
CHAPTER 2: THEORETICAL BACKGROUND 

 

Before getting on with the proposed methods, it seems elementary to mention and 

explain some concepts which are to be used extensively in the coming chapters in 

detail. This chapter presents the building blocks which are necessary to 

understand the concepts presented and discussed in the forthcoming chapters. 

Here we elaborate the images classifications based on which they are up for 

different registration methodologies depending on their morphological properties. 

This would lead on to a discussion on geometrical transformation models inspired 

from physical models. A standalone description about the registration algorithms 

used in the methods proposed, the feature detection/description method(s) used, 

the database employed, and registration accuracy and similarity measures would 

be discussed. This chapter would help in setting just the right tone for upcoming 

content. 

2.1 Introduction 

The need for establishing this distinction between rigid and deformable images 

before talking about transformations in both these kinds of images is imperative. 

The application and use of registration algorithms to these images varies and 

differs both on the basis of viability (time and space complexity) and the nature of 

transformations which suit best for the image(s) it is being applied for. In the 

coming chapters, there will be detailed propositions of registration methodologies 

for different image sets. To keep the discussion of these algorithms relevant, it 

was necessary to detail the morphological properties of these varieties of images 

(with real-life examples). The geometric transformation models proposed in the 

past for deformable images are discussed; they take inspiration from physical 

models such as Navier-Cauchy’s theories of dynamics in elastic and near-elastic 
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objects. It is quite interesting to see the similarities between these elasticity 

models and deformable images of various human body organs. 

2.2 Morphological classification of Images 

Image registration methods in general have been applied to a variety of kinds of 

images. These images have been classified into two types Rigid and Deformable 

images depending on their temporal behavior. These methods and their 

application depend on the morphological properties of the images it is being used 

for. For instance, an image registration technique which provides optimal results 

for rigid images both in terms of registration error and run time/space complexity 

might fail on all aspects when applied to deformable images. Similarly, an IR 

algorithm giving optimal results for deformable images in aforementioned terms, 

might be a waste of run time /space complexity & resources when applied to rigid 

images, as the same results could have been obtained using smaller resources had 

rigid image-specific IR algorithm been used.  

2.2.1 Rigid Images 

Rigid images are most commonly those of structures with rigid morphological 

properties e.g. bones, buildings, geographical structures etc. Images which do not 

exhibit morphological changes such as warps etc. over a period of time can be 

classified as rigid images. Rigid images can be modeled after real life real objects 

with least elasticity. To understand the behavior of rigid images, imagine an 

image as a collection of innumerable small miniscule points, the image will be a 

rigid image if there is no (ideally) relative motion between the points under 

deformations as can be seen in fig 2.1. 
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Figure 2.1: Rigid image morphological behaviour under deformation 

Below in fig. 2.2 is an example from the ‘Möbius Transformations Revealed’ 

page illustrating the rigid motion of a Riemann sphere through different 

transformations. 

 

Figure 2.2: Rigid image motions in stages as shown using a Riemann Sphere; (a) to 

(c) is the translation motion, (d) to (f) is the rotation motion, (g) to (i) is the zoom or 

dilation, (j) to (o) is the inversion and (p) to (r) is a combination of them all. 
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The graticule of lines that we see on the plane and on the sphere form an image of 

a square in the complex plane. It is a projection of the sphere on the two 

dimensional plane. The first row depicts the translation transformation; fig. 2.2 (a) 

and (c) are the last initial and final stages of the transformation while (b) is an 

intermediary stage. These transformations can be formulated in terms of matrices, 

so as to make its theoretical understanding, development and applications easy. 

The elegance of formulating these transformations in terms of matrices is that 

several of them can be combined, simply by multiplying the matrices together to 

form a single matrix. This means that repeated re-sampling of data can be avoided 

when re-orienting an image. 

 As for translation (fig. 2.2 (a) to (c)); suppose a point x in an image is to be 

translated by q units, then the transformation would be simply: 

   

which in matrix terms would be considered as: 

  (2.1) 

Looking into rotation (fig. 2.2 (d) to (f)), Consider a point at co-ordinate (x1, x2) 

on an image. A rotation of this point to new co-ordinates (y1, y2), by θ radians 

around the origin, can be generated by the transformation: 

 

 

 

 

This can be loosely related to the affine transformation in non-rigid images. For 

the three dimensional case, there are three orthogonal planes that an object can be 

rotated in. These planes of rotation are normally expressed as being around the 
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axes. A rotation of q1 radians about the first (x) axis is normally called pitch, and 

is performed by: 

  (2.2) 

Rotations are combined by multiplying this matrix together with the other planar 

matrices in appropriate order. The order of the operations is important. 

The transformations described so far will generate purely rigid-body 

mappings. Zooms/dilations (fig. 2.2 (g) to (i)) are needed to change the size of an 

image, or to work with images whose pixel sizes are not isotropic, or differ 

between images. These represent scaling along the orthogonal axes, and can be 

represented via: 

  (2.3) 

 

 Rigid image transformation has a variety of obvious applications in 

registering images of solid and still structures etc., acquired from different 

viewing angles. It is also applicable in case of medical images of anatomical parts 

that do not deform significantly with over time duration. Such anatomical parts 

may be bones, human brain structure etc. The shape of a human brain changes 

very little with head movement, so rigid image transformations can be used to 

model different head positions of the same subject. Matching of two brain images 

whether it’s an MR or CT image is performed by finding the rotations and 

translations that optimize some mutual function of the images. Rigid-image 

registration techniques have employed to monitor changes in the brain in 
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individual subjects who underwent serial MRI examinations. This approach 

allows disease progression and response to treatment to be monitored with great 

sensitivity. It fits naturally with the noninvasive nature of MRI.  

