
CHAPTER 3: A MOVING LEAST SQUARE BASED 

FRAMEWORK FOR THORACIC CT IMAGE 

REGISTRATION 

 

This chapter proposes an automatic registration process for tracing of the 

deformity path of the thoracic region based on feature detector cum descriptor 

Speeded Up Robust Feature (SURF) and Moving Least Squares (MLS). 

Corresponding control point pairs or landmarks in image pairs or groups can be 

used to define the deformation with respect to time, point of view or modality. 

The manual definition of the number of control points in an image such that it is 

enough to define all kinds of deformations in that respective image is a tedious 

task. Hence, an automatic definition of control points has been the way forward 

taken in the proposed work. The control point cloud on the images is defined by 

its feature set which is obtained by using the SURF detector/descriptor, which 

serves as an input for MLS algorithm to trace the deformations of the image 

(thoracic image in this case). 

The proposed strategy begins with having a pair of images of same 

dimensions to be registered, obtained at different timestamps of a temporal image 

sequence. The corresponding anatomical landmark points are identified on both 

these images. These landmark points are inputs to a point cloud assisted 

continuous surface regeneration algorithm. This technique analytically solves a 

number of least squares problems to find the local elastic transformations. 

Applying these local transformations on the image pair creates the deformations 

throughout the considered sequence of images. The relative deformations between 

the image pair are accounted for by the surface reconstruction algorithm and are 
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adjusted using respective control point sets for both images thus registering one 

with respect to another. In our experiments, Target Registration Error (ETR) is 

used as the quantitative measure for the evaluation of performance. The ETR 

obtained for the dataset was found to be considerably lower than more traditional 

and prevalent transforms such as affine, thin-plate splines or finite element based 

approach. Therefore, the MLS-based method was found to be more suitable for 

the real-time applications of Image Guided Interventions (IGI) demanding higher 

speed and more accurate image registrations. 

3.1 Introduction 

Deformable images have been a constant focus of study and research in the field 

of image registration. There have been extensive intra and inter-patient studies 

and projects in this particular direction which have resulted in a variety of 

registration algorithms. Deformable registration is considered as an ill-posed 

problem because there is generally no unique solution to a registration problem. 

Usually it is formulated as an optimization problem. In the case of study of 

thoracic images from inhale to exhale phases (or vice versa), finding a finally 

registered image is a problem for which many algorithms and methods have been 

proposed, tested and compared over the time.  

Apart from the peripheral deformations happening in the thoracic region, 

there are also local deformations of the internal organs (within the periphery) 

going on throughout the breathing process. The definitions of the deformity 

patterns governing those motions are quite unclear yet and much research hasn’t 

happened towards this direction. It is a problem of bigger proportions for 

oncology researchers and radiologists alike to define and describe the inner 

deformations in their studies. This study’s clinical relevance cannot be stressed 
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upon more. Since overall respiratory motion is related to lung function, it has a 

diagnostic value to itself. Any organ motion pertaining to breathing can lead to 

image artefact and position uncertainties during image guided clinical 

interventions. A particular case for such image guided interventions (IGI) can be 

the radiotherapy planning of thoracic and abdominal tumours; the respiratory 

motion causes important uncertainties and is a significant source of error [Keall, 

P. J. et al., 2006]. Image registration has recently started playing an important role 

in this scenario; it helps in the estimation of any motion caused due to breathing 

during acquisition and the description of the temporal change in position and 

shape of the structures of interest by establishing the correspondence between 

images acquired at different phases of the breathing cycle [Ehrhardt, J. et al., 

2011]. The present study intends to shed light on the deformity paths of local 

deformations in the thoracic periphery which can be helpful as a prerequisite for 

radiation therapy (based on their dosimetric evaluations), tumour growth 

progression with time and also towards making deformable subject specific 

motion models more precise and accurate. 

