the 10 subjects acquired simultaneously with a gap of 0.1 second starting from time t= 0 to 0.6 seconds. All images were identified as $I_N^{AP}(x, y, t)$ where $\{N, t \in \mathbb{R}^+ | 1 \le N \le 10, 0.1 \le t \le 1\}$ and (x, y) are the coordinates in the Cartesian plane, t being the timestamp at which the particular frame/image was recorded, N would be the number assigned to the test subject and AP signifies the three anatomical planes of view i.e. Axial (a), Coronal (c) and Sagittal (s). So, the sixth subject's Coronal CT image acquired at t=0.3 sec would be identified as $I_6^c(x, y, 0.3)$. Samples of images used from all viewpoints and all subjects from timestamps 0.1 to 0.6 seconds are summarized in Table 4.1.

	Axial	Coronal	Sagittal
1	0000000	A3A3A3A3A3A3	
2	0 0 0 0 0 0 0 0	aaaaaa	
3	0	()()()()()()()	
4	000000	E3 E3 E3 E3 E3 E3	
5	000000	() () () () () () () ()	
6	֎֎֎֎֎	AD AD AD AD AD AD	0000000
7	\bigcirc	en en en en en en	AAAAA
8	0	42 42 42 42 42 42	
9		(2 (2 (2 (2 (2 (2 (2	
10	0000000		

Table 4.1: Working database through all anatomical planes from t=0.1 to 0.6 sec

4.3.2 Proposed Methodology

The procedure acquired is as such that a temporal thoracic image sequence from time t=0.1 to 0.6 sec is taken such that first frame of the sequence is the full inhale frame and the last frame is full exhale frame. This paper uses the Speeded up

Robust Feature detector (SURF) [Bay, H. *et al.*, 2006, 2008] to obtain a feature set comprising of common feature points throughout the image sequence. It detects and describes the feature set irrespective of any scaling and /or rotation in the corresponding images. SURF provides better approximations in comparison to previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster than any other state of the art feature detector. These feature sets are then fed into the OFM estimation algorithm to identify the deformation path throughout the temporal sequence, be it peripheral or local.

Optical flow has been successfully applied to motion estimation of points/point clouds and other point set surface definitions over a temporal sequence [Sun, D. *et al.*, 2014]. It performs better than its contemporaries while tracing deformations that are realistic and guides the user in manipulation of real-world objects. It also allows the user to specify the deformations using either sets of points or line segments, the later useful for controlling curves and profiles present in the image. For each of these techniques, it provides simple closed-form solutions that yield fast deformations, which can be performed in real-time. The proposed methodology aims to track and estimate the deformations by tracking the transition of the interest points through the sequence from full inhale to full exhale frame. The overall process can be referred to in Figure 4.1.

Figure 4.1: The proposed framework structure

A novel scale- and rotation-invariant detector and descriptor, has been coined as Speeded-Up Robust Features (SURF) by Herbert Bay et.al in 2006 [Bay, H. et al., 2006] and 2008 [Bay, H. et al., 2008]. It provides better approximations in comparison to previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. Focus is on scale and in-plane rotation-invariant detection and descriptions. These seem to offer a good compromise between feature complexity and robustness to commonly occurring photometric deformations in thoracic images. Skewing, anisotropic scaling, and perspective effects are assumed to be second order effects, that are covered to some degree by the overall robustness of the descriptor. For guaranteed invariance to any scale changes the input thoracic images are analyzed at different scales. The detected interest points are provided with a rotation and scale-invariant descriptor. The detector is based on Hessian matrix based on its good performance in accuracy [Bay, H. et al., 2008]. Blob-like structures are detected at locations with maximum determinant. In comparison to the Hessian-Laplace detector [Mikolajczyk, K. & Schmid, C., 2001] Hessian determinant is used for scale selection [Lindeberg, T., 1998].

Thoracic Image(<i>I</i>) ────►	Integral Image Construction	Integral Image(I∑(x)) →	Search of candidate feature points (Detector)	Feature Points ────	Feature Vector Calculation (Descriptor)	 The descriptor vectors are matched between different images using Mahalonobis or Euclidean distance
9000140.00X	Construction		(Detector)		(Descriptor)	Euclidean distance

Figure 4.2: The working model of SURF

Given a point a = (x, y) in an image I_N^{AP} , the Hessian matrix $\hat{H}(a, \sigma)$ at scale σ is defined as follows

$$\hat{H}(a,\sigma) = \begin{bmatrix} L_{xx}(a,\sigma) & L_{xy}(a,\sigma) \\ L_{xy}(a,\sigma) & L_{yy}(a,\sigma) \end{bmatrix}$$
(4.1)

where $L_{xx}(a,\sigma)$ is the convolution of the Gaussian second derivative $\frac{\partial g(\sigma)}{\partial a^2}$ with the image I_N^{AP} at point a, similarly for $L_{xy}(a,\sigma)$ and $L_{yy}(a,\sigma)$.

Though, Gaussians are optimal for scale-space analysis [Koenderink, J. J., 1984], they have to be made discrete and cropped in practice. This results in loss in repeatability of the detector for thoracic CT image rotations around odd multiples of $\pi/4$.

The SURF method consists of multiple stages to obtain relevant feature points from a sequence of thoracic images. The single SURF stages are (as shown in fig 4.2):

 An integral image is constructed for each frame of the input thoracic image sequence, it allows for fast computation of box type convolution filters [Viola, P. & Jones, M., 2001]. This enables very few memory accesses and hence results in drastic improvement in computational time [Cornelis, N. & Gool, L. V., 2008], which is especially crucial when we are dealing with a sequence of images. An integral image $I_N^{AP}(a)$ at a location $a = (x, y)^T$ represents the sum of all pixels in the input image I_N^{AP} within a rectangular region formed by the origin and a

$$I_{N \Sigma}^{AP}(a) = \sum_{i=0}^{i \le x} \sum_{j=0}^{j \le y} I_{N}^{AP}(i,j)$$
(4.2)

- Candidate feature points are searched by the creation of a Hessian scalespace pyramid (SURF detector). Approximation of the Hessian as a combination of box filters allows fast filtering. High contrast feature points are selected.
- Feature vector is calculated (SURF descriptor) based on its characteristic direction to provide rotation invariance. Feature vector is normalized for immunity to changes in lighting conditions.
- Matching of descriptor vectors between the thoracic image sequence frames using distance measures such as Mahalonobis distance and Euclidean distances etc.

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer (an eye or a camera) and the scene [Warren, D. H. & Strelow, E. R., 1985]. In recent times, the term optical flow has been co-opted by computer vision experts to incorporate related techniques from image processing and control of navigation, such as motion detection, object segmentation, time-to-contact information, focus of expansion calculations, luminance and motion compensated encoding and stereo disparity measurement [Beauchemin, S. S. & Barron, J. L., 1995]. Sequences of ordered thoracic images allow the estimation of motion as either instantaneous image velocities or discrete image displacements [Aires, K. R. *et al.*, 2008]. Barron et.al provided a performance analysis of a number of optical flow techniques. It emphasizes the accuracy and density of measurements [Barron, J. L. et al., 1994].

Suppose we have a continuous thoracic image frame $I_N^{AP}(x, y, t)$; f(x, y, t) refers to the gray-level of (x, y) at time t. It represents a dynamic thoracic image as a function of position and time. Few assumptions also work in hindsight:

- The detected feature point moves but does not actually change intensity.
- Feature point at location (x, y) in frame i is the feature point at $(x+\Delta x, y+\Delta y)$ in frame *i*+1 (detailed in figure 4.3).

For making computation simpler and quicker the real world three dimensional (3-D+time) objects are transferred to a (2-D+time) case. Then the thoracic image can be described by the 2-D dynamic brightness function of I(x, y, t). Provided that in the neighbourhood of the feature point, change of brightness intensity does not happen in the motion field, following expression can be used:

$$I(x, y, t) = I(x + \delta x, y + \delta y, t + \delta t)$$
(4.3)

Taylor series is used for the right-hand side of the above equation, to obtain

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t + \text{Higher order terms}$$
(4.4)

From equations 4.3 and 4.4; neglecting the higher order terms,

$$\frac{\partial I}{\partial x}\Delta x + \frac{\partial I}{\partial y}\Delta y + \frac{\partial I}{\partial t}\Delta t = 0$$
(4.5)

Dividing the terms in equation 4.5 by Δt on both sides (to get the equation in terms of x, y component velocity)

$$\frac{\partial I}{\partial x} \Delta x_{\Delta t}' + \frac{\partial I}{\partial y} \Delta y_{\Delta t}' + \frac{\partial I}{\partial t} = 0$$
(4.6)

where $\Delta x / \Delta t = V_x$, $\Delta y / \Delta t = V_y$; thus,

$$\frac{\partial I}{\partial x}V_x + \frac{\partial I}{\partial y}V_y + \frac{\partial I}{\partial t} = 0$$
(4.7)

Where V_x and V_y are the x and y components of velocity or optical flow of

 $I(x, y, t); \frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \text{ and } \frac{\partial I}{\partial t} \text{ being the spatio-temporal derivatives of } I(x, y, t)$

$$I_x \cdot v_x + I_y \cdot v_y = -I_t \tag{4.8}$$

Vector representation being

$$\nabla I.\vec{v} == -I_t \tag{4.9}$$

Where ∇I is the spatial gradient of brightness intensity and \vec{v} is the optical flow (velocity vector) of the previously detected feature points, I_t being the time derivative of the brightness intensity.

Figure 4.3: Flow of a common feature point (x, y) through a sequentially temporal thoracic image sequence with N frames, arrows indicate the changing velocity vector \vec{v}

4.4 Results and Discussion

The feature detector/descriptor implemented on the temporal image sequence gave out matching feature points among the six continuous frames of the thoracic continuous temporal image sequence $(0.1 \le t \le 0.6)$ where *t* is the timestamp of frames in the sequence for all Anatomical Positions (AP) with average translation values. The average translation between inter-frame durations for all common points 'P' from the initial to final frame:

$$d_{1avg} = \frac{\sum_{p_i=1}^{p} d_1}{P}$$
, $d_{2avg} = \frac{\sum_{p_i=1}^{p} d_2}{P}$ $d_{N-1avg} = \frac{\sum_{p_i=1}^{p} d_{N-1}}{P}$

Below figures (4.4 to 4.6) indicate the image registration process from the sequence for all test subjects through all three APs.

Figure 4.4: Image sequence frames and the registered image for all subjects-Axial

Figure 4.5: Image sequence frames and the registered image for all subjects-Coronal

Figure 4.6: Image sequence frames and the registered image for all subjects-Sagittal

Though the proposed method was applied on all the subject data at hand, for representation purposes, subject 'case 5' sagittal AP data has been extensively used (as can be seen in fig. 4.7 to 4.11). The temporal sequence starting from t=0 to t=0.6 s is considered with a gap of 0.1 seconds between two consecutive frames in the sequence. So, frame 1 is the one acquired at t=0.1 and frame 6 is the one corresponding to t=0.6 s.

Figure 4.7: The test image temporal sequence (accordingly labelled). Subject 'case 5' Sagittal AP

The feature points are color coded with respect to the indices and IDs assigned to them throughout the process. The trails/tracks they leave after motion also exhibit the same color combination as assigned to respective feature points. There were 242 such feature points for the 'case 5' sagittal AP image sequence, the attributes of which are shown in the table E.1 (Appendix-E). Each of them had a track associated with them; these tracks have been labelled as Track_' point no' where the value of 'point no.' ranges from 0 to 241. Other attributes associated with each track included 'Track_Duration' which indicated the time in seconds for that respective track to finish and the point to reach its ultimate frame. 'Track_Start' is the stating time of every feature point trail/track; the value is '0' for all points, first frame being the reference frame for registration. 'Track_Stop' is the end time in seconds for respective tracks; values may be different for different feature points. 'Track_Displacement' is the net displacement from the point of origin for a feature point over the sequence. 'Track_(X,Y) Locations' are the points of

origin of the respective tracks. 'Track Min/Max/Mean Speeds' are the minimum, maximum and mean speeds of the feature point trail/track for each point through the sequence. The displacement/translation obtained is inherently in pixel units. With the knowledge of PPI (pixel per inch) value of the respective images in question, the displacements can be converted into more tangible units. These average translations for all such feature points for all test subjects through all three APs are shown in tables 4.2 to 4.4. Their corresponding line plots for all 10 subjects are shown as figures 4.12 to 4.14 for easier comparative analysis over the complete breathing pattern. A corresponding false-color registered image representation is shown as fig. 4.9. Optical flow representation of the image sequence with respect to registered image along with a flow orientation scheme is shown in fig. 4.10. The optical flow at any point in the image can be decoded using the flow orientation scheme coding pinwheel given alongside. There was a rather large strip of single color found in the optical flow representation, which is synonymous with the false color representation in fig. 4.9. That is the location with maximum displacement/translation in the sequence and also of maximum deformation with respect to the reference frame.

Figure 4.8: The color coded feature points and their colored trails showing the distinct paths for Sagittal AP 'case 5', frames are labeled in order of their temporal sequence

Figure 4.9: The registered image for the corresponding temporal sequence for subject 'case 5' Sagittal AP

Figure 4.10: Color-coded Optic flow for subject 'case 5' sagittal AP with flow orientation scheme

Where fig. 4.10 indicated the optical flow orientation, magnitude of the optical flow is an important aspect that can be ignored when observing an image sequence over time. Fig. 4.11 represents the optical flow magnitude spread over the complete sequence with the first frame as reference. As can be seen from the magnitude scale provided alongside, the bigger red arrows indicate areas with higher magnitude of flow and larger deformations, while the blue and black arrows indicate areas lower optical flow magnitude and smaller deformations in respective locations.