2.2.2 Deformable Images 

Deformable images are those of structures, shape and size of which can be 

modeled after tangible physically deformable models. Images that exhibit 

morphological changes such as warp, shape changes etc. when subjected to 

transformations and/or external forces over a period of time are categorized as 

deformable/non-rigid/elastic images. These images may or may not return to an 

original state with time. Deformable images can be modeled after real life objects 

with elastic morphological properties. To understand the behavior of deformable 

images, imagine an image as a collection of innumerable small miniscule points, 

the image will be a deformable image if there is independent relative motion of 

the constituent points under deformation as can be seen in fig 2.3. This essentially 

means that however the constituent points of a deformable image be 

connected/related to each other, under an external deformation, they might tend to 

lose that connection/association. 

 

Figure 2.3: Deformable image morphological behaviour under deformation 
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A common example of deformable images is a temporal image sequence of an 

amoeba in motion.  This is shown as visualization in the fig 2.4 how amoeba, an 

inherently shapeless microorganism moves and assimilates its food (assimilation 

process is not a part of image) using its pseudopods (false limbs). 

 

Figure 2.4: Amoeboid motion realized as a deformable image motion 

There are many transformations both geometric and physical which are applicable 

only to deformable images and provide best emulations of real life deformations. 

These are radial basis functions (thin-plate or surface splines, multiquadrics etc.), 

physical continuum models (viscous fluids), and large deformation models 

(diffeomorphisms). 

A quadratic transformation model is defined by second order polynomials: 

 

′

′

′
 (2.4) 

Radial basis functions however like splines be it thin plate or b-splines use a linear 

combination of basis functions to describe the deformation field instead of 

using a polynomial as a linear combination of higher order terms. 

(a) (b) 

(c) (d) 
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′

′
 (2.5) 

A common choice is to represent the deformation field using a set of 

(orthonormal) basis functions such as Fourier (trigonometric) basis functions or 

wavelet basis functions. In the case of trigonometric basis functions this 

corresponds to a spectral representation of the deformation field where each basis 

function describes a particular frequency of the deformation. The term spline 

originally referred to the use of long flexible strips of wood or metal to model the 

surfaces of ships and planes. These splines were bent by attaching different 

weights along their length. A similar concept is used to model spatial 

transformations. Many registration techniques using splines are based on the 

assumption that a set of corresponding points or landmarks can be identified in the 

source and target images. This is analogous to the use of point landmarks for rigid 

or affine registration using the Procrustes method. Thin plate splines are part of a 

family of splines that are based on radial basis functions. Radial basis function 

splines can be defined as a linear combination of n radial basis functions . 

  (2.6) 

As for the B-splines: 

  (2.7) 

Where 

 and  represents the l-th function of the B-splines. 

In case of elastic deformations (Navier’s elastic PDE (partial differential 

equation)): 
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  (2.8) 

Here u describes the displacement field, f is the external force acting on the elastic 

body, denotes the gradient operator, and  denotes the Laplace operator. The 

parameters  and  are Lamé’s elasticity constants which describe the behavior of 

the elastic body. 

There are a large number of applications for deformable image 

registration. Since almost all anatomical parts or organs of the human body are 

deformable structures, they come across as a most common application for 

deformable images registration, for example lung motion during breathing is 

shown in fig. 2.5. Areas of considerable interest for deformable image registration 

are the applications in which the geometry during image acquisition is unknown 

or distorted, and include correction for scaling, gantry tilt and magnetic field 

inhomogeneity. Other areas of deformable image registration can be classified 

into either the registration of deformable structures of the same individual (intra-

subject registration) or the registration across individuals (inter-subject 

registration). Due to the different nature of these image registration tasks, the 

algorithms developed to solve them have quite different characteristics. 

 

Figure 2.5: Motion of lungs during breathing 

(a) (b) 

(c) (d) 
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2.3 Geometric Deformation Models: A survey 

An image registration algorithm can be divided into three main components, a 

deformation model, an objective function and an optimization method. A 

registration algorithm’s result naturally depends on the deformation model and the 

objective function. The registration result’s dependency on an optimization 

strategy follows from the fact that image registration is inherently an ill-posed 

problem according to Hadamard’s definition of well-posed problems [Hadamard, 

J., 2014]. For example in a rigid setting, let us consider a scenario where two 

images of a disk (white background, gray foreground) are registered. Despite the 

fact that the number of parameters is only 6, the problem is ill-posed. The problem 

has no unique solution since a translation that aligns the centers of the disks 

followed by any rotation results in a meaningful solution [Sotiras, A. et al., 2013]. 

However, since the subject of this work is deformable images that too body 

organs, in these situations in general in general, no closed-form solutions exist to 

estimate the registration parameters. In this setting, the search methods reach only 

a local minimum in the parameter space. The approach that one should take 

depends on the anatomical properties of the organ (for example, the heart and 

liver do not adhere to the same degree of deformation), the nature of observations 

to be registered (same modality versus multi-modal fusion), the clinical setting in 

which registration is to be used (e.g., offline interpretation versus computer 

assisted surgery). The primary interest of this work lies in deformable registration 

hence problems with relatively higher-degree-of-freedom setting have been 

discussed particularly. 