3.2 Background 

The background study of this chapter initially includes a study of few most 

prominent proposed algorithms in the direction of study of the moving least 

squares and its applications. Then the proposed methods relating to image 

registration of thoracic CT images are discussed. The propositions are 

categorically discussed keeping in mind their acute relevance and their year of 

occurrence. Propositions occurring at a later instant in timeline are given higher 

priority in discussion in comparison to earlier works to establish better context. 

These methods are compared in a tabular format in table B.1 in Appendix B. 
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The concept of least square methodologies such as weighted least squares 

and moving least squares were first proposed in 1981 by P. Lancaster and K. 

Salkauskas [Lancaster, P. & Salkauskas, K., 1981]. They presented “an analysis 

of least squares methods for smoothing and interpolating scattered data/points”. 

They proposed a non-interpolating least squares method as an alternate 

representation of the local approximation based on the choice of weight functions. 

This became the basis of more recent moving least squares, giving it its 

characteristic dynamic weight function choice option to project smoother surfaces 

for all data points coming into consideration in real time. In particular, they 

proved theorems concerning the smoothness of interpolants and the description of 

MLS processes as projection methods. The differences between interpolating and 

non-interpolating MLS method as projection methods were pointed and singled 

out. Effects of choice of weight functions and asymptotic behaviour of such single 

variable and multivariate functions have been studied in detail. 

In the earlier discussed method, interpolating and non-interpolating non-

linear least square methods have been discussed as projection of given scattered 

data/points. These scattered points were not necessarily 

representations/emulations of real world objects around us in multiple dimensions. 

One of the most prominent works in the direction of emulating/projecting real 

world objects from scattered point-sets/data using moving least squares came 

from M. Alexa & associates [Alexa, M. et al., 2003]. This work stressed upon the 

use of point sets to represent shapes. It set its goal in defining surfaces from a set 

of points close to an original surface, this is approximated using MLS. A 

projection procedure has been defined which would project any point near the 

point set onto the surface. Then, the MLS surface is defined as the points 
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projecting onto themselves. The smoothness conjecture is motivated and 

respective projection is computed. The proposed model was tested on ‘the 

Stanford bunny’ (a computer graphics 3D test model developed by Greg Turk and 

Marc Levoy in 1994) along with other models. The proposed approach showed 

smoother silhouettes and more accurate highlights in comparison to more 

traditional methods like Splatting and Gouraud-shaded mesh model. Problem with 

both Splatting and Gouraud-shaded mesh was found to be that these models were 

not sampled densely enough exhibiting relatively inaccurate highlights. A 

parameter h connected to feature size is used such that features with radius 

smaller than h are smoothed out. Actual timings and memory requirements for the 

projection procedure depended heavily on the feature size h. As long as h was 

small with respect to the total diameter of the model, the use of main memory of 

the projection procedure was found to be negligible. For the Stanford bunny 

dataset, total 36,000 points of the bunny were projected on to a surface definition 

in roughly 10-30 seconds. It was found to be possible to provide a point set 

representation that conforms to a specified tolerance and the use of a point set 

(without connectivity) as a representation of shapes. 

While the earlier works included using MLS to project known multivariate 

functions and established computer graphics 3D test models like the Stanford 

bunny and the Aphrodite statue. This work [Schaefer, S. et al., 2006] by S. 

Schaeffer and associates implemented the concept of MLS to define deformations 

in rigid images of real world objects. They proposed an image deformation 

method based on Moving Least Squares using various classes of linear functions 

including affine, similarity and rigid transformations. These deformations were 

realistic and gave the user an impression of manipulating real-world objects. 
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Image deformations were built based on collections of points with which the user 

could control the deformation. A deformation function was constructed satisfying 

the three properties of Interpolation, Smoothness & Identity using MLS. The 

proposed method was applied for Affine, Similarity, Rigid & Elastic deformations 

on a set of images. It was found to perform deformations faster than the 

contemporary methods. Deformations were constructed such as to minimize the 

amount of local scaling and shear and restricting the classes of transformations 

used in Moving Least Squares to similarity and rigid-body transformations. This 

method, using MLS completely avoided the use of input image triangulation 

unlike the method proposed by T. Igarashi and associates [Igarashi, T. et al., 

2005], thus producing globally smooth deformations. It was showed how 

solutions could be computed directly from the closed-form deformation using 

similarity transformations thereby bypassing the non-linear minimization 

(contrary to Igarashi et al. 2005). The method is generalized enough to 

accommodate different distance metrics dependent on the topology of the shape 

rather than the simple, Euclidean distance used as weight factor. 