Figure 4.11: The overall image sequence optic flow with magnitude scale

AXIAL Average translation (pixels)										
slices	case1	case2	case3	case4	case5	case6	case7	case8	case9	case10
1	0.047	0.000	0.050	0.128	0.103	0.122	0.105	0.081	0.148	0.235
2	0.074	0.054	0.212	0.263	0.220	0.192	0.173	0.176	0.157	0.235
3	0.121	0.090	0.078	0.260	0.217	0.232	0.160	0.197	0.154	0.491
4	0.236	0.041	0.077	0.120	0.335	0.224	0.123	0.236	0.273	0.550
5	0.165	0.087	0.235	0.054	0.229	0.277	0.175	0.227	0.346	0.415

Table 4.2: Average translations (in pixels) for all test subjects through Axial AP

	CORONAL Average translation (pixels)									
slices	case1	case2	case3	case4	case5	case6	case7	case8	case9	case10
1	0.049	0.241	0.090	0.337	0.090	0.272	0.413	0.316	0.705	0.389
2	0.257	0.445	0.284	0.441	0.545	0.444	0.574	0.563	1.515	0.587
3	0.544	0.451	0.490	0.436	0.574	0.434	0.547	0.600	1.541	2.594
4	0.555	0.396	0.443	0.414	0.617	0.458	0.522	0.700	1.508	0.707
5	0.361	0.381	0.529	0.495	0.682	0.532	0.503	0.645	1.432	0.586

Table 4.3: Average translations (in pixels) for all test subjects through Coronal AP

Table 4.4: Average translations (in pixels) for all test subjects through Sagittal AP

	SAGITTAL Average translation (pixels)									
slices	case1	case2	case3	case4	case5	case6	case7	case8	case9	case10
1	0.056	0.102	0.033	0.198	0.022	0.218	0.283	0.387	0.318	0.348
2	0.067	0.038	0.031	0.225	0.081	0.515	0.451	0.603	0.410	0.439
3	0.229	0.144	0.036	0.184	0.131	0.511	0.504	0.639	0.336	0.476
4	0.120	0.125	0.041	0.228	0.092	0.483	0.574	0.666	0.374	0.521
5	0.131	0.042	0.027	0.237	0.079	0.545	0.504	0.659	0.326	0.505

Figure 4.12: Average displacement for all subjects in Axial AP

Figure 4.13: Average displacement for all subjects in Coronal AP

Figure 4.14: Average displacement for all subjects in Sagittal AP

As we can see in fig. 4.12, the axial translations were recorded highest for subject 'case 10' and the lowest corresponding values were for 'case 2'. The average value for 'case 10' was recorded at 0.3851 pixels, which was way above the population average of 0.184 shown by a line across the plot. In case of coronal AP as can be seen in fig. 4.13, the biggest deformations throughout the sequence are exhibited by the subjects 'case 10' and 'case 9' at 2.594 and 1.54 pixels respectively. The population average in this case being 0.5847 marked by a straight line in the corresponding plot. Though apart from 'case 10' only 'case 9' exhibited bigger deviations than the average value, the change in deformation with respect to inter-frame durations was more or less constant; on the other hand 'case 10' exhibited enormous shift from the average value while transitioning from 3rd frame to 4th frame. Looking at fig. 4.14 for the sagittal AP, all subjects

change in the deformations and do not exactly exhibit any erratic patterns through the observed full inhale to exhale process. After having a comprehensive look at all subjects' deformation pattern data through axial, coronal and sagittal APs collectively, it was inferred that subject 'case 10' singled out as the only one with maximum deformation. This analysis indicates anomalous breathing patterns from the aforementioned subject among the considered consensus average.

4.5 Conclusion

A framework has been presented showing how to use a feature point set generated using a Hessian-matrix based feature detector and Haar wavelets based descriptor such as SURF through a motion estimation technique such as OFM tracking for deformable image transformations in medical images such as the thoracic 'pectus excavatum' [Haller, J. A. et al., 1987; Kim, H. C. et al., 2010] full exhale and full inhale used in this work. This conclusion is of high clinical relevance from a diagnostic point of view as well; the artifacts and position uncertainties due to uneven breathing patterns which hamper the image guided clinical interventions can be corrected to a point where there influence on the actual data and the diagnostics based on them is brought down to the least.

This work can be looked upon as an automatic way of deformable image registration for high contrast medical images using landmark (control) points. Although the proposed methodology provides with a fast and accurate way of DIR for medical images and thus an account of deformity in the thoracic periphery, there is much scope for improvement in the overall process. One way this can be achieved in future is by modifying the SURF and/or the Motion estimation procedure involved in the process. Another way is to improve and enhance the quality as well as the quantity of the database used. Also, the aforementioned procedure can provide better results if applied for a different human anatomy altogether.

However diligently and accurately it may have been done, there might still be some scope of improvement and betterment in the methodology and also in its presentation. The search and pursuit of better methods for deformable medical image registration is still on.

CHAPTER 5: DEFORMABLE THORACIC CT IMAGES SEQUENCE REGISTRATION USING STRAIN ENERGY MINIMIZATION

The idea of deformable image registration (DIR) has been explored for a thoracic CT (computed tomography) image database of ten subjects. Thoracic CT image acquisition for clinical interventions requires a well-defined procedure which has already been underlined on the basis of field expertise and past experiences. Despite strict adherence to the procedure, the acquired images are prone to distortions and artefacts. This might happen due to organ motion during breathing process (at times even in breath-hold procedures), slight (even involuntary) movements or acquisition variations in supine and prone positions etc. An intensity differences based energy minimization method has been proposed. The moving image is transformed in the process such that it gets maximum alignment with the fixed image. This is achieved by energy minimization of the moving image in an iterative process. It is a simpler and more practical method for thoracic CT image registration than the prevalent approaches. This has been shown by lower mean registration errors for the patient data; the errors were as such axial: 0.283±0.08, coronal: 0.784±0.32 & sagittal: 0.66±0.2 pixels. This registration of moving image onto the fixed image in the sequence will help in minimizing the adverse effects of the otherwise present discrepancies, phase errors and discontinuity artifacts that might have crept in during the acquisition.

The proposed method begins with a pair of images of same dimensions; these images are part of an image sequence and have considerable temporal difference between them. The image sequence has been acquired as a part of the breathing process. Of the two, image appearing earlier in the temporal timeline is considered as the target image and the one appearing later is considered as the source image. These both images represent the extremes of a breathing cycle such that the first image is full inhale and the last image is full exhale. These both images have their own specific energy signatures. Both these images have to be registered against each other. For the registration process, no direct comparisons between images are done; instead the source image is independently transformed in such a way that the transformed image has minimum intensity difference with the target image. It is an iterative process (as can be referred to in fig. 5.2), at each stage of which transformed versions of source image are compared to the target image for intensity difference of zero or less than a third decimal place value. If none of the two conditions are met, the transformed image goes into further transformation and the process continues until the source image is transformed to a level that it satisfies previously laid conditions. In our experiments, SNR (signal to noise ratio), PSNR (peak SNR), mean SSIM (Structural SIMilarity) index & NCC (Normalized Cross Correlation) have been used to estimate and establish increased similarity between the later transformed - target image pair in comparison to previous source - target image pair. Mean Registration Error (E_{T-R}) is used as the quantitative measure for the evaluation of performance. The E_{T-R} obtained for the dataset was found to be considerably lower than more traditional and prevalent transforms such as affine and b-splines based approaches.

5.1 Introduction

Organ motion pertaining to breathing can lead to image artefacts and position uncertainties during image guided clinical interventions. A particular case for such image guided interventions (IGI) can be the radiotherapy planning of thoracic and abdominal tumours; the respiratory motion causes important uncertainties and is a significant source of error [Keall, P. J. *et al.*, 2006]. During a process of image acquisition, slight movement from the subject can translate into potential discrepancies in the acquired image sequence. Images in such an acquired sequence more than often end up out of sync and prove to be not of much use for both medical application and/or research purposes. A non-invasive method to describe lung deformations was proposed using NURBS surfaces based on imaging data from CT scans of actual patients [Tsui, B. M. W. *et al.*, 2000]. Image registration has recently started playing an important role in this scenario; it helps in the estimation of any motion caused due to breathing during acquisition and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the breathing cycle [Ehrhardt, J. *et al.*, 2011].

Image Registration is the alignment/overlaying of two or more images so that the best superimposition can be achieved. These images can be of the same subject at different points in time, from different viewpoints or by different sensors. This way the contents from all the images in question can be integrated to provide richer information. It helps in understanding and thus reducing the differences occurred due to variable imaging conditions. Most common applications of Image Registration include remote sensing (integrating information for GIS), combining data obtained from a variety of imaging modalities (combining a CT and an MRI view of the same patient) to get more information about the disease at once, cartography, image restoration etc. An image registration method targets to find the optimal transformation that aligns the images in the best way possible. Image registration methods can be broadly classified into three basic classes, landmark (or point) based registration [Mcgregor, B., 1998; Rohr, K. et al., 2001; Bookstein, F. L., & Green, W. D., 1993], segmentation based registration [Sull, S., & Ahuja, N., 1995; Feldmar, J., & Ayache, N., 1996; Jain, A. K. et al., 1996] and the image intensity based registration [Szeliski, R., & Coughlan, J., 1994; Kybic, J., & Unser, M., 2003] depending on them being more cost efficient, fast and flexible over the others with respect to the image family it is being used to register and the application of the registration process. It is further categorized into two kinds based on the type of image it is being applied for. The two kinds of images are Rigid Images and Deformable Images. Rigid images are those of structures with rigid morphological properties e.g. bones, buildings, geographical structures etc. If the underlying transformation model allows local deformations, i.e. nonlinear fields' u(x), then it is called Deformable Image Registration (DIR) [Muenzing, S. E. A. et al., 2014]. Deformable images are those of structures shape and size of which can be modelled after tangible physically deformable models [Sotiras, A. et al., 2013]. Rigid image registration although is an important aspect of registration it is not the topic of discussion in this article. Since the discussion is about Medical Image Registration and almost all anatomical parts or organs of the human body are deformable structures, the concentration here is on DIR [Oliviera, F. P. M. & Tavares, J. M. R. S., 2012].

The proposed methodology is based on intensity based registration. It is fully automatic in its mode of operation and helps in faster and more accurate image registration in comparison to pure landmark based registration methods. This factor gives our method an upper hand when it comes to real-life medical image registration problems. The intensity based energy minimization methodology seems more practical, stable and cost efficient for deformable images in comparison to landmark based or segmentation based methodologies for similar purposes. The method is simpler and faster than its contemporaries because the energy function is worked upon directly without solving large matrix system assemblies.

5.2 Background

The background study of this chapter initially includes a study of few most prominent proposed algorithms in the direction of study of the energy minimization based non-linear elastic image registration and its applications. Then the proposed methods relating to image registration of thoracic CT images are discussed. The propositions are categorically discussed keeping in mind their acute relevance and their year of occurrence. Propositions occurring at a later instant in timeline are given higher priority in terms of detailed discussion in comparison to earlier works to establish better context. These methods are compared in a tabular format in table D.1 in Appendix D.

Pennec and associates [Pennec, X. *et al.*, 2005] suggested a statistical regularization framework for non-linear registration based on the concept of Riemannian Elasticity. In the proposed method, elastic energy has been interpreted as the distance of the Green-St. Venant strain tensor to the identity, which in turn reflects the deviation of the local deformation from a rigid transformation. By changing the usually employed Euclidean metric for a more suitable Riemannian one, a consistent statistical framework has been defined to quantify the amount of deformation. These statistics were then used as parameters in a Mahalanobis distance to measure the statistical deviation from the observed

variability, giving a new regularization criterion that is called the statistical Riemannian elasticity. It was found that this new criterion is able to handle anisotropic deformations and is inverse-consistent. Preliminary results and observations showed that it can be quite easily implemented in a non-rigid registration algorithm.

Bao Zhang and associates [Zhang, B. et al., 2011] proposed a threedimensional elastic image registration methodology based on strain energy minimization with its application to prostate magnetic resonance imaging. The registration algorithm was also applied on ten sets of human prostate data, each with two typical deformation states (one with 0 cc of air and the other with 40-60 cc of air inflated in the endorectal coil balloon). There were a total of 200-400 landmarks used to derive the transformation depending on the size of each prostate. They described it as a novel 3-D elastic registration procedure that is based on the minimization of a physically motivated strain energy function that requires the identification of similar features (points, curves, or surfaces) in the source and target images. The Gauss-Seidel method was used in the numerical implementation of the registration algorithm. The registration procedure was validated on synthetic digital images, MR images from prostate phantom, and MR images obtained on patients. Registration errors were assessed by averaging the displacement of a fiducial landmark in the target to its corresponding point in the registered image. The registration error on patient data was 1.8±0.7 pixels. Registration also improved image similarity (normalized cross-correlation) from 0.72 ± 0.10 to 0.96 ± 0.03 on patient data. Registration results on prostate data in vivo demonstrated that the registration procedure could be used to significantly improve both the accuracy of localized therapies such as brachytherapy or external beam therapy and can be valuable in the longitudinal follow-up of patients after therapy.

Ronald W. K. So and associates [So, R. W. K. et al., 2011] proposed a technique for non-rigid image registration of brain magnetic resonance images using graph-cuts. A graph-cut based method was proposed for non-rigid medical image registration on brain magnetic resonance images. In this proposal the nonrigid medical image registration problem has been reformulated as a discrete labelling problem. They modelled the non-rigid registration as a multi-labeling problem by Markov random field. The image registration problem was therefore modeled by two energy terms based on intensity similarity and smoothness of the displacement field. The MRF energy was minimized using graph-cuts algorithm via α -expansions. The registration results of the proposed method were compared with two state-of-the-art medical image registration approaches: free-form deformation based method and demons method. In addition, the registration results were also compared with that of the linear programming based image registration method. The proposed method was found to be more robust against different challenging non-rigid registration cases with consistently higher registration accuracy than those three methods, and gives realistic recovered deformation fields.