 The main scope of this work is focused on applications that seek to 

establish spatial correspondences between medical images and thus the organ state 
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of which the images are recorded with respect to time. The scope of this work has 

been extended to cover applications where the interest is to recover the apparent 

motion of objects between sequences of successive images (optical flow 

estimation) [Fleet, D., & Weiss, Y., 2006], [Baker, S. et al., 2011]. Deformable 

registration and optical flow estimation are closely related problems. Both 

problems aim to establish correspondences between images. In the deformable 

registration case, spatial correspondences are sought, while in the optical flow 

case, spatial correspondences, that are associated with different time points, are 

looked for. Given data with a good temporal resolution, one may assume that the 

magnitude of the motion is limited and that image intensity is preserved in time, 

optical flow estimation can be regarded as a small deformation mono-modal 

deformable registration problem. 

 The parameters that registration estimates through the optimization 

strategy correspond to the degrees of freedom of the deformation model (these are 

variational approaches in general attempt to determine a function, not just a set of 

parameters). There is a great variation in this number, from six in the case of 

global rigid transformations, to millions when nonparametric dense 

transformations are considered. Increasing the dimensionality of the state space 

almost always results in enriching the descriptive power of the model. This model 

enrichment also brings along an increase in the model’s complexity which, in 

turn, results in a more challenging and computationally demanding inference. 

Furthermore, the choice of the deformation model implies an assumption 

regarding the nature of the deformation to be recovered. 

The geometric transformation models inspired by physical models 

suggested by Modersitzki in 2004 [Modersitzki, J., 2004] and currently being 
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employed can be separated into three/five basic categories i.e. elastic body 

models, viscous fluid flow models, diffusion models, (curvature registration and 

flows of diffeomorphisms).  

Elastic Body Models can be further subdivided into Linear and Non-linear 

models. In the case of linear models, images under deformation are modeled as an 

elastic body. The Navier-Cauchy Partial Differential Equation (PDE) describes 

this deformation. 

   

Where, is the force field that drives the registration based on an image matching 

criterion, refers to the rigidity that quantifies the stiffness of the material and 

is Lamés first coefficient. 

The image grid was modeled after an elastic membrane that is deformed 

under the influence of internal and external competing forces until a state of 

equilibrium is reached. The external force influences deformation in the image to 

achieve matching and the internal force exercises the elastic properties of the 

material [Broit, C., 1981]. 

This approach was extended in a hierarchical fashion by Bajcsy and 

Kovacic where the coarsest scale solution was up-sampled and was used to 

initialize the finer one when linear registration was used at lowest resolution 

[Bajcsy, R., & Kovačič, S., 1989]. Linear elastic models have also been found 

useful when registering brain images based on sparse correspondences. They were 

used for the first time by Davatzikos [Davatzikos, C., 1997] based on geometric 

characteristics to establish mapping between the cortical surfaces. Modeling the 

images as inhomogeneous elastic objects led to the estimation of a global 
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transformation function. Spatially-varying elasticity parameters were used to 

emulate the fact that certain structures tend to deform more than others. 

An important drawback of image registration in general is that if deformed 

image is used as input to an inverse process of the previously used transformation 

(forward), the output obtained will not be the same as original input image for the 

forward transformation. The idea of parallel estimation of both forward and 

backward transformations, while compensating for inconsistent transformations 

by adding a constraint to the objective function was introduced later. Linear 

elasticity was used as a regularization constraint and Fourier series’ were used to 

parameterize the transformation [Christensen, G. E., & Johnson, H. J., 2001]. A 

unidirectional approach was also introduced by Leow et al. that coupled the 

forward and backward transformations and provided an inverse consistent 

transformation by construction, thus diminishing the idea of a constraint addition 

to penalize the inconsistency error [Leow, A. et al., 2005]. 

An important drawback of linear elastic models is their inability to cope 

with larger deformations. Nonlinear elastic models were proposed so as to account 

for large deformations. These models ensure the preservation of topology of 

deformable images emulating hyper-elastic materials and their properties. The use 

of the Finite Element method provided a solution for the nonlinear equations and 

local linearization [Rabbitt, R. D. et al., 1995]. Two of the modeling processes for 

deformation were proposed, they were based on the concept of St. Venant-

Kirchhoff elasticity energy [Pennec, X. et al., 2005; Yanovsky, I. et al., 2008]. 

Viscous Fluid flow models: Image under deformation is modeled as a 

viscous fluid; these models do not assume small deformations hence can cope 

with the larger ones [Christensen, G. E. et al., 1996]. This transformation is 
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governed by the Navier-Stokes equation that is simplified by assuming a very low 

Reynold’s number flow 

   

Where,  is the velocity field, while and are the viscosity co-efficients. 

Christensen et al. extended their earlier work to recover transformations 

for brain anatomy; fluid transformation preceded by elastic registration step was 

used to refine the result obtained [Christensen, G. E. et al., 1997]. The processes 

in use till then had an important drawback in the form of computational 

inefficiency. To circumvent this shortcoming a new fast algorithm based on a 

convolution filter in scale space was proposed [Bro-Nielsen, M., & Gramkow, C., 

1996]. Fluid deformation models were used in an atlas-enhanced registration 

setting [Wang, Y., & Staib, L. H., 2000] while same models were used to tackle 

multi-modal registration [D'Agostino, E. et al., 2003]. More recently, an inverse 

consistent variant of fluid registration to register Diffusion Tensor images was 

proposed [Chiang, M. C. et al., 2008]. 