 The methods discussed till now deal with known multivariate function 

projections into point sets or data/points projections of established 3D models or 

definition of everyday objects’ rigid image deformities using MLS. Richard 

Castillo and associates [Castillo, R. et al., 2009] suggested a framework for 

deformable image registration of two images using MLS for corresponding sets of 

feature landmark point pairs in both images and evaluation of its spatial accuracy. 

They used an in-house developed Matlab
®

 based software interface called APRIL 

(Assisted Point Registration of Internal Landmarks) to facilitate manual selection 

of landmark feature pairs between image volumes. This point set of the pair when 
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subjected to MLS, registered the source landmark point set to the corresponding 

target point set. The image registration error was calculated in terms of fiducial 

error or spatial errors. The uncertainty of spatial error USE estimates was found to 

be inversely proportional to the square root of the number of landmark point pairs 

and directly proportional to the standard deviation of spatial errors i.e. USE  

1/(Lpp)
1/2

& USE  SDSE. Cumulative distribution functions (CDFs) were generated 

from the corresponding set of error measurements for each case. To simulate the 

spatial error information derived from validation point sets of different size, 

uniform samples of the individual CDFs were obtained for sample sizes ranging 

from 10 to 5000. For each sample size, 100,000 independent sample sets were 

obtained. At each sample size increment, an independent calculation of the mean 

spatial error was performed for each of the 100,000 error samples. The feasibility 

of generating large (>1100) validation landmark sets has been demonstrated on 

five component phase pairs from clinically acquired treatment planning 4D CT 

data. The results demonstrate that large landmark point sets provide an effective 

means for objective evaluation of DIR with a narrow uncertainty range, and 

suggest a practical strategy for qualitative analysis of DIR spatial accuracy on a 

routine clinical basis. No proposition on the estimation of deformity between the 

registered image pairs were made though. 

 The EMPIRE10 challenge conducted by K. Murphy and associates 

[Murphy, K. et al., 2011] was a study of Evaluation of Registration Methods on 

Thoracic CT. EMPIRE10 (Evaluation of Methods for Pulmonary Image 

REgistration 2010) is a public platform for fair and meaningful comparison and 

evaluation of non-rigid registration algorithms and techniques which are applied 

to a database of intra-patient thoracic CT image pairs. Evaluation of nonrigid 
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registration techniques is a nontrivial task. This is compounded by the fact that 

researchers typically test only on their own data, which varies widely. For this 

reason, reliable assessment and comparison of different registration algorithms 

has been virtually impossible in the past. The result of this study comprised of a 

comprehensive evaluation and comparison of 20 individual algorithms from 

leading academic and industrial research groups. All algorithms were applied to 

the same set of 30 thoracic CT pairs. Algorithm settings and parameters were 

chosen by researchers’ expert in the configuration of their own method and the 

evaluation is independent, using the same criteria for all participants. Some 

methods up for comparison were: Asclepios1, Asclepios2, CMS, DIKU, DROP, 

elastix, IMI Lubeck Diffeomorph, Lyon FFD, MGH, Nifty Reggers, OFDP, picsl 

exp, picsl gsyn, Robust TreeReg Leuven, Spline MIRIT Leuven etc. All methods 

were fully automatic with the exception of MGH. It was found that generic 

registration algorithms performed better than data specific methods. It might still 

be the case that combining aspects of both could improve performance even 

further, particularly on more difficult scan pairs. The EMPIRE10 challenge 

enabled detailed, independent and fair evaluation of non-rigid registration 

algorithms. 