Andrew R. Dykstra and associates [Dykstra, A. R. *et al.*, 2012] proposed a method which co-registers high-resolution preoperative MRI with postoperative computerized tomography (CT) for the purpose of individualized functional mapping of both normal and pathological (e.g., interictal discharges and seizures) brain activity. The proposed method accurately (within 3 mm, on average) localizes electrodes with respect to an individual's neuroanatomy. Furthermore,

they outlined a principled procedure for either volumetric or surface-based group analyses. The method was demonstrated in five patients' data with medicallyintractable epilepsy undergoing invasive monitoring of the seizure focus prior to its surgical removal. Accuracy of the method was found within 3mm of average. The straight-forward application of this procedure to all types of intracranial electrodes, robustness to deformations in both skull and brain, and the ability to compare electrode locations across groups of patients makes this procedure an important tool for basic scientists as well as clinicians.

H. P. Heinrich and associates [Heinrich, H. P. et al., 2013] proposed a MRF-Based Deformable Registration and Ventilation Estimation of Lung CT. In the proposed method three major challenges associated with lung ct registration viz. large motion of small features, sliding motions between organs and changing image contrast due to compression are addressed and potentially higher quality of discrete approaches is preserved. First, an image-derived minimum spanning tree is used as a simplified graph structure, which coped well with the complex sliding motion and allowed to find the global optimum very efficiently. Second, a stochastic sampling approach for the similarity cost between images is introduced within a symmetric, diffeomorphic B-spline transformation model with diffusion regularization. The complexity is reduced by orders of magnitude and enables the minimization of much larger label spaces. In addition to the geometric transform labels, hyper-labels are introduced, which represent local intensity variations in this task, and allow for the direct estimation of lung ventilation. The improvements are validated in accuracy and performance on exhale-inhale CT volume pairs using a large number of expert landmarks. The three challenges posed in the beginning are met.

Keita Nakagomi and associates [Nakagomi, K. *et al.*, 2013] proposed a segmentation based registration methodology which uses multi-shape graph cuts with neighbour prior constraints for lung segmentation from a chest CT volume. A novel graph cut algorithm has been proposed that can take into account multi-shape constraints with neighbor prior constraints, and reports on a lung segmentation process from a three-dimensional computed tomography (CT) image based on this algorithm. It is a novel segmentation algorithm that improves lung segmentation for cases in which the lung has a unique shape and pathologies such as pleural effusion by incorporating multiple shapes and prior information on neighbour structures in a graph cut framework. The efficacy of the proposed algorithm is demonstrated by comparing it to conventional one using a synthetic image and clinical thoracic CT volumes.

5.3 Method

5.3.1 Preparation

The dataset used comprised of a total $(3\times10)\times10$ i.e. 300 thoracic CT images across 10 subjects. All images were anonymized and all procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Declaration of Helsinki 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study. All patients or legal representatives signed informed consent. The images lie between CT phases 0-5 i.e. end-inspiration to endexpiration in timestamp range t00 \rightarrow t05. The image dimensions lie between 396×396 to 432×400 pixels. There were 6 frames from a temporal thoracic image sequence each for every Anatomical Plane (AP) i.e. Axial (supine), Coronal and Sagittal for all the 10 subjects acquired simultaneously with a gap of 0.1 second starting from time t= 0.1 to 0.6 seconds. All images were identified as $I_N^{AP}(x, y, t)$ where $\{N, t \in \mathbb{R}^+ | 1 \le N \le 10, 0.1 \le t \le 0.6\}$, (x, y) are the x & y coordinates in the Cartesian plane and AP signifies the three anatomical planes of view i.e. Axial (a), Coronal (c) and Sagittal (s). Suppose the 3rd frame from coronal AP for subject 'case 9', would be notified as $I_9^c(x, y, 0.3)$. A view of the image database is shown in the table 5.1 for representational purposes.

	ANATOMICAL PLANES (T & S Images)										
	Axial	Coronal	Sagittal								
1	\mathbf{O}	E3 E3									
2	$ \mathbf{D} \mathbf{O} $										
3	$\mathbf{O}\mathbf{O}$	() ()									
4	00	E3 E3	AA								
5	\mathbf{G}	(') (')	AA								
6	00	40 40	00								
7	\odot	<u>()</u> ()	AA								
8	0	ad ad									
9	$\mathbf{O}\mathbf{O}$	() ()									
10	00	E) E)									

Table 5.1: All three anatomical viewpoints for all the 10 subjects at time t=0.1 & 0.6 sec

5.3.2 Proposed Methodology

What we have is a temporal sequence of images starting from time t=0.1 to t=0.6 seconds. It starts from the end- inspiration phase and continues up to the end-

expiration phase of the breathing cycle. The last image of the aforementioned sequence being diametrically most deformed with respect to the first image. We have proposed a method to register these two images with respect to each other. The two images are the target (T) and the source images (S) at t=0.1 and t=0.6 sec. respectively. These images belong to the same domain Ω and are related through a transformation T_R. This transformation is such that the resulting transformed image (S') has the minimum energy distribution difference in terms of a similarity measure with the target image T, this has been shown in fig. 5.1. In simpler terms it can be stated as: 'a transformation sought such that the transformed image has minimum intensity difference with the target image'.

Figure 5.1: Overview of the proposed methodology

There is a potential energy associated with an elastic system at a time. Since, the images involved in the study are of a human body organ, they can be categorized as non-rigid or deformable images and the energy principles of elastic systems are applicable to this set of images. Potential energy of an elastic two dimensional system at static equilibrium is pure strain energy; it can be defined as [Ugural, A. C., & Fenster, S. K., 2003]:

$$U = \iint_{\Omega} \frac{1}{2} \left[\lambda e^2 + 2\mu \left(\varepsilon_x^2 + \varepsilon_y^2 \right) + \mu \gamma_{xy}^2 \right] d\Omega$$
(5.1)

where Ω is the image dimension, λ is the tensile stress (engineering constant), μ is the shear modulus, together they are called the Lame' constants; ε_x and ε_y are normal strains in the x and y directions respectively, γ_{xy} is the shear strain in the x-y plane pointing towards the y direction and 'e' is the unit change in image dimensions.

The Poisson's ratio value for Lung tissue averages close to 0.46 [Al-Mayah, A. et al., 2008; Brock, K. K. et al., 2005; Sundaram, T. A., & Gee, J. C., 2005, Zhang, T. et al., 2004]. In equation 5.1, the first term ' λe^2 ' can be ignored since it is two order lower than the rest of the terms. This makes the energy expression independent of tensile stress λ :

$$U = \iint_{\Omega} \frac{1}{2} \left[2\mu \left(\varepsilon_x^2 + \varepsilon_y^2 \right) + \mu \gamma_{xy}^2 \right] d\Omega$$

this can be further simplified to:

$$U = \mu \iint_{\Omega} \left[\left(\varepsilon_x^2 + \varepsilon_y^2 \right) + \frac{1}{2} \gamma_{xy}^2 \right] d\Omega$$
 (5.2)

Suppose u, v are the displacements in x and y directions respectively. Normal strain ε_a is defined as $\frac{extension}{original \ lengt \ h}$ in the direction 'a' (a= x, y); shear strain γ_{ab} in the plane a-b would be the sum of angle of shear (for smaller degrees of shear). Thus, $\varepsilon_x = \frac{\partial u}{\partial x}$ and $\varepsilon_y = \frac{\partial v}{\partial y}$, similarly $\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$. Exacting these values to equation 5.2:

$$U = \mu \iint \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] dx dy + \frac{1}{2} \mu \iint \left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right] dx dy$$
(5.3)

So, the expression for energy function 'U' in equation 5.1 has been reduced to strictly a strain energy function in equation 5.3, the equation 5.3 hence can be rewritten for U_{strain} as:

$$U_{strain} = \mu \iint \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] dx dy + \frac{1}{2} \mu \iint \left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right] dx dy \qquad (5.4)$$

The strain energy ' U_{strain} ' minimization requires that over the image boundary conditions between the source and the target images:

$$\delta U_{strain} = 0 \tag{5.5}$$

Such that the minimization constraint can be expressed in terms of intensity difference between the transformed image (S') and the target image (T) over the image dimensions' (Ω) as:

$$\int_{\Omega} (I_{S'} - I_T) \, \mathrm{d}\Omega = 0 \tag{5.6}$$

Figure 5.2: Flowchart of the iterative process in the registration procedure

It is an iterative process; as we can see in the fig 5.2, during the iteration, each time a transformed image is obtained, it is compared against the fixed image and an intensity difference mapping and value is calculated. These intensity differences are checked at each step. If very little or negligible change (say up to third decimal place) is observed, the iteration is stopped and the finally transformed image is considered as the required registered image. In case of progressively changing intensity differences for consecutive iterations, the iteration is continued until the stopping factor comes into play.

5.4 Results and Discussion

Iterative energy minimization using intensity differences across the image boundaries yield a transformed image (S) which was pitted against the actual target image (T) at different stages of the iteration to assess the level of transformation. Out of the ten subjects' data at hand, the coronal AP of subject 'case 3' has been chosen to elaborate and demonstrate the proposed technique with results. The transformed image (S) after the complete registration process showed an increase of 51.64% SNR (signal-to-noise ratio) value with respect to the target image (7) in comparison to the source image (S) with respect to target image. The change in PSNR (peak SNR) value was recorded at 41.64% in S'-T in comparison to S-T pair. A new metric called the SSIM (Structural Similarity) index has been used [Wang, Z. et al., 2004]. It has been used to estimate and measure the similarity between two images. It has been used as a deciding metric which would give a percentage similarity between the two images in question i.e. the fixed and the moving image and the fixed-transformed image pair. The mean SSIM index for the S-T pair was calculated at 0.4975, the same index for the S'-Tpair came at 0.735. Along with similarity measures such as SNR, PSNR and m-SSIM, NCC (normalized cross-correlation) has been used to demonstrate as to how close the transformed image (S') has come to the target image (T) as a result of the registration process. The NCC value for S-T pair was estimated at 0.8817, for the S'-T pair it was calculated at a higher value of 0.9749 which further helps in establishing the closeness of the transformed image to the target source and hence, the proposed methodology as an efficient deformable image registration approach.

Figure 5.3: The iterative process graphical results on 'case 3' coronal AP

The earlier discussed iterative process and how it results in the finally registered image has been shown in the fig. 5.3. Figure 5.3(a) & (b) are the fixed and moving images respectively, they are also the diametrically opposite images of a breathing cycle (i.e. full inhale and full exhale) in a respiration process. Figure 5.3(c) is the intensity difference mapping (IDM) of (a) & (b) before the iteration starts. Transformation is applied to the moving image and transformed image is obtained. An IDM and corresponding value is calculated for the newly transformed moving image and the fixed image. Changes in IDM and value for current and previous stage is observed, if the change is zero or negligible in comparison to the intensity difference value at either of the two stages of the iteration, the iteration is stopped there and last transformed image is the registered image. Figure 5.3(d) is the transformed image at the 7th iteration, 5.3(e) is its IDM with respect to the fixed image. In this particular instance of subject 'case 3', it took 174 iterations to obtain the finally registered image which is the fig. 5.3(l); 5.3(m) is the final IDM indicating minimal difference of the registered image with respect to the fixed image indicating a seamless and smooth registration process. Figures 5.3(f) and (g) are the transformed and IDM (with the fixed image) images at 20th iteration; figs. 5.3(h) and (i) are the transformed and IDM (with the fixed image) at the 55th iteration; similarly 5.3(j) and (k) are the same at the 130th iteration. Figure 5.3(n) and (o) are the deformation vector and deformation field representations respectively for the finally registered image.

Figure 5.4 shows the energy minimization process for subject 'case 3' coronal AP, the iterative process continues until a finally registered image is obtained at 174th iteration (that is where the minimization process stops). The initial descent was observed as fast with respect to iterations until 110th iteration, after which the minimization process progresses with diminutive changes in intensity differences. It finally picks up at 124th iteration until to finally finish the process at 174th.

Figure 5.4: Energy minimization vs. Iterations for 'case 3' coronal AP

Table 5.2: SNR, pSNR, m-SSIM, NCC for all subjects under study from all APs; S-T is the source-target pair, R-T is registered-target pair for proposed method

Simila	Similarity estimation of S-T and R-T using various metrics for all subjects								
	Ax	tial	Core	onal	Sagittal				
	S-T	R-T	S-T	R-T	S-T	R-T			
SNR (dB)	16.23±1.48	16.29±1.96	12.51±1.37	16.29±1.62	12.62±1.3	16.13±1.6			
PSNR (dB)	20.52±1.14	20.58±1.62	15.35±1.36	19.13±1.6	16.33±1.5	19.83±1.8			
m- SSIM index	0.744±0.05	0.742±0.04	0.49±0.08	0.58±0.12	0.57±0.13	0.64±0.14			
NCC	0.964±0.01	0.969±0.01	0.85±0.03	0.93±0.02	0.89±0.03	0.95±0.03			

The proposed technique was practically implemented on all the subject data at hand i.e. three anatomical positions across ten subjects. After obtaining the finally registered images for complete dataset, they were pitted against the fixed images of their own sequence's respective sub-datasets. Similarity metrics such as SNR, pSNR, mean-SMIM index and NCC were calculated and compared for each S-T and R-T pairs for improvements (if any) which might suggest closeness of the registered image towards the fixed image. The observations are collected in table 2, they are average values over the complete dataset through all APs; all similarity metrics clearly seem to improve from S-T to R-T image pair for all subjects. Where there are significant changes in the case of coronal and sagittal APs, respective changes are not as notable in axial AP's data, this can be explained by usually comparatively smaller deformations in the 'anterior-posterior' direction.

Figure 5.5: mean Registration error (pixels) for all 10 subjects through all APs

As can be seen in the figure 5.5, the mean registration errors (E_{T-R}) obtained for all the subjects involved in the test have been plotted through all three APs. Without the scope of any significant deformations comparable with coronal and sagittal APs, lowest mean registration errors were recorded for axial APs after using all the tested transforms. The proposed method yielded least mean E_{T-R} (for all APs) while followed by b-spline and affine transforms in order. Not relying on landmark based features to establish correspondences instead applying purely intensity difference based energy minimization can be attributed for these results.