Diffusion models: The deformation in this case is modeled by the 

diffusion equation 

   

Thirion, inspired by Maxwell’s Demons [Thomson, W., 1874], proposed 

to perform image matching as a diffusion process, his work in turn inspired most 

of the work done in image registration using diffusion models [Thirion, J. P., 

1998]. The most suitable version for medical image analysis involved selecting all 

image elements as demons, calculating demon forces by considering the optical 

flow constraint, assuming a nonparametric deformation model that was 

regularized by applying a Gaussian filter after each iteration, and a tri-linear 
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interpolation scheme. The use of Demons, was able to provide dense 

correspondences but lacked sound theoretical justification [Sotiras, A. et al., 

2013]. However, this did not stop it from being an immediate success and soon 

enough a fast algorithm based on demons [Thirion, J. P., 1998] for image 

registration was proposed by Fischer and Modersitzki [Fischer, B., & Modersitzki, 

J., 2002] which provided theoretical insights into its workings. Vercauteren et al. 

[Vercauteren, T. et al., 2007] adopted the alternate optimization framework that 

Cachier et al. proposed [Cachier, P. et al., 2003], to relate symmetric Demons 

forces with the efficient second-order minimization (ESM) [Malis, E., 2004]. In 

this methodology, an auxiliary variable was used to separate the matching and 

regularization terms. ESM optimization was used to perform matching by 

minimizing the data term whereas regularization was achieved by Gaussian 

smoothing. 

 A variation of Thirion’s Demon Algorithm was proposed by Vercauteren 

et al. endowed with the diffeomorphic property [Vercauteren, T. et al., 2007]. In 

this approach, opposite to classical Demons approaches, an update field is 

estimated in all the iterations of the algorithm. A compositional rule is used 

between the previous estimate and the exponential map of the update field to 

estimate the running transformation. This exponential map is calculated by using 

the composition of displacement fields and the ‘scaling and squaring’ method 

[Higham, N. J., 2005; Moler, C., & Van Loan, C., 2003]. Diffeomorphism of the 

mapping is ensured by exponentiation of the displacement field. As an application 

of the model, Stefanescu et al. proposed a way of performing adaptive smoothing 

by taking into account the knowledge regarding the elasticity of tissues 

[Stefanescu, R. et al., 2004]. 
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 The Demons algorithm has found use not only in study of scalar images 

but its application has been extended to multi-channel images [Peyrat, J. M. et al., 

2008], diffusion tensor ones [Yeo, B. T. et al., 2009], as well as different 

geometries [Yeo, B. T. et al., 2010]. Peyrat et al. used multi-channel Demons to 

register time-series of cardiac images by enforcing trajectory constraints. Each 

time instance was considered as a different channel while the estimated 

transformation between successive channels was considered as constraint [Peyrat, 

J. M. et al., 2008]. Yeo & associates [Yeo, B. T. et al., 2010] derived Demons 

forces from the squared difference between each element of the Log-Euclidean 

transformed tensors while taking into account the reorientation introduced by the 

transformation. 

Curvature Registration: These image registration methodologies don’t 

necessarily need an extra affine linear pre-registration step, since the 

regularization scheme associated with it does not affect the affine linear 

transformations. This constraint has been used by Fischer and Modersitzki in 

[Fischer, B., & Modersitzki, J., 2003; 2004]. Despite several attempts to solve the 

underlying transformation function using the Gâteaux derivatives with Neumann 

boundary conditions, Henn [Henn, S., 2006] pointed out that the resulting 

underlying function space still penalized the affine linear displacements. Henn, 

further proposed including second-order terms as boundary conditions in the 

energy and applying a semi-implicit time discretization scheme to solve the full 

curvature registration problem. Beuthien and associates [Beuthien, B. et al., 

2010], proposed another way to solve the curvature based registration problem 

based on the approach presented in [Bro-Nielsen, M., & Gramkow, C., 1996] for 

the viscous fluid registration scenario. Instead of devising a numerical scheme to 
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solve the PDE that resulted from the curvature registration equilibrium equation, 

recursive convolutions with an appropriate Green’s function were used. 

Flows of Diffeomorphisms have also been one of the propositions for 

deformation modeling. In this case, the deformation is modeled by considering its 

velocity over time according to the Lagrange transport equation [Christensen, G. 

E. et al., 1996; Dupuis, P. et al., 1998; Trouvé, A., 1998]. This framework is also 

known as large deformation diffeomorphic metric mapping (LDDMM). It allows 

for the definition of a distance between images or sets of points [Joshi, S. C., & 

Miller, M. I., 2000; Marsland, S., & Twining, C. J., 2004]. The mathematical rigor 

of the LDDMM framework comes at an important cost. The fact that the velocity 

field has to be integrated over time results in high computational and memory 

demands. Moreover, the gradient descent scheme that is usually employed to 

solve the optimization problem of the geodesic path estimation converges slowly 

[Ashburner, J., & Friston, K. J., 2011]. More efficient optimization techniques for 

the LDDMM have been investigated in [Ashburner, J., & Friston, K. J., 2011; 

Marsland, S., & McLachlan, R., 2007; Cotter, C. J., & Holm, D. D., 2006]. For a 

tabular comparison of these methods, table A.1-A.5 from Appendix A can be 

referenced. 