 Edward Castillo and associates [Castillo, E. et al., 2014] proposed a 

moving least squares approach for computing spatially accurate transformations 

that satisfy strict physiologic constraints. It involved computation of 

physiologically realistic spatial transformation from a sparse point cloud of 

displacement estimates using MLS and any combination of upper bound, lower 

bound, or equality constraints placed on the Jacobian. MLS defined a spatial 

transformation from a sparse point cloud of estimated displacements and provided 

60 



simple analytic derivative estimates for all voxel locations; given displacement 

estimates from the automated block. Five publicly available (cases 6-10 from 

www.dir-lab.com) inhale/exhale thoracic CT image pairs each with 300 

landmarks (for DIR validation) were registered by first obtaining a sparse point 

cloud of displacement estimates via block matching. Two MLS transformations 

were then computed, one with no Jacobian constraints and the other with strict 

contraction Jacobian constraints. Both MLS fields achieved similarly low average 

millimeter error on all five cases (between 1.16 – 1.26). However, the constrained 

MLS yielded a strict contraction (all Jacobian values between 0 and 1) while the 

unconstrained MLS resulted in regions of expansion (Jacobian values larger than 

1) despite registering from inhale to exhale. The proposed MLS approach was 

found capable of producing Jacobian constrained transformations without any 

degradation in the spatial accuracy. Though applied to block match estimates, the 

approach can be employed in conjunction with displacement estimates from any 

DIR algorithm. 

3.3 Method 

3.3.1 Preparation 

The dataset used comprised of a total (3 10) 10 i.e. 300 CT images across 10 

subjects ranging from 396 396 to 432 400 pixels. There were 10 frames each for 

every anatomical plane i.e. Axial (supine), Coronal and Sagittal for all the 10 

subjects acquired simultaneously with a gap of 0.1 second starting from time t = 0 

to 1 seconds, thus called the 4DCT image dataset. All images were identified as 

 where ,  are the x & y 

coordinates in the Cartesian plane and AP signifies the three anatomical planes of 

view i.e. Axial (a), Coronal (c) and Sagittal (s). So, the sixth subject’s Coronal CT 
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image acquired at t=0.6 sec will be identified as . Sample of images 

used from all viewpoints and all subjects at timestamps 0.1 and 0.6 seconds are 

summarized in Table 3.1. 

 

Table 3.1: All three anatomical viewpoints for all the 10 subjects at time  

t=0.1 & 0.6 sec 

 
ANATOMICAL PLANES (at t=0.1 & 0.6 sec) 

 

 
Axial Coronal Sagittal 

1 

                 

2 

                     

3 

                   

4 

                 

5 

                     

6 

                 

7 

                  

8 

                      

9 

                 

10 

                    
 

3.3.2 Proposed Methodology 

The methodology is as such that two images at different timestamps are taken; 

one with the earlier timestamp i.e. t=0.1 sec is considered as base/reference image 

and the one with the later timestamp i.e. t=0.6 sec deformed image (real time 
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image). These are fed into the SURF feature detector and a common 

corresponding feature set in the form of a Cartesian point cloud is obtained. This 

feature set then serves as input to the MLS algorithm as control point cloud 

corresponding to both reference and the deformed image. The MLS algorithm 

then traces the deformation in the real time image with respect to the 

corresponding base image. The overall process can be referred to in Figure 3.1. 

 

Figure 3.1: The proposed model 

 The proposed model uses the Speeded up robust feature detector (SURF) 

[Bay, H. et al., 2006 & 2008] to obtain a feature set of the deformed image as well 

as the reference image. It detects and describes the feature set irrespective of any 

scaling and/or rotation in the corresponding images. SURF gives better results 

than previously proposed schemes with respect to repeatability, distinctiveness, 

and robustness, yet can be computed and compared much faster than any other 

state of the art feature detector [Pang, Y. et al., 2012; Yoon, H. et al., 2009]. This 

was achieved by relying on integral images for image convolutions; by building 

on the strengths of the leading existing detectors and descriptors (specifically, 

using a Hessian matrix-based measure for the detector, and a distribution-based 
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descriptor); and by simplifying these methods to the essential. This leads to a 

combination of novel detection, description, and matching steps [Bay, H. et al., 

2008] as can be seen in Figure 3.2. An implementation of the algorithm over the 

inhale and exhale frames for the first subject at t=0.1 and 0.6 sec respectively i.e. 

 is shown in Figures 3.3, 3.4 & 3.5. 