5.5 Conclusion

A novel, practically more feasible and accurate deformable image registration methodology for thoracic image sequences has been proposed. It could be a boon for real-life applications such as image acquisition for radiotherapy planning of thoracic lesions, dosimetric evaluation, tumour growth progression (with time) and determination of subject-specific deformable motion models.

An effort has been made to model elastic image deformations after real life 2D elastic object deformations such that all the constituents of that object are constantly in spontaneous motion and are not at equilibrium. Motion of 2D elastic objects due to internal forces has been used as an inspiration to determine deformations in thoracic CT images. Results from our study showed average target registration error of less than 1 pixel over the entire thoracic ct image volume. Such an accurate registration of thoracic ct images obtained in the deformed state can be useful in treatment planning and also for longitudinal evaluation of progression/regression in patients with lung cancer. Although the utility of this method has been shown for ct image volume, the method can be applied to images of any other imaging modalities as well.

CHAPTER 6: CONCLUSION & FUTURE WORK

Deformable image registration is a challenging problem due to various types of possible deformations and high chance of false registration. In particular, registration of CT image stacks/sequences is a very difficult task because of the sheer number of landmark feature points involved in the registration process. DIR techniques able to account for displacement and deformation of organs in a series of medical images acquired in connection with fractions of radiotherapy are a key component in the efforts to improve the treatment guided by image data. The conclusions of work of this thesis and suggestions for future research are presented in this chapter.

6.1 Concluding Remarks

The study was set out to explore new and accurate deformable image registration techniques for thoracic CT image pairs and image sequences. The investigations were set up on a three dimensional CT image database of 10 subjects. For each subject there were 10 images in temporal sequence through all three anatomical positions i.e. axial, coronal and sagittal, out of which first six were temporally aligned with a gap of 0.1 seconds from full inhale to full exhale position. The objective was to register the image pair and sequences accurately from the above mentioned data (or any other modality image) by applying geometrical transformation based registration algorithms. Three such registration algorithms were proposed, both standalone and composite algorithms. One of the objectives of the algorithms was to determine an image registration model for a variety of breathing motion data from many subjects. It is known that different individuals have different breathing frequencies depending on many factors like their respective lifestyles, genetic or hereditary diseases etc. The study was conducted

to develop algorithms to adjust and normalize these variations, thus providing a common denominator upon which more accurate analyses can be made in future, both from medical imaging and clinical research perspectives. There hasn't been a consolidated method to assess the deformations happening in the thoracic region during the process of breathing. The proposed method helps in assessing this deformation in form of average displacement of all common landmark points in that image sequence from full inhale to exhale positions. This has been implemented on all test subjects and has been demonstrated for one subject in further detail. Also, the displacing points on the image leave clear and color coordinated paths which reflect the exact motion of those points through frames of the image sequence. This would help in assessing and analysing individual motion separately at every point of the medical image if required. This would be highly beneficial in detecting abnormal behaviour in organs when compared to normal established baselines. Accuracy of these algorithms was determined using metrics like Target registration error, image similarity metrics etc. Lower values of target registration error for applied algorithms in comparison to those prevalent indicated higher deformable image registration accuracies. Likewise, similarity metrics indicating higher percentage of correspondence between the transformed image and target image (post registration) in comparison to the initial similarity between source and target image indicate better registration than the usually employed methods to achieve same objective.

6.2 Scope for Future Work

The proposed methods proved to be accurate and fulfilling the objectives keeping in mind which the work was started, they can be seen as the stepping stones to more accurate and fast techniques to achieve deformable image registration in the future. The proposed methods seem to exhaust the scope of this thesis, there are a few modifications in already existing methods and few new ideas that are in order to be taken up in the future to enhance and push the boundaries of image processing and medical imaging in particular. One of the primary modifications would be soft computing based feature point marking system. The idea is to use an automatic/semiautomatic learning based relevant landmark point marking system. Organ based information from both medical and image processing perspectives will be used as a pre-requisite for the learning procedure to enable the landmark point marker to highlight only relevant areas instead of either manually plotting points or using an automatic method which marks landmark points randomly (based on presumptions other than the medical kind). This would help in highlighting those areas of the medical image which actually do move rather than those which do not most of the time thus making better use of the resources and making the whole process faster and more relevant. The image registration resulting from these relevant common landmark point cloud would be less erroneous and more dynamic according to the organ of which the medical images are being registered.

Deformable image registration has been playing a pivotal role in correcting the 'human error' aspect of medical image acquisition irrespective of the image modality it is being used for and has been a major contributor in clinical research based on these images for similar reasons. The methods proposed in this work will become a small part of an already vast cluster of similar algorithms, all working in tandem towards a common objective: fast, accurate and efficient image based clinical intervention as when required.

REFERENCES

Aires, K. R., Santana, A. M., & Medeiros, A. A. (2008, March). Optical flow using color information: preliminary results. In Proceedings of the 2008 ACM symposium on Applied computing (pp. 1607-1611). ACM.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., & Silva, C. T. (2003). Computing and rendering point set surfaces. Visualization and Computer Graphics, IEEE Transactions on, 9(1), 3-15.

Al-Mayah, A., Moseley, J., & Brock, K. K. (2008). Contact surface and material nonlinearity modeling of human lungs. Physics in medicine and biology, 53(1), 305.

Ashburner, J., & Friston, K. J. (2011). Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. NeuroImage, 55(3), 954-967.

Bajcsy, R., & Kovačič, S. (1989). Multiresolution elastic matching. Computer vision, graphics, and image processing, 46(1), 1-21.

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2011). A database and evaluation methodology for optical flow. International Journal of Computer Vision, 92(1), 1-31.

Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow techniques. International journal of computer vision, 12(1), 43-77.

Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: Speeded Up Robust Features. Computer Vision and Image Understanding (CVIU) 110:346-359.

Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. Computer Vision – ECCV 2006 3951:404-417, Springer Berlin Heidelberg, Zurich.

Beauchemin, S. S., & Barron, J. L. (1995). The computation of optical flow. ACM Computing Surveys (CSUR), 27(3), 433-466.

Beuthien, B., Kamen, A., & Fischer, B. (2010). Recursive Green's function registration. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010 (pp. 546-553). Springer Berlin Heidelberg.

Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer vision and image understanding, 63(1), 75-104.

Blackall JM, Ahmad S, Miquel ME, McClelland JR, Landau DB, Hawkes DJ (2006) MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning. Phys. Med. Biol. 51: 4147–4169.

Bookstein, F. L., & Green, W. D. (1993). A feature space for edgels in images with landmarks. Journal of Mathematical Imaging and Vision, 3(3), 231-261.

Bro-Nielsen, M., & Gramkow, C. (1996). Fast fluid registration of medical images. In Visualization in Biomedical Computing (pp. 265-276). Springer Berlin Heidelberg.

Brock, K. K., Sharpe, M. B., Dawson, L. A., Kim, S. M., & Jaffray, D. A. (2005). Accuracy of finite element model-based multi-organ deformable image registration. Medical physics, 32(6), 1647-1659.

Broit, C. (1981). Optimal registration of deformed images.

Cachier, P., Bardinet, E., Dormont, D., Pennec, X., & Ayache, N. (2003). Iconic feature based nonrigid registration: the PASHA algorithm. Computer vision and image understanding, 89(2), 272-298.

Castillo, E., Castillo, R., Fuentes, D., & Guerrero, T. (2014). SU-EJ-197: A Moving Least Squares Approach for Computing Spatially Accurate Transformations That Satisfy Strict Physiologic Constraints. Medical Physics, 41(6), 202-202.

Castillo, E., Castillo, R., Martinez, J., Shenoy, M., & Guerrero, T. (2010). Fourdimensional deformable image registration using trajectory modeling. Physics in medicine and biology, 55(1), 305.

Castillo, R., Castillo, E., Guerra, R., Johnson, V. E., McPhail, T., Garg, A. K., & Guerrero, T. (2009). A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Physics in medicine and biology, 54(7), 1849.

Chiang, M. C., Leow, A. D., Klunder, A. D., Dutton, R. A., Barysheva, M., Rose, S. E., ... & Thompson, P. M. (2008). Fluid registration of diffusion tensor images using information theory. Medical Imaging, IEEE Transactions on, 27(4), 442-456.

Christensen, G. E., Rabbitt, R. D., & Miller, M. I. (1996). Deformable templates using large deformation kinematics. Image Processing, IEEE Transactions on, 5(10), 1435-1447.

Christensen, G. E., Joshi, S. C., & Miller, M. I. (1997). Volumetric transformation of brain anatomy. Medical Imaging, IEEE Transactions on, 16(6), 864-877.

Christensen, G. E., & Johnson, H. J. (2001). Consistent image registration. Medical Imaging, IEEE Transactions on, 20(7), 568-582.

Cornelis, N., & Gool, L. V. (2008, June). Fast scale invariant feature detection and matching on programmable graphics hardware. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society Conference on (pp. 1-8). IEEE.

Cotter, C. J., & Holm, D. D. (2006). Singular solutions, momentum maps and computational anatomy. arXiv preprint nlin/0605020.

D'Agostino, E., Maes, F., Vandermeulen, D., & Suetens, P. (2003). A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical image analysis, 7(4), 565-575.

Davatzikos, C. (1997). Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding, 66(2), 207-222.

Dupuis, P., Grenander, U., & Miller, M. I. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of applied mathematics, 56(3), 587.

Dykstra, A. R., Chan, A. M., Quinn, B. T., Zepeda, R., Keller, C. J., Cormier, J., Madsen, J. R., Eskandar, E. N., & Cash, S. S. (2012). Individualized localization and cortical surface-based registration of intracranial electrodes. Neuroimage, 59(4), 3563-3570.

Ehrhardt, J., Werner R, Schmidt-Richberg A, Handels H (2011) Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration. Medical Imaging, IEEE Transactions on. Doi: 0.1109/TMI.2010.2076299.

Feldmar, J., & Ayache, N. (1996). Rigid, affine and locally affine registration of free-form surfaces. International journal of computer vision, 18(2), 99-119.

Fischer, B., & Modersitzki, J. (2002). Fast diffusion registration. Contemporary Mathematics, 313, 117-128.

Fischer, B., & Modersitzki, J. (2003). Curvature based image registration. Journal of Mathematical Imaging and Vision, 18(1), 81-85.

Fischer, B., & Modersitzki, J. (2004). A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra and its applications, 380, 107-124.

Fleet, D., & Weiss, Y. (2006). Optical flow estimation. In Handbook of mathematical models in computer vision (pp. 237-257). Springer US.

Fuerst, B., Mansi, T., Carnis, F., Salzle, M., Zhang, J., Declerck, J., ... & Kamen, A. (2015). Patient-Specific Biomechanical Model for the Prediction of Lung Motion From 4-D CT Images. Medical Imaging, IEEE Transactions on, 34(2), 599-607.

Goitein M (2004) Organ and tumor motion: An overview. Seminars in Radiation Oncology, 14, 2–9.

Hadamard, J. (2014). Lectures on Cauchy's problem in linear partial differential equations. Courier Corporation.

Haller, J. A., Kramer, S. S., & Lietman, S. A. (1987). Use of CT scans in selection of patients for pectusexcavatum surgery: a preliminary report. Journal of pediatric surgery, 22(10), 904-906.

Heinrich, H. P., Jenkinson, M., Brady, M., & Schnabel, J. (2013). MRF-based deformable registration and ventilation estimation of lung CT. Medical Imaging, IEEE Transactions on, 32(7), 1239-1248.

Henn, S. (2006). A full curvature based algorithm for image registration. Journal of Mathematical Imaging and Vision, 24(2), 195-208.

Higham, N. J. (2005). The scaling and squaring method for the matrix exponential revisited. SIAM Journal on Matrix Analysis and Applications, 26(4), 1179-1193.

Horn, B. K., & Schunck, B. G. (1981, November). Determining optical flow. In 1981 Technical symposium east (pp. 319-331). International Society for Optics and Photonics.

Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134–1141.

Jain, A. K., Zhong, Y., & Lakshmanan, S. (1996). Object matching using deformable templates. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 18(3), 267-278.

Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. Image Processing, IEEE Transactions on, 9(8), 1357-1370.

Kang, T. K., Choi, I. H., & Lim, M. T. (2015). MDGHM-SURF: A robust local image descriptor based on modified discrete Gaussian–Hermite moment. Pattern Recognition, 48(3), 670-684.

Keall PJ et al. (2006) The management of respiratory motion in radiation oncology report of AAPM task group 76. Medical Physics 33:3874–3900.

Kim, H. C., Park, H. J., Nam, K. W., Kim, S. M., Choi, E. J., Jin, S., ... & Kim, M. G. (2010). Fully automatic initialization method for quantitative assessment of chest-wall deformity in funnel chest patients. Medical & biological engineering & computing, 48(6), 589-595.

Koenderink, J. J. (1984). The structure of images. Biological cybernetics, 50(5), 363-370.

Kybic, J., & Unser, M. (2003). Fast parametric elastic image registration. Image Processing, IEEE Transactions on, 12(11), 1427-1442.

Lancaster, P., & Salkauskas, K. (1981). Surfaces generated by moving least squares methods. Mathematics of computation, 37(155), 141-158.

Leow, A., Huang, S. C., Geng, A., Becker, J., Davis, S., Toga, A., & Thompson, P. (2005, July). Inverse consistent mapping in 3D deformable image registration: its construction and statistical properties. In Information Processing in Medical Imaging (pp. 493-503). Springer Berlin Heidelberg.

Lindeberg, T. (1998). Feature detection with automatic scale selection. International journal of computer vision, 30(2), 79-116.

