
in the sequence. So, frame 1 is the one acquired at t=0.1 and frame 6 is the one

corresponding to t=0.6 s.
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Figure 4.7: The test image temporal sequence (accordingly labelled). Subject
‘case 5’ Sagittal AP

The feature points are color coded with respect to the indices and IDs assigned to
them throughout the process. The trails/tracks they leave after motion also exhibit
the same color combination as assigned to respective feature points. There were
242 such feature points for the ‘case 5’ sagittal AP image sequence, the attributes
of which are shown in the table E.1 (Appendix-E). Each of them had a track
associated with them; these tracks have been labelled as Track ‘ point no’ where
the value of ‘point no.” ranges from 0 to 241. Other attributes associated with each
track included ‘Track Duration’ which indicated the time in seconds for that
respective track to finish and the point to reach its ultimate frame. ‘Track Start’ is
the stating time of every feature point trail/track; the value is ‘0’ for all points,
first frame being the reference frame for registration. ‘Track Stop’ is the end time
in seconds for respective tracks; values may be different for different feature
points. ‘Track Displacement’ is the net displacement from the point of origin for

a feature point over the sequence. ‘Track (X,Y) Locations’ are the points of
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origin of the respective tracks. ‘Track Min/Max/Mean Speeds’ are the minimum,
maximum and mean speeds of the feature point trail/track for each point through
the sequence. The displacement/translation obtained is inherently in pixel units.
With the knowledge of PPI (pixel per inch) value of the respective images in
question, the displacements can be converted into more tangible units. These
average translations for all such feature points for all test subjects through all
three APs are shown in tables 4.2 to 4.4. Their corresponding line plots for all 10
subjects are shown as figures 4.12 to 4.14 for easier comparative analysis over the
complete breathing pattern. A corresponding false-color registered image
representation is shown as fig. 4.9. Optical flow representation of the image
sequence with respect to registered image along with a flow orientation scheme is
shown in fig. 4.10. The optical flow at any point in the image can be decoded
using the flow orientation scheme coding pinwheel given alongside. There was a
rather large strip of single color found in the optical flow representation, which is
synonymous with the false color representation in fig. 4.9. That is the location
with maximum displacement/translation in the sequence and also of maximum

deformation with respect to the reference frame.
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Figure 4.8: The color coded feature points and their colored trails showing
the distinct paths for Sagittal AP ‘case 5°, frames are labeled in order of their
temporal sequence

Figure 4.9: The registered image for the corresponding temporal sequence
for subject ‘case 5’ Sagittal AP
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Figure 4.10: Color-coded Optic flow for subject ‘case 5’ sagittal AP with flow
orientation scheme

Where fig. 4.10 indicated the optical flow orientation, magnitude of the optical
flow is an important aspect that can be ignored when observing an image
sequence over time. Fig. 4.11 represents the optical flow magnitude spread over
the complete sequence with the first frame as reference. As can be seen from the
magnitude scale provided alongside, the bigger red arrows indicate areas with
higher magnitude of flow and larger deformations, while the blue and black
arrows indicate areas lower optical flow magnitude and smaller deformations in

respective locations.
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Figure 4.11: The overall image sequence optic flow with magnitude scale

Table 4.2: Average translations (in pixels) for all test subjects through Axial AP

AXIAL Average translation (pixels)

slices | casel | case2 | case3 | case4 | case5S | case6 | case7 | case8 | case9 | casell
1 0.047 | 0.000 | 0.050 | 0.128 | 0.103 | 0.122 [ 0.105 | 0.081 | 0.148 | 0.235
2 0.074 | 0.054 | 0.212 | 0.263 | 0.220 | 0.192 | 0.173 | 0.176 | 0.157 | 0.235
3 0.121 | 0.090 | 0.078 | 0.260 [ 0.217 | 0.232 | 0.160 [ 0.197 | 0.154 | 0.491
4 0.236 | 0.041 | 0.077 | 0.120 | 0.335 | 0.224 | 0.123 | 0.236 | 0.273 [ 0.550
5 0.165 | 0.087 | 0.235 ] 0.054 | 0.229 | 0.277 | 0.175 | 0.227 | 0.346 | 0.415
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Table 4.3: Average translations (in pixels) for all test subjects through Coronal AP

