
CHAPTER 4: A PATH TRACING AND DEFORMITY 

ESTIMATION METHODOLOGY FOR REGISTRATION 

OF THORACIC CT IMAGE SEQUENCES 

 

The chapter presents a methodology which involves an automatic registration 

process for tracing deformity paths of the thoracic region between full inhale and 

exhale positions based on Hessian-matrix based feature detector and Haar 

wavelets based descriptor along with Optical Flow Motion (OFM) estimation 

based point tracker technique. The proposed work presents a unique and 

innovative arrangement of methods to compute the average deformation of the 

thoracic region from all anatomical positions. Often clinical studies on image 

based respiratory systems either suffer road blocks or yield inconsistent results 

due to artifacts from a variety of subjects’ erratic breathing patterns. This leads to 

loss of resources and time to ultimately get inconclusive and potentially wrong 

results. This work can be seen as an automatic way of computing average thoracic 

deformation for a set of diverse subjects. In an image sequence, corresponding 

control point pairs or landmarks can be used to define the internal deformations 

with respect to time, point of view or modality.  Defining enough number of 

control points in a thoracic image temporal sequence to describe the deformations 

happening in it is a tedious task. This inspired the use of automatic definition of 

control points in the proposed work. The credibility and performance of the above 

proposed method is demonstrated by its exemplary experimental results. 

 The proposed methodology registers consecutive, equidistant frames in a 

temporal, thoracic CT image sequence starting from full inhale to full exhale 

positions by assessing the transformations happening in the image over time for a 
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group of test subjects through all three anatomical positions (APs). The sequences 

are such that the first and last frames of a sequence are the most deformed frames 

with respect to each other i.e. first frame is the full inhale frame and the last one is 

the full exhale frame. The number of these frames depends upon the time gap 

considered between acquiring of these frames. Larger the time gap, lesser would 

be the number of frames in the sequence from start to finish. These frames are 

compared and contrasted against each other to find common landmark set of 

points between them. They would be same points in different frames at different 

(may be) coordinate locations. These points serve as input to an OFM estimation 

based point tracking algorithm which would track a point from the first temporal 

frame up until the last frame in the sequence it appears in, (few points were not 

found to carry through all the frames from start to finish (as we later found out in 

the process)). This process is completed for remaining points in the common 

landmark point set throughout the sequence. One of the frames is considered as a 

‘base’ or ‘reference’ and rest of the frames are registered with respect to the 

reference/base. In the proposed method, the full inhale frame which is the first one 

has been considered as the reference frame as a default for all subjects through all 

APs. The distances each point cover between temporally ordered frames of the 

sequence from its starting frame to the last frame it is observed in is estimated 

using its coordinate values in those respectively ordered frames. Average 

translation values are calculated for the point set for all test subjects through all 

three APs. These point set average translations summed up over the complete 

sequence give an estimation of the deformations happened from first to last frame 

of the temporal image sequence. Each point in the common landmark point cloud 

has been traced through frames and optical flow determined for it. 
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4.1 Introduction 

Accounting for organ motion in image based lung cancer radiation treatment is 

considered as an important challenge in medical imaging [Goitein, M., 2004]. 

Lung deformations have been constant focus of studies for the verification of 

medical imaging equipments and for medical training purposes for a long period 

of time and still, physiologically speaking, very little is understood about the 

respiratory movement [Stevo, N. et al., 2009]. The movement of the lung is 

passive; a result of the movement of other parts of the body, such as the 

diaphragm and the thoracic cage, and it is not possible to observe the lung 

directly, as it would collapse if the thoracic cage is opened. The clinical relevance 

of this research is diverse. Respiratory motion is related to the function of the lung 

and therefore a diagnostic value in itself [Ehrhardt, J. et al., 2011]. Furthermore, 

breathing induced organ motion potentially leads to image artifacts and to position 

uncertainty in image guided procedures. Particularly in radiotherapy planning of 

thoracic and abdominal tumors, the respiratory motion causes important 

uncertainties and is a significant source of error [Keall, P. J. et al., 2006]. 