Lucas, B. D., & Kanade, T. (1981, August). An iterative image registration technique with an application to stereo vision. In IJCAI (Vol. 81, pp. 674-679).

Malis, E. (2004, April). Improving vision-based control using efficient secondorder minimization techniques. In Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on (Vol. 2, pp. 1843-1848). IEEE.

Markelj, P., Tomaževič, D., Likar, B., & Pernuš, F. (2012). A review of 3D/2D registration methods for image-guided interventions. Medical image analysis, 16(3), 642-661.

Marsland, S., & McLachlan, R. (2007, July). A Hamiltonian particle method for diffeomorphic image registration. In Information Processing in Medical Imaging (pp. 396-407). Springer Berlin Heidelberg.

Marsland, S., & Twining, C. J. (2004). Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images. Medical Imaging, IEEE Transactions on, 23(8), 1006-1020.

Mcgregor, B. (1998). Automatic registration of images of pigmented skin lesions. Pattern Recognition, 31(6), 805-817.

Mikolajczyk, K.; Schmid, C., "Indexing based on scale invariant interest points," in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on , vol.1, no., pp.525-531 vol.1, 2001

Modersitzki, J. (2004). Numerical methods for image registration. Oxford university press.

Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM review, 45(1), 3-49.

Muenzing SEA, Van Ginnekan B, Viergever MA, Pluim JPW (2014) DIRBoostan algorithm for boosting deformable image registration: application to lung CT intra-subject registration. Medical Image Analysis, Elsevier 18, 449-459.

Murphy, K., Van Ginneken, B., Reinhardt, J. M., Kabus, S., Ding, K., Deng, X., ... & Vercauteren, T. (2011). Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. Medical Imaging, IEEE Transactions on, 30(11), 1901-1920.

Nakagomi, K., Shimizu, A., Kobatake, H., Yakami, M., Fujimoto, K., & Togashi, K. (2013). Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume. Medical image analysis, 17(1), 62-77.

Nehmeh SA, Erdi YE, Pan T et al (2004) Quantitation of respiratory motion during 4D-PET/CT acquisition. Med. Phys., vol. 31, no. 6, pp. 1333–1338, 2004.

Oliviera FPM, Tavares JMRS (2012) Medical Image Registration: a Review. Computer methods in Biomechanics and Biomedical Engineering 17, 73-93.

Pang et al. (2012) Fully affine invariant SURF for image matching. Neurocomputing 85:6-10, ISSN 0925-2312.

Pedersen, J. T., (Q4 2011) SURF: Feature detection & description, jtp@cs.au.dk.

Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., & Ayache, N. (2005). Riemannian elasticity: A statistical regularization framework for non-linear registration. In Medical Image Computing and Computer-Assisted Intervention– MICCAI 2005 (pp. 943-950). Springer Berlin Heidelberg.

Peyrat, J. M., Delingette, H., Sermesant, M., Pennec, X., Xu, C., & Ayache, N. (2008). Registration of 4D time-series of cardiac images with multichannel diffeomorphic demons. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008 (pp. 972-979). Springer Berlin Heidelberg.

Rabbitt, R. D., Weiss, J. A., Christensen, G. E., & Miller, M. I. (1995, August). Mapping of hyperelastic deformable templates using the finite element method. In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation (pp. 252-265). International Society for Optics and Photonics.

Reinhardt JM, Ding K, Cao K, Christensen GE, Hoffman EA, Bodas SV (2008) Registration-based estimates of local lung tissue expansion compared to Xenon CT measures of specific ventilation. Med. Image Anal., vol. 12, no. 6, pp. 752–763.

Rohr, K., Stiehl, H. S., Sprengel, R., Buzug, T. M., Weese, J., & Kuhn, M. H. (2001). Landmark-based elastic registration using approximating thin-plate splines. Medical Imaging, IEEE Transactions on, 20(6), 526-534.

Sarrut D, Boldea V, Miguet S, Ginestet C (2006) Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. Med. Phys., vol. 33, no. 3, pp. 605–617.

Sato, A. K., Stevo, N. A., Tavares, R. S., Tsuzuki, M. S. G., Kadota, E., Gotoh, T., Kagei, S. & Iwasawa, T. (2011). Registration of temporal sequences of coronal and sagittal MR images through respiratory patterns. Biomedical Signal Processing and Control, 6(1), 34-47.

Schaefer, S., McPhail, T., & Warren, J. (2006, July). Image deformation using moving least squares. In ACM Transactions on Graphics (TOG) (Vol. 25, No. 3, pp. 533-540). ACM.

Silva, E. A., Panetta, K., & Agaian, S. S. (2007, April). Quantifying image similarity using measure of enhancement by entropy. In Defense and Security Symposium (pp. 65790U-65790U). International Society for Optics and Photonics.

So, R. W., Tang, T. W., & Chung, A. C. (2011). Non-rigid image registration of brain magnetic resonance images using graph-cuts. Pattern Recognition, 44(10), 2450-2467.

Sotiras, A., Davatzikos, C., & Paragios, N., (2013) Deformable Medical Image Registration: A Survey. IEEE Transactions on Medical Imaging 32, 1153-1190.

Stefanescu, R., Pennec, X., & Ayache, N. (2004). Grid powered nonlinear image registration with locally adaptive regularization. Medical image analysis, 8(3), 325-342.

Stevo, N., Campos, R., Tavares, R. S., Tsuzuki, M. D. S. G., Gotoh, T., Kagei, S., Iwasawa, T., (2009) Registration of temporal sequences of coronal and sagittal images obtained from magnetic resonance. Proceedings of XX International Congress of Mechanical Engineering.

Sull, S., & Ahuja, N. (1995). Integrated matching and segmentation of multiple features in two views. Computer vision and image understanding, 62(3), 279-297.

Sun, D., Roth, S., & Black, M. J. (2014). A quantitative analysis of current practices in optical flow estimation and the principles behind them. International Journal of Computer Vision, 106(2), 115-137.

Sundaram, T. A., & Gee, J. C. (2005). Towards a model of lung biomechanics: pulmonary kinematics via registration of serial lung images. Medical image analysis, 9(6), 524-537.

Szeliski, R., & Coughlan, J. (1994, June). Hierarchical spline-based image registration. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on (pp. 194-201). IEEE.

Szeliski, R., & Coughlan, J. (1997). Spline-based image registration. International Journal of Computer Vision, 22(3), 199-218.

Thirion, J. P. (1998). Image matching as a diffusion process: an analogy with Maxwell's demons. Medical image analysis, 2(3), 243-260.

Thomson, W. (1874). 9. The Kinetic Theory of the Dissipation of Energy. Proceedings of the Royal Society of Edinburgh, 8, 325-334.

Trouvé, A. (1998). Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision, 28(3), 213-221.

Tsui, B. M., Segars WP, Lalush DS (2000) Effects of Upward Creep and Respiratory Motion in Myocardial SPECT. IEEE Transactions on Nuclear Science, v. 47, pp. 1192-1195.

Ugural, A. C., & Fenster, S. K. (2003). Advanced strength and applied elasticity. Pearson education.

Vedam SS, Keall PJ, Docef A, Todor DA, Kini VR, Mohan R (2004) Predicting respiratory motion for four-dimensional radio-therapy. Med. Phys., vol. 31, no. 8, pp. 2274–2283.

Vercauteren, T., Pennec, X., Malis, E., Perchant, A., & Ayache, N. (2007, July). Insight into efficient image registration techniques and the demons algorithm. In Information Processing in Medical Imaging (pp. 495-506). Springer Berlin Heidelberg.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-511). IEEE.

Wang, Y., & Staib, L. H. (2000). Physical model-based non-rigid registration incorporating statistical shape information. Medical image analysis, 4(1), 7-20.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions on, 13(4), 600-612.

Warren, D. H., & Strelow, E. R. (1985). Sensory substitution in blind children and neonates. In Electronic Spatial Sensing for the Blind (pp. 273-298). Springer Netherlands.

Xiong, G., Chen, C., Chen, J., Xie, Y., & Xing, L. (2012). Tracking the motion trajectories of junction structures in 4D CT images of the lung. Physics in medicine and biology, 57(15), 4905.

Yanovsky, I., Le Guyader, C., Leow, A., Toga, A., Thompson, P., & Vese, L. (2008, October). Unbiased volumetric registration via nonlinear elastic regularization. In 2nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy.

Yeo, B. T., Vercauteren, T., Fillard, P., Peyrat, J. M., Pennec, X., Golland, P., ... & Clatz, O. (2009). DT-REFinD: Diffusion tensor registration with exact finitestrain differential. Medical Imaging, IEEE Transactions on, 28(12), 1914-1928.

Yeo, B. T., Sabuncu, M. R., Vercauteren, T., Ayache, N., Fischl, B., & Golland, P. (2010). Spherical demons: fast diffeomorphic landmark-free surface registration. Medical Imaging, IEEE Transactions on, 29(3), 650-668.

Yoon H, Chung H, Hahn H (2009) SURF algorithm with color and global characteristics. ICCAS-SICE 2009. 183-187.

Zhang, B., Arola, D. D., Roys, S., & Gullapalli, R. P. (2011). Three-dimensional elastic image registration based on strain energy minimization: application to prostate magnetic resonance imaging. Journal of digital imaging, 24(4), 573-585.

Zhang, T., Orton, N. P., Mackie, T. R., & Paliwal, B. R. (2004). Technical note: A novel boundary condition using contact elements for finite element based deformable image registration. Medical physics, 31(9), 2412-2415.

Zhang, Y., Yang, J., Zhang, L., Balter, P. A., & Dong, L. (2013). Modeling respiratory motion for reducing motion artifacts in 4D CT images. Medical physics, 40(4), 041716.

Zitova, B., & Flusser, J. (2003). Image registration methods: a survey. Image and vision computing, 21(11), 977-1000.

Zordan VB, Celly B, Chiu B, DiLorenzo PC (2004) Breathe Easy: Model and Control of Simulated Respiration for Animation. Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Grenoble, France.

http://www.dir-lab.com/Motivation.html.

APPENDIX

Appendix-A: Geometrical Deformation models for elastic images

Table A.1: Elastic Body Models

Author	Year	Title	About	Method	Findings	Remarks
M. Droske et al.	2004	A variational approach to non rigid morphologic al image registration	A novel variational method to non rigid registration of multi-modal data.	A suitable deformation was determined via the minimization of a morphological i.e., contrast invariant, matching functional along with an appropriate regularization energy.	It was found suitable for the registration of multimodal data, as confirmed by some numerical results.	
A. leow et al.	2005	Inverse consistent mapping in 3D deformable image registration: Its construction and statistical properties	A new approach to inverse consistent image registration. A uni-directio nal algorithm is developed using symmetric cost functionals and regularizers.	Instead of enforcing inverse consistency using an additional penalty that penalizes inconsistency error, the new algorithm directly models the backward mapping by inverting the forward mapping. The resulting minimization problem could then be solved uni-directionally involving only the forward mapping, without optimizing in the backward direction.	The algorithm was evaluated by applying it to the serial MRI scans of a clinical case of semantic dementia. The statistical distributions of the local volume change (Jacobian) maps were examined by considering the Kullback-Liebl er distances on the material density functions.	Statisticall y significant difference s were detected between consistent versus inconsiste nt matching when permutatio n tests were performed on the resulting deformatio n maps.

X. Pennec et al.	2005	Riemannian elasticity: A statistical regularizatio n framework for non-linear registration	The elastic energy has been interpreted as the distance of the Green-St Venant strain tensor to the identity, which reflects the deviation of the local deformation from a rigid transformati on.	By changing the Euclidean metric for a more suitable Riemannian one, a consistent statistical framework is defined to quantify the amount of deformation. These statistics are then used as parameters in a Mahalanobis distance to measure the statistical deviation from the observed variability, giving a new regularization criterion that we called the statistical Piamonnian	It was found that the new criterion is able to handle anisotropic deformations and is inverse-consist ent.	Preliminar y results showed that it can be quite easily implement ed in a non-rigid registratio n algorithm.
				elasticity.		
A.D. Leow et al.	2007	Statistical properties of Jacobian maps and the realization of unbiased large-deform ation nonlinear image registration	A method has been proposed to provide rigorous mathematic al analyses of the Jacobian maps, and use them to motivate a new numerical method to construct unbiased nonlinear image registration.	It is established that that logarithmic transformation is crucial for analyzing Jacobian values representing morphometric differences. Statistical distributions of log-Jacobian maps are examined by defining the Kullback-Leibler (KL) distance on material density functions arising in continuum-mecha nical models.	symmetrizatio n of image registration statistically reduces skewness in the log-Jacobian map.	
I. Yanovs	2008	Unbiased volumetric	A new	The nonlinear elastic and the	The new	
ky et al.		registration	image	unbiased	nonlinear	
		via nonlinear elastic	model	terms are	elasticity model was	

		regularizatio	which is	simplified using	found to be	
		n	based on	the change of	computationall	
			nonlinear	variables by	y more	
			regularizatio	unknown that	enforcent and	
			n and	approximates the	implement	
			unbiased	Jacobian matrix of	than the	
			registration	the displacement	unbiased fluid	
			regionation.	field This reduces	registration	
				the minimization	The unbiased	
				to involve linear	large-deformat	
				differential	ion nonlinear	
				equations. The	elasticity	
				new model is	method was	
				written in a unified	tested using	
				variational form	volumetric	
				and is minimized	serial magnetic	
				using gradient	resonance	
				descent.	images and	
					showed	
					advantages for	
					medical	
					annliantions	
CI	2011	A combined	A new	The modeling is	The shapes to	Several
Guvade	2011	segmentation	non-naramet	twofold first	he matched	applicatio
r&LA		and	ric	registration is	were viewed as	ns are
Vese		registration	combined	jointly performed	Ciarlet–Gevmo	proposed
		framework	segmentatio	with segmentation	nat materials.	here to
		with a	n and	since guided by	Existence of	demonstra
		nonlinear	registration	the segmentation	minimizers of	te the
		elasticity	method.	process; it means	the introduced	potential
		smoother		that the algorithm	functional was	of this
				produces both a	proved and an	method to
				smooth mapping	approximated	both
				between the two	problem based	segmentati
				shapes and the	on the Saint	on of one
				segmentation of	Venant–Kirchh	single
				contained in the	on stored	to
				reference image	numerical	registratio
				Secondly the use	implementatio	n between
				of a nonlinear-	n and	two
				elasticity-type	solved by an	images.
				regularizer allows	augmented	C
				large deformations	Lagrangian	
				to occur, which	technique.	
				makes the model		
				comparable in this		
				point with the		
				viscous fluid		
				registration		
				method.		