 

Figure 3.2: The working model for SURF 

 

Figure 3.3: Corresponding feature points at their respective positions in the 

inhale (left) and the exhale (right) frame recorded at t= 0.1 and 0.6 seconds 

respectively 
 

MLS has been successfully applied to surface reconstruction from 

points/point clouds and other point set surface definitions [Alexa, M. et al., 2003, 
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Schaefer, S. et al., 2006]. Given a set of control point pairs on the source and the 

target images, the MLS technique determines the transformation  that best 

minimizes the least square error expression: 

  (3.1) 

where and  are the i
th

 source and target control point pair respectively 

obtained by SURF algorithm. Since a single affine transformation is obtained as a 

result of the above transformation, there is no control over the scaling/shearing of 

the image. This issue is fixed by including a weighing function  to the least 

square error function which results in a different transformation function for each 

point of evaluation of the image. 

  (3.2) 

where the weighing function  is of the form: 

  (3.3) 

where is the point of evaluation in eqn. (3.1-3.3),  is a parameter of the 

weighing function. This parameter changes values depending on the changing 

point of evaluation thus changing the weighing function (eqn. 3.3) and in turn 

changing the transformation for each point of the image. It performs better than its 

contemporaries while tracing deformations that are realistic and guides the user in 

manipulation of real-world objects. It also allows the user to specify the 

deformations using either sets of points or line segments, the later useful for 

controlling curves and profiles present in the image. For each of these techniques, 

it provides simple closed-form solutions that yield fast deformations, which can 
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be performed in real-time as is shown in Figure 3.5 as a result of using point-set 

features from the inhale and the exhale frames in Figure 3.3 & 3.4. 

 

Figure 3.4: Corresponding feature points matched in the inhale (left) and the 

exhale (right) frame recorded at t= 0.1 and 0.6 seconds respectively 

 

The combined implementation the SURF feature detector and MLS 

algorithm as a two-stage process attributes this methodology with faster 

processing speeds in feature detection/description and efficient tracking of the 

interest points (obtained from SURF) during their transition through frames/slices. 

 

Figure 3.5: Registered axial image for the first subject from inhale frame at 

t=0.1 sec to exhale frame at t=0.6 sec 
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As we can see in the figure 3.3, an implementation of the SURF algorithm 

gave out matching features with their respective coordinate values in the inhale 

(t=0.1 sec) and the exhale (t=0.6 sec) frames for the axial AP CTs of subject ‘case 

1’.  Similar process was employed for all subjects throughout all the three APs. 

This provided us with the respective coordinate point values for the mutual 

interest points between them. These frames along with the interest point values 

are used by the MLS algorithm to provide a registered image for every set of AP 

for a subject. Result of this process being the registered images for every subject 

through all three APs for all 10 subjects. Along with the registered images as 

output, the average translation of the interest points is also obtained in x and y 

Cartesian directions in ‘pixel’ units for all 10 subjects under observation from all 

three APs. The average translation is basically the collective deviation for all the 

interest points from an initial stage to the final stage in terms of Euclidean 

distance in pixel units in their own respective cases. 

3.4 Results and Discussion 

These average translations were compiled for all the 10 subjects with respect to 

the common denominator i.e. the number of frames/slices. Since, the number of 

frames taken into account was 6; there were total five translation gaps in between 

them. The translation data was comparatively classified for all 10 subjects into 

different graphical representations in terms of it being in x or y direction and the 

AP it belongs to. A widespread consensus now exists that it would be useful to 

use prior knowledge of respiratory organ motion and its variability to improve 

radiotherapy planning and treatment delivery [Blackall, J. M. et al., 2006]. The 
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estimated deformation for a particular subject when computed using the proposed 

methodology can be compared and analysed against a corresponding standard 

atlas to assess the extent of abnormality. The figures 3.6 & 3.7 show the average x 

and y translation values for all subjects in axial AP. Looking into ‘case 10’ y-

translation plot, the average deformations estimated over inter-frame durations of 

a single inhale-exhale process (stated above) was 0.278±0.11 pixels with a 

maximum value of 0.408 pixels while transitioning from frame 4 to 5. The 

variations in the deformations exhibited by the subject ‘case 10’ were 

significantly larger than the considered population average of 0.039±0.13 pixels. 