2.4 Classification of Registration Methodology Used 

There is a plethora of registration algorithms being proposed by researchers and 

scientists being used in a multitude of applications. The classification taken up in 

this thesis (fig. 2.6) is the most basic classification of Image Registration 

algorithms roughly based on the work of Barbara Zitova and Jan Flusser [Zitova, 

B., & Flusser, J., 2003]. 
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Figure 2.6: Image registration methodology classification 

2.4.1 Feature Based Registration 

This approach for image registration is based on detection and extraction of 

salient structures i.e. features in the images. Significant regions of interest in an 

image and lines (region boundaries, coastlines, roads, rivers) or points (region 

corners, line intersections, points on curves with high curvature) are understood as 

features ready to be used for image registration. They should be distinct, spread 

all over the image and efficiently detectable in both images. Each feature point 

has a certain set of attributes, for the features to be distinct; there should be at 

least one attribute of two even similar features. There should be an unbiased 

equally weighted uniform spread of the feature points all across the image region 

to be registered. These features are usually detected for being present in both 

source and the target images simultaneously and they are expected to be stable in 

time to stay at fixed positions in the target image during the whole experiment 

while the source image feature points may be moving. The comparability of 

feature sets in the source and target images is assured by the invariance and 

accuracy of the feature detector and by the overlap criterion. In other words, the 
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number of common elements of the detected sets of features should be sufficiently 

high, regardless of the change of image geometry, radiometric conditions, 

presence of additive noise, and of changes in the scanned scene. The 

‘remarkableness’ of the features is implied by their definition. 

 Feature-based registration methods are concerned with finding the 

transformation that minimizes the distances between features, extracted from the 

pre-interventional image, or a model, and corresponding 2D features. Extraction 

of these geometrical features greatly reduces the amount of data, which in turn 

makes such registrations fast [Markelj, P. et al., 2012]. The core algorithms of 

feature detectors in most cases follow the definitions of the ‘point’ as line 

intersection, centroid of closed-boundary region or local modulus maxima of the 

wavelet transform. Corners form specific class of features, because ‘to-be-a-

corner’ property is hard to define mathematically (intuitively, corners are 

understood as points of high curvature on the region boundaries). 

 Feature-based matching methods are typically applied when the local 

structural information is more significant than the information carried by the 

image intensities. They allow registering images of completely different nature 

(like aerial photograph and map) and can handle complex between-image 

distortions. The common drawback of the feature-based methods is that the 

respective features might be hard to detect and/or unstable in time. The crucial 

point of all feature-based matching methods is to have discriminative and robust 

feature descriptors that are invariant to all assumed differences between the 

images. 
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2.4.1.1 Moving Least Squares 

Moving least squares is a method of reconstructing continuous functions from a 

set of unorganized point samples via the calculation of a weighted least squares 

measure biased towards the region around the point at which the reconstructed 

value is requested. In computer graphics, the moving least squares method is 

useful for reconstructing a surface from a set of points. Often it is used to create a 

3D surface from a point cloud through either down-sampling or up-sampling. 

Moving Least Squares (MLS) methods are linear systems of equations for the 

global least squares, and the weighted, local least squares approximation of 

function values from scattered data. By scattered data it should be understood as 

an arbitrary set of points in  which carry scalar quantities (i.e. a scalar field in d 

dimensional parameter space). This scattered point cloud is the feature point set 

common in both target and source image pairs. The point cloud of source image is 

interpolated to the points in the target image using MLS, this registers surfaces in 

source to the target image. 

 The MLS method was proposed by Lancaster and Salkauskas [Lancaster, 

P. & Salkauskas, K., 1981] for smoothing and interpolating data. The idea was to 

start with a weighted least squares formulation for an arbitrary fixed point in  

and then move this point over the entire parameter domain, where a weighted least 

squares fit is computed and evaluated for each point individually. It can be shown 

that the global function f(x), obtained from a set of local functions: 

  (2.9) 

So instead of constructing a global approximation, it constructs and evaluates a 

local polynomial fit continuously over an entire domain Ω, resulting in the MLS 
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fit function. Moving least squares will be explained in detail with examples 

pertaining to this thesis in coming chapters. 

2.4.1.2 Optical Flow Motion 

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, 

and edges in a visual scene caused by the relative motion between an observer (an 

eye or a camera) and the scene [Warren, D. H., & Strelow, E. R., 1985]. It is a 

dense field of displacement vectors which defines the translation of each pixel in a 

region. It is computed using the brightness constraint, which assumes brightness 

constancy of corresponding pixels in consecutive frames. Optical flow motion 

estimation is commonly used as a tool in motion-based segmentation and point 

tracking applications. Popular techniques for computing dense optical flow 

include methods by Horn and Schunck [Horn, B. K., & Schunck, B. G., 1981], 

Lucas and Kanade [Lucas, B. D., & Kanade, T., 1981], Black and Anandan 

[Black, M. J., & Anandan, P., 1996], and Szeliski and Coughlan [Szeliski, R., & 

Coughlan, J., 1997]. 

 It is a well known registration technique which is equivalent to the 

equation of motion for incompressible flow in physics. The concept of optical 

flow was originally introduced in computer vision in order to recover the relative 

motion of an object and the viewer in between two successive frames of a 

temporal image sequence. Its fundamental assumption is that the image brightness 

of a particular point stays constant, i.e. 