Author	Year	Title	About	Method	Findings	Remarks
W.R. Crum et al.	2005	Anisotrop ic multi-scal e fluid registratio n: Evaluatio n in magnetic resonance breast imaging	A multi-resolution fluid registration algorithm which improves on previous works on multiple levels of free form deformation (FFD).	Directly solving the Navier-Stokes equation at the resolution of the images; accommodating image sampling anisotropy using semi-coarsening and implicit smoothing in a full multi-grid (FMG) solver; and exploiting the inherent multi-resolution nature of FMG to implement a multi-scale approach.	Evaluation was on five magnetic resonance (MR) breast images subject to six biomechanical deformation fields over 11 multi-resoluti on schemes. Quantitative assessment was by tissue overlaps and target registration errors and by registering using the known correspondenc es rather than image features to validate the fluid model.	The results showed that fluid registratio n of 3D breast MR images to sub-voxel accuracy is possible in minutes on a 1.6 GHz Linux-bas ed Athlon processor with coarse solutions obtainable in a few tens of seconds. Accuracy and computati on time are comparabl e to FFD techniques validated for this applicatio n.
N.D. Cahill et al.	2007	Fourier methods for nonparam etric image registratio n	It was shown that Fourier methods can be employed to quickly solve the linear PDE systems for every combination of standard regularizers (diffusion, curvature, elastic, and fluid) and boundary conditions (Dirichlet, Neumann, and periodic).	Faster techniques based on Fourier methods, multigrid methods, and additive operator splitting; exist for solving the linear PDE systems for specific combinations of regularizers and boundary conditions were applied on a	Fourier methods can be employed to quickly solve the linear PDE systems for every combination of standard regularizers.	

Table A.2: Viscous Fluid Flow Model

				mammography image set.		
MC. Chiang et al.	2008	Fluid registratio n of diffusion tensor images using informati on theory	This work presented an information-theore tic cost metric, symmetrised Kullback-Leibler (sKL) divergence, to fluid registration of diffusion tensor images.	Three-dimensio nal DTI data from 34 subjects were fluidly registered to an optimized target image. The flow was regularized with a large-deformati on diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography.	It was showed that the sKL-divergen ce based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergen ce was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multi subject statistical analysis of HARDI	

Table A.3: Diffusion Model

Author	Year	Title	About	Method	Findings	Remarks
J.M.	2008	Registration	A generic	Spatio-temporal	It was shown	This
Peyrat		of 4D	framework for	registration is	that this	framework is
et al.		time-series	intersubject	defined by	trajectory	applied to the
		of cardiac	non-linear	mapping	registration	inter-subject
		images with	registration of	trajectories of	can be	non-linear
		multichanne	4D time-series	physical points	formulated as	registration
		1	images.	as opposed to	а	of 4D cardiac
		diffeomorph		spatial	multichannel	СТ
		ic demons		registration that	registration	sequences.
				solely aims at	of 3D	
				mapping	images.	
				homologous		
				points. The		
				trajectories were		
				determined		
				which had to be		
				registered in		
				each sequence		
				using a motion		
				tracking		
				algorithm based		
				on the		
				Diffeomorphic		
				Demons		
				algorithm.		
				Simultaneously		
				pairwise		
				registrations		
				were performed		
				ot corresponding		
				time-points with		
				the constraint to		
				map the same		
				physical points		
				over time.		

BTT	2009	DT-REFinD	The	Results were	It was shown	The
Yeo et		: Diffusion	DT-REFinD	borrowed from	that the exact	improvement
al.		tensor	algorithm for	the pose	gradient	s persist even
		registration	the	estimation	leads to	when a
		with exact	diffeomorphic	literature in	significantly	different
		finite-strain	nonlinear	computer vision	better	reorientation
		differential	registration of	to derive an	registration	scheme,
			diffusion	analytical	at the cost of	preservation
			tensor images.	gradient of the	computation	of principal
				registration	time.	directions,
				objective	Alignment	was used to
				function. By	quality was	apply the
				utilizing the	assessed with	final
				closed-form	a battery of	deformations
				gradient and the	metrics	•
				velocity field	including	
				representation of	tensor	
				one parameter	overlap,	
				subgroups of	fractional	
				diffeomorphism	anisotropy,	
				s, the resulting	inverse	
				algorithm came	and closeness	
				to be	to synthetic	
				diffeomorphic	warns	
				and fast The	warps.	
				algorithm was		
				contrasted and		
				compared with a		
				traditional FS		
				alternative that		
				ignores the		
				reorientation in		
				the gradient		
				computation.		
М.	2010	Diffeomorp	А	Hailed as the	Experiments	
Modat		hic demons	diffeomorphic	first reported	to spatially	
et al.		using	demons	qualitative and	normalise	
		normalized	implementatio	quantitative	real MR	
		mutual	n using the	assessment of	images, and	
		information,	analytical	the demons for	to recover	
		evaluation	Normalized	inter-modal	deformation	
		multimodal	Mutual	registration.	fields	
		hrain MR	Information		demonstrated	
		images	(NMI) in a		similar	
		111111200	conjugate		accuracy	
			gradient		from	
			optimiser.		NMI-demons	
			1		and classical	
					demons	
					when the	
					latter may be	
					used, and	
					similar	

					accuracy for NMI-demons on T1w–T1w and T1w–T2w registration.	
BTT Yeo et al.	2010	Spherical demons: Fast diffeomorph ic landmark-fr ee surface registration	The Spherical Demons algorithm for registering two spherical images.	Exploiting spherical vector spline interpolation theory, it was shown that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphism s, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas.	Two variants of the algorithm correspondin g to warping the atlas or warping the subject were demonstrated . Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest non diffeomorphi c landmark-fre e surface registration algorithms.	Technique was validated in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.

Table A.4: Curvature Registration

Author	Year	Title	About	Method	Findings	Remarks
B.	2009	Approximated	An	Labeling of	It was	
Glocker		curvature	approximated	discrete	demonstrated	
et al.		penalty in	curvature	Markov	that the	
		non-rigid	penalty using	Random Fields	approximated	
		registration	second-order	(MRFs) for	term has similar	
		using pairwise	derivatives	solving the	properties as	
		MRFs	defined on	problem of	higher-order	
			the MRF	non-rigid	approaches	
			pairwise	image	(invariance to	
			potentials is	registration.	linear	
			proposed.	Smoothness is	transformations),	
				achieved by	while the	
				penalizing the	computational	
				derivatives of	efficiency of pair	
				the	wise models	
				displacement	remained	
				field.	preserved.	
B.	2010	Recursive	It has been	A generalized	The associated	
Beuthien		Green's	tried to	and efficient	Green's function	
et al.		function	minimize a	numerical	for the diffusive	
		registration	joint	scheme for	and curvature	
			functional	solving such	regularizers was	
			that is	system of PDEs	presented and it	
			comprised of	simply by	was shown that	
			a similarity	applying	how one may	
			measure and	1-dimensional	efficiently	
			a regularizer	recursive	implement the	
			in order to	filtering to the	whole process by	
			obtain a	right hand side	using recursive	
			reasonable	of the system	filter	
			displacement	based on the	approximation.	
			field that	Green's		
			transforms	function of the		
			one image to	differential		
			the other.	operator that		
				corresponds to		
				the chosen		
				regularizer.		

Author	Year	Title	About	Method	Findings	Remarks
М.	2009	Registration	Proposed	Optimization	The	
Hernand		of	paradigm for	in LDDMM is	performance of	
ez et al.		anatomical	diffeomorphic	performed on	the	
		images	registration is	the space of	non-stationary	
		using paths	the Large	non-stationar	vs. the	
		of	Deformation	y vector field	stationary	
		diffeomorph	Diffeomorphi	flows	parameterizatio	
		isms	c Metric	resulting into	ns in real and	
		parameteriz	Mapping	a time and	simulated	
		ed with	(LDDMM). In	memory	3D-MRI brain	
		stationary	this	consuming	datasets is	
		vector field	framework,	algorithm.	evaluated.	
		flows	transformatio	The stationary	Compared to	
			ns are	parameterizat	the	
			characterized	ion is	non-stationary	
			as end points	included for	parameterizatio	
			of paths	diffeomorphi	n, proposed	
			parameterized	c registration	method	
			by	in the	provides	
			time-varying	LDDMM	similar results	
			flows of	framework.	in terms of	
			vector fields	The	image	
			defined on the	variational	matching and	
			tangent space	problem	local	
			of a	related to this	differences	
			Riemannian	registration	between the	
			manifold of	scenario is	diffeomorphic	
			diffeomorphis	formulated	transformations	
			ms and	and	while	
			computed	associated	drastically	
			from the	Euler-Lagran	reducing	
			solution of the	ge equations	memory and	
			non-stationary	are derived.	time	
			transport		requirements.	
			equation			
			associated to			
			these flows.			

M.D.	2009	Large	A new	In the	Strain curves	
Craene		diffeomorph	registration	proposed	for the healthy	
et al.		ic FFD	method for the	method,	subjects were in	
		registration	in vivo	referred to as	accordance	
		for motion	quantification	Large	with the	
		and strain	of cardiac	Diffeomorphi	literature. For	
		quantificati	deformation	c Free Form	the LBBB	
		on from	from a	Deformation	natient strain	
		3D-US	sequence of	(LDFFD) the	quantified	
		sequences	possibly noisy	displacement	before and after	
		bequences	images	field at each	Cardiac	
				time step is	Resynchronizat	
				computed	ion Therapy	
				from a	showed a clear	
				smooth	improvement	
				non-stationar	of cardiac	
				v velocity	function in this	
				field, thus	subject. in	
				imposing a	accordance	
				coupling	with clinical	
				between the	observations.	
				transformatio		
				ns at		
				successive		
				time steps.		
				Main		
				contribution		
				is to extend		
				this		
				framework to		
				the estimation		
				of motion and		
				deformation		
				in an image		
				sequence.		
				Similarity is		
				captured for		
				the entire		
				image		
				sequence		
				using an		
				extension of		
				the pairwise		
				mutual		
				information		
				metric. The		
				LDFFD		
				algorithm is		
				applied here		
				to recover		
				longitudinal		
				strain curves		
				from		
				healthy and		
				Left-Bundle		

				Branch Block (LBBB) subjects.		
J. Ashburn er et al.	2011	Diffeomorp hic registration using geodesic shooting and Gauss-Newt on optimisation	A nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphi c Metric Mapping (LDDMM), but with a more efficient optimisation scheme, both in terms of memory required and the number of iterations required in reaching convergence.	Instead of performing a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss-Newto n optimisation strategy is used to achieve faster convergence.	The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.	-
L. Risser et al.	2011	Simultaneo us multi-scale registration using large deformation diffeomorph ic metric mapping	A practical methodology to integrate prior knowledge about the registered shapes in the regularizing metric.	First presented the notion of characteristic scale at which image features are deformed. Then proposes a methodology to compare anatomical shape variations in a multi-scale	Ability of the proposed method is compared to segregate a group of subjects having Alzheimer's disease and a group of controls with a classical coarse to fine approach, on standard 3D MR	The method registers accurately volumetric images containing feature differences at several scales simultaneou sly with smooth deformation s.

				fashion, i.e., at several characteristic scales simultaneousl y. In this context, a strategy was proposed to quantitatively measure the feature differences observed at each characteristic scale separately.	longitudinal brain images. It was finally applied to quantify the anatomical development of the human brain from 3D MR longitudinal images of pre-term babies.	
G. Auzias et al.	2011	Diffeomorp hic brain registration under exhaustive sulcal constraints	A global, geometric approach that performs the alignment of the exhaustive sulcal imprints (cortical folding patterns) across individuals.	The DIffeomorphi c Sulcal-based COrtical (DISCO) technique proceeded to the automatic extraction, identification and simplification of sulcal features from T1-weighted Magnetic Resonance Image (MRI) series. These features are then used as control measures for fully-3-D diffeomorphi c deformations.	Quantitative and qualitative evaluations showed that DISCO correctly aligns the sulcal folds and gray and white matter volumes across individuals. The comparison with a recent, iconic diffeomorphic approach (DARTEL) highlighted how the absence of explicit cortical landmarks may lead to the misalignment of cortical sulci.	DISCO can also be combined with (DARTEL) to further improve the consistency and accuracy of alignment performance s.