Similarly figures 3.8, 3.9 and 3.10, 3.11 show the average x, y translation for all 

interest points in the coronal and sagittal APs respectively. The maximum 

translation obtained for a case/subject during transition from one slice to another 

signifies the maximum variations in breathing pattern than the considered 

population and atlas data in general, which in this study happens to be subject 

‘case 10’. Similarly the minimum deviation obtained from either of the APs points 

out slice/frame transitions with no apparent anatomical deformation in the 

thoracic periphery of the subjects. 
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Figure 3.6: Average x-translations for axial AP 

 

Figure 3.7: Average y-translations for axial AP 
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Figure 3.8: Average x-translations for coronal AP 

 

 

Figure 3.9: Average y-translations for coronal AP 

70 



 

Figure 3.10: Average x-translations for sagittal AP 

 

 

Figure 3.11: Average y-translations for sagittal AP 
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Table 3.2: Target registration error comparison through all APs for all 

subjects (*our method) 

Subject 

(Case 

No.) 

SIFT+MLS (Scale 

Invariant feature 

Transform) 

SURF+TPS (Thin-plate 

Splines) 
SURF+MLS* 

APs Axial Coronal Sagittal Axial Coronal Sagittal Axial Coronal Sagittal 

1 0.428 0.883 0.451 0.498 1.123 0.541 0.128 0.353 0.121 

2 0.344 0.932 0.42 0.464 1.052 0.51 0.054 0.382 0.09 

3 0.52 0.987 0.464 0.61 1.217 0.514 0.13 0.367 0.034 

4 0.845 1.344 0.704 0.785 1.404 0.824 0.165 0.424 0.214 

5 0.94 1.551 0.931 0.86 1.541 0.771 0.22 0.501 0.081 

6 0.589 1.168 0.904 0.699 1.368 0.994 0.209 0.428 0.454 

7 0.637 1.182 0.953 0.647 1.432 0.983 0.147 0.512 0.463 

8 0.673 1.594 1.041 0.673 1.494 1.131 0.183 0.564 0.591 

9 0.655 1.96 0.843 0.735 2.19 0.933 0.215 1.34 0.353 

10 0.725 1.842 0.908 0.795 1.882 0.998 0.385 0.972 0.458 

 

 

3.5 Conclusion 

A methodology has been presented showing the how a feature point set generated 

by SURF can be used through MLS for deformable image transformations in 

medical images such as the thoracic pectus excavatum exhale and inhale frames 

used in this work. The accuracy of the deformable registration performed using 

the proposed methodology is assessed in terms of the target registration error 

( ) and is compared with two other prevalent methods for all three APs (refer 

Table 2) for the same database. The error values (pixel values converted to mm 

using the resolution of images) for the proposed methodology are considerably 

lower than the other methods for almost all subjects considered. The use of SURF 

can be explained by its better performance in terms of smaller time complexities 
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(stated earlier) and common feature points than existing state of the art feature 

detector and descriptors. MLS however was the best available choice for 

Deformable Image Registration (DIR) based on landmark points. Although the 

proposed methodology provides with a fast and accurate way of DIR for medical 

images and thus an account of deformity in the thoracic periphery, there is much 

scope for improvement in the overall process. One way this can be achieved in 

future is by modifying the SURF and/or MLS procedures themselves involved in 

the process i.e. bringing newer versions of the existing methods better suited with 

the application. Another way is to improve and enhance the quality as well as the 

quantity of the database used. Also, the aforementioned procedure can provide 

better results if applied for a different human anatomy altogether.  
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