  (2.10) 

After a bit of mathematical interpolations it basically comes down to: 

  (2.11) 
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Where the temporal difference between the images,  is the spatial gradient of 

the image, and u describes the motion between the two images. In general, 

additional smoothness constraints are imposed on the motion field u in order to 

obtain a reliable estimate of the optical flow. It also helps in tracking common 

feature points across the sequence of images. Temporal image sequence 

registration and deformity estimation using optical flow motion is explained in 

detail in upcoming chapters. 

2.4.2 Intensity Based Registration 

Intensity based registration methods compare intensity patterns between images. 

The moving image is subjected to transformations such that the resulting 

transformed image exhibits minimum intensity differences with the fixed image. 

It has recently become the most widely used registration basis for several 

important applications. In this context, the term intensity is invariably used to 

refer to the scalar values in image pixels or voxels. The physical meaning of the 

pixel or voxel value depends on the modalities being registered and is very often 

not a direct measure of optical power (the strict definition of intensity). 

 Intensity-based registration involves calculating a transformation between 

two images using the pixel or voxel values alone. In its purest form, the 

registration transformation is determined by iteratively optimizing some 

“similarity measure” calculated from all pixel or voxel values. For deformable 

image registration, a major attraction of intensity-based algorithms is that the 

amount of preprocessing or user-interaction required is much less than for point-

based methods. As a consequence, these methods are relatively easy to automate. 

Intensity-based registration algorithms can be used for a wide variety of 

applications: registering images with the same dimensionality, or different 
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dimensionality; both rigid transformations and registration incorporating 

deformation; and both inter-modality and intra-modality images. 

2.4.2.1 Strain Energy Minimization 

This registration technique gives best results for deformable/non-rigid/elastic 

images. There is a potential energy associated with an elastic system at a time. 

Since, the images involved in the study are of a human body organ, they can be 

categorized as non-rigid or deformable images and the energy principles of elastic 

systems are applicable to this set of images. Potential energy of an elastic two 

dimensional system at static equilibrium is supposed to be pure strain energy. The 

potential energy function although consists of tensile stress, shear modulus, shear 

strain and both of the Lame’s constants. This energy function is reduced to just 

strain energy variables and is equated to zero for static equilibrium conditions. 

This complete process is known as strain energy minimization. It is a 

transformation between the source and the target image pair. The strain energy 

function of the source image is minimized comparing intensity values iteratively 

to such a stage that no lesser intensity difference is found between the registered 

image and the target image. Obviously the intensity differences are never 

achieved to zero nor does the strain energy of the source-target image pair system 

ever reach zero in real life conditions. 

  It is fully automatic in its mode of operation and helps in faster and more 

accurate image registration in comparison to pure point based registration 

methods. This factor gives this method an upper hand when it comes to real-life 

medical image registration problems. The intensity based energy minimization 

methodology seems more practical, stable and cost efficient for deformable 

images in comparison to landmark based or segmentation based methodologies 
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for similar purposes. The method is simpler and faster than its contemporaries 

because the energy function is worked upon directly without solving large matrix 

system assemblies. 

 

 

Figure 2.7: The iterative strain energy minimization process 

 

2.5 Feature Detection/Description methods 

Feature detection/description is an important precursor for implementing the 

feature based registration techniques for both deformable and rigid images. 

Feature detection is the process where we automatically examine an image to 

extract features that are unique to the objects in the image, in such a manner that 
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we are able to detect an object based on its features in different images. This 

detection should ideally be possible when the image shows the object with 

different transformations, mainly scale and rotation, or when parts of the object 

are occluded [Pedersen, J. T., 2011]. The feature keypoints obtained in the process 

have certain attributes on the basis of which their distinctiveness etc. is 

determined. These attributes are coordinate position pt(x, y), the angle 

(orientation), the magnitude (response, strength), size (diameter), octave (pyramid 

octave in which keypoint is detected) and the object_id. 

The SURF (speeded up robust features) algorithm has been explained here 

using details courtesy Tae-Koo Kang and associates [Kang, T. K., et al., 2015]. It 

consists of two major parts: (1) detector and (2) descriptor. The detector uses a 

basic Hessian matrix approximation and an integral image, which significantly 

reduces computation time. The procedure it uses comprises four steps: (1) integral 

image; (2) Hessian matrix-based interest points; (3) scale space representation and 

(4) interest point localization. First, in order to speed up local feature extraction, 

an integral image  (as shown in fig. 2.8) is adapted to the SURF algorithm. 

The entry of an integral image  at a position  can be represented 

as the summation of all the pixels in the input image I within a rectangular region 

generated by the origin and x as follows: 

  =  (2.12) 

Once the integral image has been computed, it takes three additions to 

calculate the sum of the intensities over any upright, rectangular area. Therefore, 

computation is independent of the size of the rectangle. In Step 2, the Hessian 

matrix, , is used to determine the interest points. The Hessian matrix, 

, in x at scale σ is defined as follows: 
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  (2.13) 

Where,  is the convolution of the Gaussian second order 

derivative  with image I at a given point x, and similarly for 

 and . 