Author	Year	Title	About	Method	Findings	Remarks
M. Alexa et al.	2003	Computing and rendering point set surfaces	Use of point sets to represent shapes. Defining surfaces from a set of points close to an original surface, this is approximate d using MLS.	A projection procedure is defined which projects any point near the point set onto the surface. Then, the MLS surface is defined as the points projecting onto themselves. The smoothness conjecture is motivated and respective projection is computed	The proposed model was tested on 'the Stanford bunny' along with other models. The proposed approach showed smoother silhouettes and more accurate highlights in comparison to more traditional methods like Splatting and Gouraud- shaded mesh model.	Thus, it is possible to provide a point set representati on that conforms to a specified tolerance. The use of a point set (without connectivit y) as a representati on of shapes.
S. Schaefer et al.	2006	Image deformatio n using moving least squares	An image deformation method based on Moving Least Squares using various classes of linear functions including affine, similarity and rigid transformati ons. These deformation s are realistic and give the user the impression of manipulatin g real-world objects.	Image deformations were built based on collections of points with which the user controls the deformation. A deformation function was constructed satisfying the three properties of Interpolation, Smoothness & Identity using MLS.	The proposed method was applied for Affine, Similarity, Rigid & Elastic deformations on a set of images. It was found to perform deformations faster than the contemporary methods.	It was showed how solutions could be computed directly from the closed-form deformation using similarity transformati ons thereby bypassing the non-linear minimizatio n. The method is general enough to accommoda te different distance metrics dependent on the

Appendix-B: Table B.1: Tabular Literature Survey, Chapter 3

						topology of the shape rather than the simple, Euclidean distance used as our weight factor.
P. Lancaster , K. Salkausk as	1981	Surfaces generated by moving least squares methods	An analysis of least squares methods for smoothing and interpolating scattered data was presented. In particular, theorems are proved concerning the smoothness of interpolants and the description of MLS processes as projection methods.	A non-interpolat ing least squares method as an alternate representation of the local approximation based on the choice of weight functions.	The differences between interpolating and non-interpolati ng MLS method as projection methods. The effects of the choice of weight functions and the asymptotic behaviour of such single variable and multivariate functions.	NA
R. Castillo et al.	2009	A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets	Deformable Image Registration using Moving least squares for correspondin g sets of feature landmark point pairs.	APRIL (Matlab based in house sw UI) for manual selection of landmark feature points. This point set is subjected to MLS, which registers the source landmark point set to the corresponding target point set.	$U_{SE} \alpha 1/(L_{PP})^{1/2}$ $U_{SE} \alpha SD_{SE}$ The uncertainty of spatial error estimates was found to be inversely proportional to the square root of the number of landmark point pairs and directly proportional to the standard deviation of spatial errors.	No proposition on the estimation of deformity between the registered image pairs.
K. Murphy et al.	2011	Evaluation of Registratio	EMPIRE10 (Evaluation of Methods	Methods on comparison: Asclepios1,	All methods were fully automatic with	The EMPIRE10 challenge

		n Methods on Thoracic CT: The EMPIRE10 Challenge	for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intrapatient thoracic CT image pairs. Evaluation of non-rigid registration techniques.	Asclepios2, CMS, DIKU, DROP, elastix, IMI Lubeck Diffeomorph, Lyon FFD, MGH, Nifty Reggers, OFDP, picsl exp, picsl gsyn, Robust TreeReg Leuven, Spline MIRIT Leuven.	the exception of MGH. Generic registration algorithms can perform better than data specific methods. It may still be the case that combining aspects of both could improve performance even further, particularly on more difficult scan pairs.	enabled detailed, independent and fair evaluation of non-rigid registration algorithms.
E. Castillo et al.	2014	A Moving Least Squares Approach for Computing Spatially Accurate Transforma tions That Satisfy Strict Physiologic Constraints	Computation of a physiologica lly realistic spatial transformati on from a sparse point cloud of displacemen t estimates using MLS and any combination of upper bound, lower bound, or equality constraints placed on the Jacobian.	MLS defined a spatial transformatio n from a sparse point cloud of estimated displacements and provided simple analytic derivative estimates for all voxel locations. Given displacement estimates from automated block	Two MLS transformations were computed for five (5) pairs of inhale-exhale thoracic CT images, one with no Jacobian constraints and the other with strict contraction Jacobian constraints. Despite registering from inhale-exhale, the constrained MLS yielded a strict contraction (all Jacobian values between 0 and 1) while the unconstrained MLS resulted in regions of expansion.	The proposed MLS approach was found capable of producing Jacobian constrained transformati ons without degrading spatial accuracy.

Author	Year	Title	About	Method	Findings	Remarks
D. Sarrut	2006	Simulation	Simulation	Dense	Statistically	The generation
et al.		of	of an	deformable	better results	of 4-D CT
		four-dimens	artificial	registrations	than the	images by
		ional CT	four-dimensi	were	reference	deformable
		images	onal (4-D)	performed.	method. The	registration of
		from	CT image of	The method	mean (and	inhale and
		deformable	the thorax	was a	standard	exhale CT
		registration	during	minimization	deviation) of	images is
		between	breathing. It	of the sum of	distances	feasible. This
		inhale and	is performed	squared	between	can lower the
		exhale	by	differences	automatically	dose needed
		breath-hold	deformable	(SSD) using	found	for 4-D CT
		CT scans	registration	an	landmark	acquisitions or
			of two CT	approximate	positions and	can help to
			scans	d	landmarks set	correct 4-D
			acquired at	second-order	by experts	acquisition
			inhale and	gradient.	were $2.7(1.1)$	artifacts. The
			exhale		mm with	4-D CT model
			breath-hold.		APLDM, and	can be used to
					6.3(3.8) mm.	propagate
					The mean	contours, to
					difference	compute a 4-D
					between	dose map, or
					automatic and	to simulate C1
					manual	acquisitions
					landmark	with an
					positions for	irregular
					Intermediate	breatning
					C1 images was	signal. It could
					2.0(2.0)mm.	for 4 D
						radiation
						thorany
						nlanning
N. Stava	2000	Pagistration	For anab	One of the	The regulting	The temporal
IN. SIEVO	2009	of Temporal	image in	registration	nairs from both	registration
et al.		Sequences	coronal and	approaches	algorithms	algorithm
		of Coronal	sagittal MRI	used is	were different	based on nivel
		and Sagittal	sequences	determining	It was noticed	by nixel
		Images	the	the distance	that both pairs	comparison
		Obtained	information	between the	have a	and Fourier
		from	contained in	images by	satisfactory	transform
		Magnetic	the	comparing	visual	showed
		Resonance	intersection	pixel by pixel	registration.	several
			segment was	and	The temporal	satisfactory
			determined.	combining	sequence of	results.
			and the	these	images	however it is
			matching is	differences in	represented	not possible to
			done to	a single	discrete	overcome the
			determine	value. The	instants in	temporal low
			the best	other one is	time, and such	rate of image
			sagittal	Fourier	an almost	acquisition.

Appendix-C: Table C.1: Tabular Literature Survey, Chapter 4

			images for each coronal image and vice-versa. The registration is the determinatio n of the best images in a sequence that fits a chosen image in another sequence.	Transform based.	perfect fitting is very rare.	One of the future works would be the definition of a new registration algorithm combining pixel comparison and time segmentation.
E. Castillo et al.	2010	Four-dimen sional deformable image registration using trajectory modeling	A four-dimensi onal deformable image registration (4D DIR) algorithm, referred to as 4D local trajectory modelling (4DLTM), is presented and applied to thoracic 4D computed tomography (4DCT) image sets.	The method exploits the incremental continuity present in 4DCT component images to calculate a dense set of parameterize d voxel trajectories through space as functions of time. The spatial accuracy of the 4DLTM algorithm is compared with an alternative registration approach in which component phase to phase (CPP) DIR is utilized to determine the full displacement between maximum inhale and exhale	Cubic polynomials were found to provide sufficient flexibility and spatial accuracy for describing the point trajectories through the expiratory phases. The resulting average spatial error between the maximum phases was 1.25 mm for the 4DLTM and 1.44 mm for the CPP.	The 4DLTM method captures the long-range motion between 4DCT extremes with high spatial accuracy.

J.2011StatisticalAn approachTheThe model wasEhrhardtModeling ofto generate amodelingevaluated byet al.4Dmean motionprocessapplying it foret al.4Dmean motionprocessapplying it forlunglung basedthree steps:respiratoryMotionon thoracicanmotion of tenUsing4Dintra-subjectlung cancerDiffeomorpcomputedregistrationpatients. Thehic Imagetomographyto generateprediction wasRegistration(CT) data ofsubject-specievaluated withdifferentfic motionrespect tonadmark andextend thegeneration oftumor motion,and themotionan averageand themotion model					images.		
Ehrhardt et al.Modeling of 4Dto generate a mean motionmodeling processevaluated by applying it for estimatinget al.4Dmean motionprocessapplying it for estimatingRespiratorymodel of the Lungconsisted of ung basedestimatingLunglung basedthree steps: intra-subjectrespiratory motion of tenUsing4Dintra-subjectlung cancerDiffeomorpcomputed tomographyregistration subject-specipatients. The evaluated with differenthic Image Registration(CT) data of patients to motionsubject-speci evaluated with fic motion an averagetumor motion, and the quantitativeThe statistical respiratory modelingshape and intra-subjectThe statistical respiratory motion model	J.	2011	Statistical	An approach	The	The model was	
et al.4Dmean motionprocessapplying it for estimatingRespiratorymodel of the lungconsisted of ung basedestimating estimatingLunglung basedthree steps: anrespiratory motion of tenUsing4Dintra-subjectlung cancerDiffeomorpcomputed tomographyregistration subject-specipatients. The prediction wasRegistration(CT) data of patients to motionsubject-speci an averageevaluated with and the an averageThe statistical respiratorymodeling shape and and thefire motion, and theThe statistical respiratory motion model	Ehrhardt		Modeling of	to generate a	modeling	evaluated by	
Respiratory Lungmodel of the lung basedconsisted of three steps:estimating respiratoryMotion Usingon thoracic 4Dan intra-subjectmotion of ten lung cancerDiffeomorp hic Imagecomputed tomographyregistration to generatepatients. The prediction was evaluated with respect to landmark and tumor motion, an averageThe statistical respiratoryMotionextend the modelinggeneration of shape and intra-subjectThe statistical respiratoryMotionmodeling to generateintra-subjectIntra-subjectDiffeomorp hic Imagecomputed tomographyregistrationpatients. The subject-speciHic Image hic Imagetomography to generateto generate subject-speciprediction was evaluated with respiratoryHic Image hic Imagetomography to generateto generate subject-speciprediction was evaluated with respiratory motionHic Image hic Imagemodeling tomographyintra-subject shape andlandmark and tumor motion, and the quantitative	et al.		4D	mean motion	process	applying it for	
Lunglung basedthree steps:respiratoryMotionon thoracicanmotion of tenUsing4Dintra-subjectlung cancerDiffeomorpcomputedregistrationpatients. Thehic Imagetomographyto generateprediction wasRegistration(CT) data ofsubject-specievaluated withdifferentfic motionrespect topatients tomodels, thelandmark andextend thegeneration oftumor motion,modelingshape andquantitativemodelingshape andan average			Respiratory	model of the	consisted of	estimating	
Motion Usingon thoracic 4Dan intra-subjectmotion of ten lung cancerDiffeomorp hic Imagecomputed tomographyregistration to generatepatients. The prediction was evaluated with fic motionRegistration(CT) data of differentsubject-speci fic motionevaluated with respect to nodels, the an averageThe statistical respiratory modelingMotion bitmodeling modelingshape and shape andmotion model			Lung	lung based	three steps:	respiratory	
Using 4D intra-subject lung cancer Diffeomorp computed registration patients. The hic Image Registration (CT) data of different fic motion respect to patients to models, the landmark and extend the generation of tumor motion, modeling shape and quantitative model			Motion	on thoracic	an	motion of ten	
Diffeomorp hic Image Registration CT) data of different extend the modeling complication computed to generate subject-speci fic motion an average complication computed to generate subject-speci compatients. The prediction was evaluated with respect to landmark and tumor motion, and the complication complication computed compu			Using	4D	intra-subject	lung cancer	
hic Image Registrationtomography (CT) data of differentto generate subject-speciprediction was evaluated with respect to landmark and tumor motion, an averagehic Image Registrationtomography (CT) data of differentto generate fic motionprediction was evaluated with respect tohic Image differentfic motion models, the generation of an averagerespect to and the respiratory motion model			Diffeomorp	computed	registration	patients. The	
Registration (C1) data of subject-spect evaluated with different fic motion respect to patients to models, the landmark and extend the generation of tumor motion, motion an average and the modeling shape and quantitative motion model			hic Image	tomography	to generate	prediction was	
patients to models, the landmark and tumor motion an average and the modeling shape and quantitative modeling intermity and the modeling comphilities intermity and the modeling complexity and the modeling complexit			Registration	(CT) data of	subject-speci	evaluated with	
extend the generation of tumor motion, motion an average and the respiratory modeling shape and quantitative motion model				natients to	models the	landmark and	
motion an average shape and quantitative combilities interestity and the quantitative motion model				extend the	generation of	tumor motion	
modeling shape and quantitative respiratory motion model				motion	an average	and the	The statistical
annehilitian internity motion model				modeling	shape and	quantitative	respiratory
capadilities. Intensity analysis				capabilities.	intensity	analysis	motion model
atlas of the resulted in a is capable of				1	atlas of the	resulted in a	is capable of
lung as mean target providing					lung as	mean target	providing
anatomical registration knowledge in					anatomical	registration	knowledge in
reference error (TRE) of many fields of					reference	error (TRE) of	many fields of
frame, and 3.3 ± 1.6 mm. applications					frame, and	3.3 ± 1.6 mm.	applications
the With regard to We present					the	With regard to	We present
registration lung tumor two examples					registration	lung tumor	two examples
of the motion, it was of possible					of the	motion, it was	of possible
subject-speci shown that applications in					subject-speci	shown that	applications in
models to the accuracy is radiation					models to the	accuracy is	radiation
atlas in order independent of therapy and					atlas in order	independent of	therapy and
to build a tumor size and image guided					to build a	tumor size and	image guided
statistical 4D motion diagnosis.					statistical 4D	motion	diagnosis.
mean motion amplitude in					mean motion	amplitude in	
model the considered					model	the considered	
(4D-MMM). data set.					(4D-MMM).	data set.	
In all steps, a					In all steps, a		
symmetric					symmetric		
diffeomorphi					diffeomorphi		
c nonlinear					c nonlinear		
intensity-bas					intensity-bas		
ea					eu		
registration method was					method was		
employed					employed		
A.K. 2011 Registration This work A time The results of The proposed	A.K.	2011	Registration	This work	A time	The results of	The proposed
Sato et of temporal discussed sequence of the proposed method	Sato et		of temporal	discussed	sequence of	the proposed	method
al. sequences the this method in the increases the	al.		sequences	the	this	method in the	increases the
of coronal determinatio intersection form of number of			of coronal	determinatio	intersection	form of	number of
and sagittal n of the segment of synchronised registered			and sagittal	n of the	segment of	synchronised	registered
MR images breathing orthogonal sequences are pairs			MR images	breathing	orthogonal	sequences are	pairs
through patterns in coronal and compared with representing			through	patterns in	coronal and	compared with	representing
respiratory time sagittal the composed			respiratory	time	sagittal	the	composed
patterns sequence of sequences pixel-by-pixel images and			patterns	sequence of	sequences	pixel-by-pixel	images and
images were stacked, comparison allows an easy				images	were stacked,	comparison	allows an easy
from two-dimensi breathing				from	two-dimensi	methou.	breathing