Therefore, there has been a large and continuing growth in studies and 

applications of 4D CT images for motion measurement, radiotherapy treatment 

planning, as well as functional investigations [Reinhardt, J. M. et al., 2008]. “A 

non-invasive method to describe lung deformations was proposed using NURBS 

surfaces based on imaging data from CT scans of actual patients” [Stevo, N. et al., 

2009; Tsui, B. M. W. et al., 2000]. V. B. Zordan and associates created an 

anatomical inspired, physically based model of human torso for the visual 

simulation of respiration [Zordan, V. B. et al., 2004]. It has been shown that 

breathing motion is not a robust and 100% reproducible process [Nehmeh, S. A. et 
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al., 2004; Vedam, S. S. et al., 2004] and now there is a widespread common 

consent that it would be useful to use prior knowledge of respiratory organ motion 

and its “variability to improve radiotherapy planning and treatment delivery” 

[Blackall, J. M. et al., 2006]. 

 The framework that has been acquired in this article is that the constituents 

of a thoracic image sequence with starting frame as the full inhale and ending 

frame as the full exhale are compared to find a set of common feature points, only 

distinction in them being different coordinate values (may be) and that they exist 

in different temporal frames. These common feature points are collectively called 

as the corresponding feature set. This feature set then serves as input to an OFM 

estimation algorithm as control point cloud corresponding to the thoracic image 

sequence. The estimation algorithm then traces the deformation in the thoracic 

image sequence right through initial to final frame. 

The role of image registration techniques is increasing in these 

applications. Image registration enables the estimation of the breathing-induced 

motion and the description of the temporal change in position and shape of the 

structures of interest by establishing the correspondence between images acquired 

at different phases of the breathing cycle. A variety of image registration 

approaches have been used for respiratory motion estimation in recent years 

[Sarrut, D. et al., 2006]. Image Registration is the alignment/overlaying of two or 

more images so that the best superimposition can be achieved. These images can 

be of the same subject at different points in time, from different viewpoints or by 

different sensors. This way the contents from all the images in question can be 

integrated to provide richer information. It helps in understanding and thus 

reducing the differences occurred due to variable imaging conditions. Most 
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common applications of Image Registration include remote sensing (integrating 

information for GIS), combining data obtained from a variety of imaging 

modalities (combining a CT and an MRI view of the same patient) to get more 

information about the disease at once, cartography, image restoration etc. An 

image registration method targets to find the optimal transformation that aligns 

the images in the best way possible. If the underlying transformation model 

allows local deformations, i.e. nonlinear fields’ u(x), then it is called Deformable 

Image Registration (DIR) [Muenzing, S. E. A. et al., 2014]. 

Image registration has been categorized into two kinds based on the type 

of image it is being applied for. The two kinds of images are Rigid Images and 

Deformable Images. Rigid images are those of structures with rigid morphological 

properties e.g. bones, buildings, geographical structures etc. Deformable images 

are those of structures shape and size of which can be modeled after tangible 

physically deformable models [Sotiras, A. et al., 2013]. Rigid image registration 

although is an important aspect of registration it is not the topic of discussion in 

this article. Since the discussion is about Medical Image Registration and almost 

all anatomical parts or organs of the human body are deformable structures, the 

concentration here is on DIR [Oliviera, F. P. M. & Tavares, J. M. R. S., 2012]. 

 One of the three basic categories of physical models [Modersitzki, J., 

2004] conceptually utilized in this article is the Diffusion models. Thirion, 

inspired by Maxwell’s Demons [Thomson, W. 1874], proposed to perform image 

matching as a diffusion process, his work in turn inspired most of the work done 

in image registration using diffusion models [Thirion, J. P., 1998]. J. M. Peyrat & 

associates used multi-channel Demons to register time-series of cardiac images by 

enforcing trajectory constraints [Peyrat, J. M. et al., 2008]. Each time instance 
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Figure 4.1: The proposed framework structure 

 

A novel scale- and rotation-invariant detector and descriptor, has been coined as 

Speeded-Up Robust Features (SURF) by Herbert Bay et.al in 2006 [Bay, H. et al., 

2006] and 2008 [Bay, H. et al., 2008]. It provides better approximations in 

comparison to previously proposed schemes with respect to repeatability, 

distinctiveness, and robustness, yet can be computed and compared much faster. 