 

Figure 2.8: Integral image calculation 

To reduce the computational cost, SURF uses the following approximation 

for : 

  (2.14) 

Blob-like structures are then detected at the location where the determinant 

 is maximum using: 

  (2.15) 

Where the relative weight w is used to balance the expression for 

, which is needed for energy conservation between the Gaussian and the 

approximated Gaussian kernels. In Step 3, the scale-space representation step, 

Gaussian approximation filters are adapted to each level of filter size in the scale 

space to extract interest points from images. This scale-space representation 

concept has also been applied to the SIFT (Scale-invariant feature transform) 
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algorithm. However, the SIFT algorithm iteratively reduces the image size, 

whereas the SURF algorithm uses the integral images, allowing up-scaling of the 

filter at a constant cost. As a result, the SURF algorithm is computationally more 

efficient and conserves more high frequency components with no aliasing. In Step 

4, the interest point localization step, interest point detection is performed using 

the non-maximum suppression (NMS) over three neighborhood scales (3×3×3 

neighborhood pixels). The points that have the maxima of the determinant of the 

Hessian matrix are then regarded as the feature points by NMS. 

In the descriptor, in order to assign invariability to the interest points, 

every interest point sought by the detector has to carry its own indicator. When 

deformations such as viewpoint angle changes, scale changes, increasing blur, 

image rotation, image blur, compression, and illumination changes occur, the 

interest point descriptors can be employed to look for correspondences between 

the original image and the transformed image. In SURF, the procedure used by 

the descriptor comprises of two steps: (1) orientation assignment and (2) 

descriptor based on the sum of Haar wavelet responses. 

In Step 1, the orientation assignment step, image orientation is especially 

used to identify invariability of the interest point with respect to image rotation. 

The orientation is computed by detecting the dominant vector of the summation of 

the Gaussian weighted Haar wavelet responses under sliding window split circle 

region by pi/3. Because the horizontal and vertical responses of the Haar wavelet 

include both the strength and directional property of interest points, image 

orientation efficiently represents the essentials of the image point with respect to 

image rotation. 
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In Step 2, the descriptor based on the sum of Haar wavelet response step, 

to discover the descriptor of interest point, the orientation selected in the 

orientation assignment step and the square region around the interest point are 

needed. Each of the square regions is split into smaller 4×4 sub-regions. For each 

sub-region, the horizontal Haar wavelet response  and the vertical Haar wavelet 

response  are computed at 5×5 regularly spaced sample points. The  and  

from each sub-region are then utilized to form the 4D description vector 

, which is called the descriptor. This method is more 

robust than that of SIFT. 

Though there are many combined and standalone feature 

detector/descriptors are available in open source environment, SURF (Speeded Up 

Robust Feature) feature detector/descriptor has been employed for the same in this 

work. SURF is a unique scale- and rotation-invariant detector and descriptor, 

outperforming contemporary methods with respect to repeatability, 

distinctiveness, and robustness, yet can be computed and compared much faster. 

Focus is on scale and in-plane rotation-invariant detection and descriptions. These 

seem to offer a good compromise between feature complexity and robustness to 

commonly occurring photometric deformations in thoracic images. Skewing, 

anisotropic scaling, and perspective effects are assumed to be second order 

effects, that are covered to some degree by the overall robustness of the 

descriptor. For guaranteed invariance to any scale changes the input thoracic 

images are analyzed at different scales. The detected interest points are provided 

with a rotation and scale-invariant descriptor. These basic advantages that SURF 

provides relating to speed and relative accuracy in face of rotation, illumination 

changes and several other distortions led to its use for setting up a common 
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landmark point cloud set between the source and target image pair to assist and 

speed up the application of feature based image registration algorithms. Looking 

at the fact that these operations were being performed on CT images of real 

subjects (not fabricated phantoms etc.), the deformations in images were 

voluntary and spontaneous SURF came out to be the best choice of feature 

detector/descriptor for the job in terms of accuracy and speed. 

2.6 Database Employed 

The dataset used comprised of a total (3×10)×10 i.e. 300 thoracic CT images 

across 10 subjects. The dataset was obtained from the publicly available database, 

http://www.dir-lab.com, with proper downloading permissions from the 

concerned administrator. All images were anonymized and all procedures 

followed were in accordance with the ethical standards of the responsible 

committee on human experimentation (institutional and national) and with the 

Declaration of Helsinki 1975, as revised in 2008 (5). Informed consent was 

obtained from all patients for being included in the study. All patients or legal 

representatives signed informed consent. The images lie between CT phases 0-6 

i.e. end-inspiration to end-expiration in timestamp range t00→t06. The image 

dimensions lie between 396×396 to 432×400 pixels. There were 6 frames from a 

temporal thoracic image sequence each for every Anatomical Plane (AP)  i.e. 

Axial (supine), Coronal and Sagittal for all the 10 subjects acquired 

simultaneously with a gap of 0.1 second starting from time t= 0.1 to 0.6 seconds. 

The three anatomical planes are explained through graphical representations in 

figs. 2.9 – 2.12. All images were identified as where

, (x, y) are the x & y coordinates in the Cartesian plane 

and AP signifies the three anatomical planes of view i.e. Axial (a), Coronal (c) 
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and Sagittal (s). Suppose the 3rd frame from coronal AP for subject ‘case 9’, 

would be notified as . A view of the image database is shown in the 

tables 2.1 and 2.2 for representational purposes. 