CORONAL Average translation (pixels)

slices | casel | case2 | case3 | case4 | caseS | case6 | case7 | case8 | case9 | casel(
1 0.049 [ 0.241 | 0.090 | 0.337 | 0.090 | 0.272 1 0.413 | 0.316 | 0.705 | 0.389
2 0.257 (0.445 1 0.284 | 0.441 | 0.545 | 0.444 |1 0.574 | 0.563 | 1.515 | 0.587
3 0.544 [ 0.451 [ 0.490 | 0.436 | 0.574 | 0.434 1 0.547 | 0.600 | 1.541 | 2.594
4 [0.555]0.396|0.443 [ 0.414 | 0.617 | 0.458 [ 0.522 | 0.700 | 1.508 | 0.707
5 10.361(0.381]0.529 | 0.495 [ 0.682 | 0.532 | 0.503 [ 0.645 | 1.432 | 0.586

Table 4.4: Average translations (in pixels) for all test subjects through Sagittal AP

SAGITTAL Average translation (pixels)

slices | casel | case2 | case3 | case4 | caseS | case6 | case7 | case8 | case9 | casel0
1 0.056 { 0.102 1 0.033 | 0.198 | 0.022 | 0.218 | 0.283 [ 0.387 | 0.318 | 0.348
2 |0.067]0.038 | 0.031 [ 0.225 ] 0.081 | 0.515 [ 0.451 | 0.603 | 0.410 | 0.439
3 [0.229]0.144 [ 0.036 | 0.184 | 0.131 [ 0.511 | 0.504 | 0.639 [ 0.336 | 0.476
4 10.120 ] 0.125 [ 0.041 | 0.228 | 0.092 | 0.483 | 0.574 | 0.666 | 0.374 | 0.521
5 10.131]0.042 | 0.027 [ 0.237 | 0.079 | 0.545 [ 0.504 | 0.659 | 0.326 | 0.505
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Figure 4.12: Average displacement for all subjects in Axial AP
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Figure 4.13: Average displacement for all subjects in Coronal AP
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Figure 4.14: Average displacement for all subjects in Sagittal AP

As we can see in fig. 4.12, the axial translations were recorded highest for subject
‘case 10’ and the lowest corresponding values were for ‘case 2’. The average
value for ‘case 10’ was recorded at 0.3851 pixels, which was way above the
population average of 0.184 shown by a line across the plot. In case of coronal AP
as can be seen in fig. 4.13, the biggest deformations throughout the sequence are
exhibited by the subjects ‘case 10’ and ‘case 9’ at 2.594 and 1.54 pixels
respectively. The population average in this case being 0.5847 marked by a
straight line in the corresponding plot. Though apart from ‘case 10’ only ‘case
9’exhibited bigger deviations than the average value, the change in deformation
with respect to inter-frame durations was more or less constant; on the other hand
‘case 10’ exhibited enormous shift from the average value while transitioning
from 3rd frame to 4th frame. Looking at fig. 4.14 for the sagittal AP, all subjects

though a bit above and below the average maintain an almost constant rate of
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change in the deformations and do not exactly exhibit any erratic patterns through
the observed full inhale to exhale process. After having a comprehensive look at
all subjects’ deformation pattern data through axial, coronal and sagittal APs
collectively, it was inferred that subject ‘case 10’ singled out as the only one with
maximum deformation. This analysis indicates anomalous breathing patterns from
the aforementioned subject among the considered consensus average.

4.5 Conclusion

A framework has been presented showing how to use a feature point set generated
using a Hessian-matrix based feature detector and Haar wavelets based descriptor
such as SURF through a motion estimation technique such as OFM tracking for
deformable image transformations in medical images such as the thoracic ‘pectus
excavatum’ [Haller, J. A. et al., 1987; Kim, H. C. et al., 2010] full exhale and full
inhale used in this work. This conclusion is of high clinical relevance from a
diagnostic point of view as well; the artifacts and position uncertainties due to
uneven breathing patterns which hamper the image guided clinical interventions
can be corrected to a point where there influence on the actual data and the
diagnostics based on them is brought down to the least.

This work can be looked upon as an automatic way of deformable image
registration for high contrast medical images using landmark (control) points.
Although the proposed methodology provides with a fast and accurate way of DIR
for medical images and thus an account of deformity in the thoracic periphery,
there is much scope for improvement in the overall process. One way this can be
achieved in future is by modifying the SURF and/or the Motion estimation
procedure involved in the process. Another way is to improve and enhance the

quality as well as the quantity of the database used. Also, the aforementioned
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procedure can provide better results if applied for a different human anatomy
altogether.

However diligently and accurately it may have been done, there might still
be some scope of improvement and betterment in the methodology and also in its
presentation. The search and pursuit of better methods for deformable medical

image registration is still on.
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