Focus is on scale and in-plane rotation-invariant detection and descriptions. These 

seem to offer a good compromise between feature complexity and robustness to 

commonly occurring photometric deformations in thoracic images. Skewing, 

anisotropic scaling, and perspective effects are assumed to be second order 

effects, that are covered to some degree by the overall robustness of the 

descriptor. For guaranteed invariance to any scale changes the input thoracic 

images are analyzed at different scales. The detected interest points are provided 

with a rotation and scale-invariant descriptor. The detector is based on Hessian 

matrix based on its good performance in accuracy [Bay, H. et al., 2008]. Blob-like 

structures are detected at locations with maximum determinant. In comparison to 

the Hessian-Laplace detector [Mikolajczyk, K. & Schmid, C., 2001] Hessian 

determinant is used for scale selection [Lindeberg, T., 1998]. 
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Figure 4.2: The working model of SURF 

 

Given a point a = (x, y) in an image
AP

NI , the Hessian matrix Ĥ(a, σ) at scale σ is 

defined as follows 
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where ),( saLxx  is the convolution of the Gaussian second derivative 2
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a

g
¶

¶ s

with the image AP

NI at point a, similarly for ),( saLxy
and ),( saLyy

. 

Though, Gaussians are optimal for scale-space analysis [Koenderink, J. J., 1984], 

they have to be made discrete and cropped in practice. This results in loss in 

repeatability of the detector for thoracic CT image rotations around odd multiples 

of π/4. 

The SURF method consists of multiple stages to obtain relevant feature 

points from a sequence of thoracic images. The single SURF stages are (as shown 

in fig 4.2): 

1. An integral image is constructed for each frame of the input thoracic 

image sequence, it allows for fast computation of box type convolution 

filters [Viola, P. & Jones, M., 2001]. This enables very few memory 
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accesses and hence results in drastic improvement in computational time 

[Cornelis, N. & Gool, L. V., 2008], which is especially crucial when we 

are dealing with a sequence of images. An integral image ( )aI AP

N å  at a 

location a= (x, y)
T
 represents the sum of all pixels in the input image 

AP

NI  

within a rectangular region formed by the origin and a 
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2. Candidate feature points are searched by the creation of a Hessian scale-

space pyramid (SURF detector). Approximation of the Hessian as a 

combination of box filters allows fast filtering. High contrast feature 

points are selected. 

3. Feature vector is calculated (SURF descriptor) based on its characteristic 

direction to provide rotation invariance. Feature vector is normalized for 

immunity to changes in lighting conditions. 

4. Matching of descriptor vectors between the thoracic image sequence 

frames using distance measures such as Mahalonobis distance and 

Euclidean distances etc. 

Optical flow is the pattern of apparent motion of objects, surfaces, and edges 

in a visual scene caused by the relative motion between an observer (an eye or a 

camera) and the scene [Warren, D. H. & Strelow, E. R., 1985]. In recent times, the 

term optical flow has been co-opted by computer vision experts to incorporate 

related techniques from image processing and control of navigation, such as 

motion detection, object segmentation, time-to-contact information, focus of 

expansion calculations, luminance and motion compensated encoding and stereo 
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disparity measurement [Beauchemin, S. S. & Barron, J. L., 1995]. Sequences of 

ordered thoracic images allow the estimation of motion as either instantaneous 

image velocities or discrete image displacements [Aires, K. R. et al., 2008]. 

Barron et.al provided a performance analysis of a number of optical flow 

techniques. It emphasizes the accuracy and density of measurements [Barron, J. L. 

et al., 1994]. 

Suppose we have a continuous thoracic image frame ( )tyxI
AP

N
,, ; ( )tyxf ,,  refers 

to the gray-level of (x, y) at time t. It represents a dynamic thoracic image as a 

function of position and time. Few assumptions also work in hindsight: 

· The detected feature point moves but does not actually change intensity. 

· Feature point at location (x, y) in frame i is the feature point at (x+∆x, 

y+∆y) in frame i+1 (detailed in figure 4.3). 

For making computation simpler and quicker the real world three dimensional (3-

D+time) objects are transferred to a (2-D+time) case. Then the thoracic image can 

be described by the 2-D dynamic brightness function of ),,( tyxI . Provided that in 

the neighbourhood of the feature point, change of brightness intensity does not 

happen in the motion field, following expression can be used: 

 ),,(),,( ttyyxxItyxI ddd +++=  (4.3) 

Taylor series is used for the right-hand side of the above equation, to obtain 
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From equations 4.3 and 4.4; neglecting the higher order terms, 
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Dividing the terms in equation 4.5 by Δt on both sides (to get the equation in 

terms of x, y component velocity) 
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Where xV  and yV  are the x and y components of velocity or optical flow of

),,( tyxI ; 
x

I

¶
¶
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being the spatio-temporal derivatives of ),,( tyxI  

 tyyxx IvIvI -=+ ..  (4.8) 

Vector representation being 

 
tIvI -==Ñ .  (4.9) 

Where IÑ is the spatial gradient of brightness intensity and v  is the optical flow 

(velocity vector) of the previously detected feature points, tI  being the time 

derivative of the brightness intensity. 