 

Figure 2.9: Axial anatomical position 

 

Figure 2.10: Coronal anatomical position 

 

Figure 2.11: Sagittal anatomical position 
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Figure 2.12: A 3-dimensional cubical representation of the APs 

Table 2.1: CT images at t=0.1 & t=0.6 sec 

 
ANATOMICAL PLANES (T & S Images) 

Subjects Axial Coronal Sagittal 

1 

   

2 

   

3 

   

4 

   

5 

   

6 

   

7 

   

8 

   

9 

   

10 
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Table 2.2: Working database through all anatomical planes from t=0.1 to 0.6 sec 

 Axial Coronal Sagittal 

1 
   

2 
   

3 
   

4 
   

5 
   

6    

7    

8    

9 
   

10 
   

 

2.7 Accuracy & Similarity Measures Used 

Choices of the quality of alignment as the measure of success follow directly from 

our definition of registration, which is the determination of a transformation that 

aligns points in one view of an object with corresponding points in another view 

of an object. Most of the work and much of the literature on the subject of 

registration inevitably focuses on the quest for registration methods that produce a 

better alignment for some combination of modalities. The success of the 

registration, which we are relating monotonically to the quality of the alignment, 

has been estimated in published work by visual inspection, by comparison with a 

gold standard, or by means of some self-consistency measure. Although the great 
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majority of studies of registration quality have been carried out for rigid-body 

registration algorithms, the same concepts are also applicable for non-rigid 

registration. The measurement of registration success will be some statistical 

estimate of some geometrical measure of alignment error. Many such 

measurements have been used to measure the quality of registration, but not all 

are of equal value [Silva, E. A. et al., 2007]. An understanding of their meanings 

is crucial to understanding and evaluating claims of registration accuracy. 

2.7.1 Target Registration Error 

It is a common geometrical measure to assess alignment errors. It can be 

understood as the displacement between two corresponding points after 

registration, i.e., after one of the points has been subjected to the registering 

transformation. The word “target” in the name of this error measure is meant to 

suggest that the error is being measured at an anatomical position that is the target 

of some intervention or diagnosis. Such errors would be expected to be more 

meaningful than errors measured at points with no intrinsic clinical significance. 

Suppose p represents a point in the first image of a pair to be registered, and q a 

point in the second image. A registration method applied to this pair leads to a 

transformation T that, without loss of generality, registers the first image to the 

second. The difference between the two vectors representing the transformed 

point and the corresponding point gives the target registration error. Thus, 

   

However, it’s the magnitude of the target registration error that is usually reported 

and documented. 
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2.7.2 Signal to Noise Ratio (SNR) 

The signal-to-noise ratio (SNR) is used in imaging as a physical measure of the 

sensitivity of a (digital or film) imaging system. It has been used as a metric to 

demonstrate enhanced similarities in a pair of images later on in comparison to the 

pair in its former state. The initial image pair is the source and target image pair 

and the later one is transformed source and target image pair. Transformed source 

image is the source image we get post the registration process. An increased SNR 

value for the post registration image pair helps in indicating a better performance 

by the registration algorithm. 

   

Where, s′(x, y) is the transformed image post registration and t(x, y) is the target 

image in question. 

2.7.3 Peak Signal to Noise Ratio (PSNR) 

Peak signal-to-noise ratio, often abbreviated PSNR, is an engineering term for the 

ratio between the maximum possible power of a signal and the power of 

corrupting noise that affects the fidelity of its representation. PSNR is most 

commonly used to measure the quality of reconstruction of a lossy compression. 

In terms of assessing an image registration algorithm, it has been used as an image 

similarity metric as well. It would compare the transformed source image s′(x, y) 

against the target image t(x, y) and get a value; this value is compared against the 

same for original source-target image pair. An increased value in PSNR for the 

transformed-target image pair would indicate a better transformation and thus a 

better image registration process. 
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2.7.4 Structural Similarity Index (SSIM) 

The structural similarity index is a method for measuring the similarity between 

two images. The SSIM index is a full reference metric; in other words, the 

measurement or prediction of image quality is based on an initial uncompressed or 

distortion-free image as reference. SSIM is designed to improve on traditional 

methods such as peak signal-to-noise ratio (PSNR) and mean squared error 

(MSE), which have proven to be inconsistent with human visual perception. The 

difference with respect to other techniques mentioned previously such as SNR or 

PSNR is that these approaches estimate absolute errors; on the other hand, SSIM 

is a perception-based model that considers image degradation as perceived change 

in structural information, while also incorporating important perceptual 

phenomena, including both luminance masking and contrast masking terms. 

Structural information is the idea that the pixels have strong inter-dependencies 

especially when they are spatially close. SSIM has been used as an increasing 

factor for the transformed-target image pair in comparison to the original source-

target image pair; indicating a better image transformation process and thus a 

better image registration process. 

   

Where,  are the mean intensities of the respective signals;  the respective 

standard deviation and  constants. 
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 In practice however, it is usually required to have a single overall quality 

measure of the entire image. In those scenarios, a mean SSIM (MSSIM) index is 

used to evaluate the overall image quality. For image dimensions [a, b]: 

 

2.7.5 Normalized Cross Correlation (NCC) 

Normalized cross correlation (NCC) has been commonly used as a metric to 

evaluate the degree of similarity (or dissimilarity) between two compared images. 

The main advantage of the normalized cross correlation over the ordinary cross 

correlation is that it is less sensitive to linear changes in the amplitude of 

illumination in the two compared images. Furthermore, the Normalized Cross 

Correlation is confined in the range between –1 and 1. The setting of detection 

threshold value is much simpler than the cross correlation. The Normalized Cross 

Correlation does not have a minimal frequency domain expression. It cannot be 

directly computed using the more efficient FFT (Fast Fourier Transform) in the 

spectral domain. Its computation time increases dramatically as the window size 

of the template gets corpulent. 

 
ꞌ

  

Where, ꞌ  are the target and transformed source image frames 

respectively, both of dimensions .  
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