 

Figure 4.3: Flow of a common feature point (x, y) through a sequentially 

temporal thoracic image sequence with N frames, arrows indicate the 

changing velocity vector v  

92 



 

 

4.4 Results and Discussion 

The feature detector/descriptor implemented on the temporal image sequence 

gave out matching feature points among the six continuous frames of the thoracic 

continuous temporal image sequence ( )6.01.0 ££ t  where t is the timestamp of 

frames in the sequence for all Anatomical Positions (AP) with average translation 

values. The average translation between inter-frame durations for all common 

points ‘P’ from the initial to final frame: 

 

 

Below figures (4.4 to 4.6) indicate the image registration process from the 

sequence for all test subjects through all three APs.  

 

 

Figure 4.4: Image sequence frames and the registered image for all subjects-
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Figure 4.5: Image sequence frames and the registered image for all subjects-

Coronal 

 

 

Figure 4.6: Image sequence frames and the registered image for all subjects-

Sagittal 

 

Though the proposed method was applied on all the subject data at hand, for 

representation purposes, subject ‘case 5’ sagittal AP data has been extensively 

used (as can be seen in fig. 4.7 to 4.11). The temporal sequence starting from t=0 

to t=0.6 s is considered with a gap of 0.1 seconds between two consecutive frames 

in the sequence. So, frame 1 is the one acquired at t=0.1 and frame 6 is the one 

corresponding to t=0.6 s. 
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origin of the respective tracks. ‘Track_Min/Max/Mean Speeds’ are the minimum, 

maximum and mean speeds of the feature point trail/track for each point through 

the sequence. The displacement/translation obtained is inherently in pixel units. 

With the knowledge of PPI (pixel per inch) value of the respective images in 

question, the displacements can be converted into more tangible units. These 

average translations for all such feature points for all test subjects through all 

three APs are shown in tables 4.2 to 4.4. Their corresponding line plots for all 10 

subjects are shown as figures 4.12 to 4.14 for easier comparative analysis over the 

complete breathing pattern. A corresponding false-color registered image 

representation is shown as fig. 4.9. Optical flow representation of the image 

sequence with respect to registered image along with a flow orientation scheme is 

shown in fig. 4.10. The optical flow at any point in the image can be decoded 

using the flow orientation scheme coding pinwheel given alongside. There was a 

rather large strip of single color found in the optical flow representation, which is 

synonymous with the false color representation in fig. 4.9. That is the location 

with maximum displacement/translation in the sequence and also of maximum 

deformation with respect to the reference frame. 
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Figure 4.8: The color coded feature points and their colored trails showing 

the distinct paths for Sagittal AP ‘case 5’, frames are labeled in order of their 

temporal sequence 

 

 

 

Figure 4.9: The registered image for the corresponding temporal sequence 

for subject ‘case 5’ Sagittal AP 

97 



 

Figure 4.10: Color-coded Optic flow for subject ‘case 5’ sagittal AP with flow 

orientation scheme 

 

Where fig. 4.10 indicated the optical flow orientation, magnitude of the optical 

flow is an important aspect that can be ignored when observing an image 

sequence over time. Fig. 4.11 represents the optical flow magnitude spread over 

the complete sequence with the first frame as reference. As can be seen from the 

magnitude scale provided alongside, the bigger red arrows indicate areas with 

higher magnitude of flow and larger deformations, while the blue and black 

arrows indicate areas lower optical flow magnitude and smaller deformations in 

respective locations. 
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Figure 4.11: The overall image sequence optic flow with magnitude scale 

 

Table 4.2: Average translations (in pixels) for all test subjects through Axial AP 

AXIAL Average translation (pixels) 

slices  case1  case2  case3  case4  case5  case6  case7  case8  case9  case10  

1  0.047 0.000 0.050 0.128 0.103 0.122 0.105 0.081 0.148 0.235 

2  0.074 0.054 0.212 0.263 0.220 0.192 0.173 0.176 0.157 0.235 

3  0.121 0.090 0.078 0.260 0.217 0.232 0.160 0.197 0.154 0.491 

4  0.236 0.041 0.077 0.120 0.335 0.224 0.123 0.236 0.273 0.550 

5  0.165 0.087 0.235 0.054 0.229 0.277 0.175 0.227 0.346 0.415 
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Table 4.3: Average translations (in pixels) for all test subjects through Coronal AP 

CORONAL Average translation (pixels)  

slices  case1  case2  case3  case4  case5  case6  case7  case8  case9  case10  

1  0.049 0.241 0.090 0.337 0.090 0.272 0.413 0.316 0.705 0.389 

2  0.257 0.445 0.284 0.441 0.545 0.444 0.574 0.563 1.515 0.587 

3  0.544 0.451 0.490 0.436 0.574 0.434 0.547 0.600 1.541 2.594 

4  0.555 0.396 0.443 0.414 0.617 0.458 0.522 0.700 1.508 0.707 

5  0.361 0.381 0.529 0.495 0.682 0.532 0.503 0.645 1.432 0.586 

 

 

Table 4.4: Average translations (in pixels) for all test subjects through Sagittal AP 

SAGITTAL Average translation (pixels)  

slices  case1  case2  case3  case4  case5  case6  case7  case8  case9  case10  

1  0.056 0.102 0.033 0.198 0.022 0.218 0.283 0.387 0.318 0.348 

2  0.067 0.038 0.031 0.225 0.081 0.515 0.451 0.603 0.410 0.439 

3  0.229 0.144 0.036 0.184 0.131 0.511 0.504 0.639 0.336 0.476 

4  0.120 0.125 0.041 0.228 0.092 0.483 0.574 0.666 0.374 0.521 

5  0.131 0.042 0.027 0.237 0.079 0.545 0.504 0.659 0.326 0.505 
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Figure 4.12: Average displacement for all subjects in Axial AP 

 

 

Figure 4.13: Average displacement for all subjects in Coronal AP 
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Figure 4.14: Average displacement for all subjects in Sagittal AP 

 

As we can see in fig. 4.12, the axial translations were recorded highest for subject 

‘case 10’ and the lowest corresponding values were for ‘case 2’. The average 

value for ‘case 10’ was recorded at 0.3851 pixels, which was way above the 

population average of 0.184 shown by a line across the plot. In case of coronal AP 

as can be seen in fig. 4.13, the biggest deformations throughout the sequence are 

exhibited by the subjects ‘case 10’ and ‘case 9’ at 2.594 and 1.54 pixels 

respectively. The population average in this case being 0.5847 marked by a 

straight line in the corresponding plot. Though apart from ‘case 10’ only ‘case 

9’exhibited bigger deviations than the average value, the change in deformation 

with respect to inter-frame durations was more or less constant; on the other hand 

‘case 10’ exhibited enormous shift from the average value while transitioning 

from 3rd frame to 4th frame. Looking at fig. 4.14 for the sagittal AP, all subjects 

though a bit above and below the average maintain an almost constant rate of 
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change in the deformations and do not exactly exhibit any erratic patterns through 

the observed full inhale to exhale process. After having a comprehensive look at 

all subjects’ deformation pattern data through axial, coronal and sagittal APs 

collectively, it was inferred that subject ‘case 10’ singled out as the only one with 

maximum deformation. This analysis indicates anomalous breathing patterns from 

the aforementioned subject among the considered consensus average. 

4.5 Conclusion 

A framework has been presented showing how to use a feature point set generated 

using a Hessian-matrix based feature detector and Haar wavelets based descriptor 

such as SURF through a motion estimation technique such as OFM tracking for 

deformable image transformations in medical images such as the thoracic ‘pectus 

excavatum’ [Haller, J. A. et al., 1987; Kim, H. C. et al., 2010] full exhale and full 

inhale used in this work. This conclusion is of high clinical relevance from a 

diagnostic point of view as well; the artifacts and position uncertainties due to 

uneven breathing patterns which hamper the image guided clinical interventions 

can be corrected to a point where there influence on the actual data and the 

diagnostics based on them is brought down to the least. 

 This work can be looked upon as an automatic way of deformable image 

registration for high contrast medical images using landmark (control) points. 

Although the proposed methodology provides with a fast and accurate way of DIR 

for medical images and thus an account of deformity in the thoracic periphery, 

there is much scope for improvement in the overall process. One way this can be 

achieved in future is by modifying the SURF and/or the Motion estimation 

procedure involved in the process. Another way is to improve and enhance the 

quality as well as the quantity of the database used. Also, the aforementioned 
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procedure can provide better results if applied for a different human anatomy 

altogether. 

 However diligently and accurately it may have been done, there might still 

be some scope of improvement and betterment in the methodology and also in its 

presentation. The search and pursuit of better methods for deformable medical 

image registration is still on.  
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