			magnetic resonance	on spatio-tempo		phase.
			(MR) and	ral (2DST)		
			the temporal	interval		
			registration	Hough		
			of coronal and sagittal	algorithm		
			images.	searches for		
			_	synchronized		
				movements with the		
				respiratory		
				function. A		
				greedy active		
				contour		
				adjusts small		
				discrepancies		
				originated by		
				s movements		
				in the		
				respiratory		
G Viong	2012	Tracking	A novel	patterns.	The method	
et al.	2012	the motion	method to	intensities	was applied to	
		trajectories	detect a large	within a	13 real 4D CT	
		of junction	collection of	small region	images. More	
		structures in	natural	of interest	than 700	
		images of	structures in	the center are	each case are	
		the lung	the lung and	selected as its	detected with	
			use them as	signature.	an average	
			markers to	assumption	predictive	
			track the	of the cyclic	value of greater	
			lung motion.	motion, the	than 90%. The	
				trajectory	average tracking error	
				described by	between	
				a closed	automated and	
				B-spline	manual	
				search for the	sub-voxel and	
				control	smaller than	
				points by	the published	
				maximizing a metric of	the same set of	
				combined	data.	
				correlation		
				coefficients.		
				extrema are		
				suppressed		

				by improving the initial conditions using random walks from pair-wise optimizations . Several descriptors are introduced to analyze the motion trajectories.		
Y. Zhang et al.	2013	Modeling respiratory motion for reducing motion artifacts in 4D CT images	A patient-speci fic respiratory motion model, based on principal component analysis (PCA) of motion vectors obtained from deformable image registration, with the main goal of reducing image artifacts caused by irregular motion during 4D CT acquisition.	Displacemen t vector fields relative to a reference phase were calculated using an in-house deformable image registration method. The authors then used PCA to decompose each of the displacement vector fields into linear combinations of principal motion bases. These projections were parameterize d using a spline model to allow the reconstructio n of the displacement vector fields at any given phase in a respiratory cycle. Finally, the displacement vector fields were used to	The initial large discrepancies across the landmark pairs were significantly reduced after deformable registration, and the accuracy was similar to or better than that reported by state-of-the-art methods. The motion model was used to reduce irregular motion artifacts in the 4D CT images of three lung cancer patients. Visual assessment indicated that the proposed approach could reduce severe image artifacts.	The proposed approach can mitigate shape distortions of anatomy caused by irregular breathing motion during 4D CT acquisition.

				deform the reference CT image to synthesize CT images at the selected phase with much reduced image artifacts.		
B. Fuerst et al.	2014	Patient-Spe cific Biomechani cal Model for the Prediction of Lung Motion From 4-D CT Images	An approach to predict the deformation of the lungs and surrounding organs during respiration.	A computationa l model of the respiratory system, which comprises an anatomical model extracted from computed tomography (CT) images at end-expiratio n (EE), and a biomechanic al model of the respiratory physiology, including the material behavior and interactions between organs.	The method was then tested on five public datasets. Results showed that the model was able to predict the respiratory motion with an average landmark error of 3.40 ± 1.0 mm over the entire respiratory cycle.	The estimated 3-D lung motion may constitute as an advanced 3-D surrogate for more accurate medical image reconstruction and patient respiratory analysis.
Author	Year	Title	About	Method	Findings	Remarks
------------------------	------	--	---	---	---	--
X. Pennec et al.	2005	Riemannia n Elasticity: A Statistical Regulariza tion Framewor k for Non-linear Registratio n	The elastic energy has been interpreted as the distance of the Green-St Venant strain tensor to the identity, which reflects the deviation of the local deformation from a rigid transformation	By changing the Euclidean metric for a more suitable Riemannian one, a consistent statistical framework is defined to quantify the amount of deformation. These statistics are then used as parameters in a Mahalanobis distance to measure the statistical deviation from the observed variability, giving a new regularization criterion that we called the statistical Riemannian alasticity	It was found that the new criterion is able to handle anisotropic deformations and is inverse-consi stent.	Preliminary results showed that it can be quite easily implemented in a non-rigid registration algorithm.
B. Zhang et al.	2011	Three-dim ensional elastic image registration based on strain energy minimizati on: application to prostate magnetic resonance imaging	A novel 3-D elastic registration procedure that is based on the minimization of a physically motivated strain energy function that requires the identification of similar features (points, curves, or surfaces) in the source and target images.	The Gauss-Seidel method was used in the numerical implementatio n of the registration algorithm. The registration procedure was validated on synthetic digital images, MR images from prostate phantom, and MR images obtained on patients. The	The registration error on patient data was 1.8 ± 0.7 pixels. Registration also improved image similarity (normalized cross-correlat ion) from 0.72 ± 0.10 to 0.96 ± 0.03 on patient data.	Registration results on prostate data in vivo demonstrated that the registration procedure could be used to significantly improve both the accuracy of localized therapies such as brachytherap y or external beam therapy and can be

Appendix-D: Table D.1: Tabular Literature Survey, Chapter 5

				registration error, assessed by averaging the displacement of a fiducial landmark in the target to its corresponding point in the registered image.		valuable in the longitudinal follow-up of patients after therapy.
R.W.K. So et al.	2011	Non-rigid image registration of brain magnetic resonance images using graph-cuts	A graph-cut based method for non-rigid medical image registration on brain magnetic resonance images. The non-rigid medical image registration problem is reformulated as a discrete labelling problem.	Modelled the non-rigid registration as a multi-labeling problem by Markov random field. The image registration problem is therefore modeled by two energy terms based on intensity similarity and smoothness of the displacement field. The MRF energy is minimized by graph-cuts algorithm via α -expansions.	Compared the registration results of the proposed method with two state-of-the-a rt medical image registration approaches: free-form deformation based method and demons method. In addition, the registration results were also compared with that of the linear programming based image registration method.	The proposed method was found to be more robust against different challenging non-rigid registration cases with consistently higher registration accuracy than those three methods, and gives realistic recovered deformation fields.
A. R. Dykstra et al.	2012	Individuali zed localizatio n and cortical surface-bas ed registration of intracranial electrodes	A method which co-registers high-resolutio n preoperative MRI with postoperative computerized tomography (CT) for the purpose of individualized functional mapping of both normal	The method accurately (within 3 mm, on average) localizes electrodes with respect to an individual's neuroanatomy. Furthermore, we outline a principled procedure for either volumetric or	The method was demonstrated in five patients with medically-int ractable epilepsy undergoing invasive monitoring of the seizure focus prior to its surgical removal.	The straight-forw ard application of this procedure to all types of intracranial electrodes, robustness to deformations in both skull and brain, and the ability to

			and pathological (e.g., interictal discharges and seizures) brain activity.	surface-based group analyses.	Accuracy was within 3mm of average.	compare electrode locations across groups of patients makes this procedure an important tool for basic scientists as well as clinicians.
Heinrich et al.	2013	d Deformabl e Registratio n and Ventilation Estimation of Lung CT	challenges associated with lung ct registration viz. large motion of small features, sliding motions between organs and changing image contrast due to compression are addressed and potentially higher quality of discrete approaches is preserved.	image-derived minimum spanning tree is used as a simplified graph structure, which coped well with the complex sliding motion and allowed us to find the global optimum very efficiently. Second, a stochastic sampling approach for the similarity cost between images is introduced within a symmetric, diffeomorphic B-spline transformation model with diffusion regularization. The complexity is reduced by orders of magnitude and enables the minimization of much larger label spaces. In addition to the	improvement s are validated in accuracy and performance on exhale-inhale CT volume pairs using a large number of expert landmarks.	challenges posed in the beginning are met.

K. Nakago mi et al.	2013	Multi-shap e graph cuts with neighbour prior constraints and its application to lung segmentati on from a chest CT volume	A novel graph cut algorithm that can take into account multi-shape constraints with neighbor prior constraints, and reports on a lung segmentation process from a three-dimensi onal computed tomography (CT) image based on this algorithm	geometric transform labels, hyper-labels are introduced, which represent local intensity variations in this task, and allow for the direct estimation of lung ventilation. A novel segmentation algorithm that improves lung segmentation for cases in which the lung has a unique shape and pathologies such as pleural effusion by incorporating multiple shapes and prior information on neighbour	The efficacy of the proposed algorithm is demonstrated by comparing it to conventional one using a synthetic image and clinical thoracic CT volumes.	
			based on this algorithm.	neighbour structures in a		
			6	graph cut		
				framework.		

	Track_label	Track_duration	Track_start	Track_stop	Track_displacem ent	Track_x_location	Track_y_location	Track_mean_spee d	Track_max_spee d	Track_min_speed	Track_median_sp eed	Track_std_speed
1	Track _0	5	0	5	0.26	55.58	114.1 3	0.97	1.96	0.34	0.54	0.73
2	Track _1	5	0	5	14.3 3	99.35	110.7	3.2	4.87	1	3.69	1.77
3	Track _2	5	0	5	5.09	160.2 7	111.0 2	1.39	2.42	0.73	1.50	0.68
4	Track _3	5	0	5	2.93	187.6 4	112.8 5	1.64	3.53	0.66	1.09	1.22
5	Track _4	5	0	5	10.9	113.7 8	113.1	2.32	4.59	0.87	1.42	1.64
6	Track _5	5	0	5	0.24	264.4 1	115.4 5	0.6	1.17	0.28	0.55	0.35
7	Track _6	5	0	5	6.52	138.6 9	113.6 5	1.91	4.04	0.18	1.05	1.8
8	Track _7	5	0	5	1.5	319.2 2	122.7 6	1.21	1.92	0.35	1.22	0.72
9	Track _8	5	0	5	0.27	270.1 8	130.2 2	0.77	1.91	0	0.13	0.97
10	Track _9	5	0	5	0.77	8.18	125.8 1	0.99	2.09	0.24	0.62	0.78
11	Track _10	5	0	5	4.28	170.2 6	125.4 2	1.44	2.59	0.61	0.97	0.98
12	Track _11	5	0	5	0.55	271.0 8	132.7 5	0.62	1.8	0	0.38	0.69
13	Track _12	5	0	5	0.45	51.16	136.9 1	0.27	0.46	0.14	0.25	0.12
14	Track _13	4	0	4	0.46	323.0 7	133.4 5	1.41	2.39	0.66	1.9	0.87
15	Track _14	5	0	5	7.7	32 <mark>4.7</mark> 7	139.2 7	2.71	9.07	0.23	1.36	3.63
16	Track _15	5	0	5	2.27	231.2 9	134.5 1	1.27	2.42	0.65	0.95	0.73
17	Track _16	5	0	5	6.42	150.6 7	137.1 2	1.79	6.24	0.3	0.82	2.51
18	Track _17	5	0	5	0.26	27 <u>3.8</u> 0	$\begin{array}{c} 13\overline{8.7} \\ 0 \end{array}$	0.4	0.74	0.25	0.34	0.2

Appendix-E: Table E.1: Track data for subject 'case 5' sagittal AP.

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
19	Track _18	5	0	5	3.42	232.3 3	146.6 8	2.04	2.91	0.71	2.26	0.93
20	Track _19	3	0	3	4.38	169.3 6	145.2 7	2.15	3.85	0.56	2.03	1.65
21	Track _20	4	0	4	3	203.6 9	143.5 2	1.27	2.89	0.31	1.51	1.21
22	Track _21	5	0	5	5.85	181.6 0	142.2 4	1.79	4.55	0.5	1.24	1.59
23	Track _22	5	0	5	1.1	326.9 7	146.7 3	0.56	0.98	0.06	0.56	0.33
24	Track _23	5	0	5	6.84	137.8 7	140.0 6	2.17	6.7	0.66	1.21	2.55
25	Track _24	5	0	5	0.73	8.86	150.8 7	0.54	1.31	0.09	0.38	0.47
26	Track _25	5	0	5	13.0 8	74.93	142.7 4	3.11	12.9 8	0.41	0.81	5.52
27	Track _26	5	0	5	0.63	50.12	155.3 7	0.29	0.48	0.07	0.28	0.15
28	Track _27	5	0	5	0.21	286.4 8	155.8 4	0.81	1.28	0.24	0.74	0.4
29	Track _28	5	0	5	7.55	156.1 2	149.8 2	2.89	7.1	0.71	2.26	2.61
30	Track _29	5	0	5	6.43	168.7 8	154.2 2	1.84	3.06	0.95	1.47	0.96
31	Track _30	5	0	5	0.9	330.2 8	160.5 2	2.16	2.88	0.29	2.77	1.1
32	Track _31	4	0	4	14	81.56	152.4 1	3.63	11.6 6	0.68	1.16	5.36
33	Track _32	5	0	5	1.63	289.1 9	162.5 6	3.99	8.81	0.22	1.99	3.85
34	Track _33	4	0	4	13.1 3	332.6 9	170.3 6	3.37	7.19	0.27	5.26	3.4
35	Track _34	4	0	4	10.5 9	140.9 9	163.0 5	2.66	4.72	1.34	3.19	1.62
36	Track _35	5	0	5	7.33	177.9 8	165.7 0	2.2	3.84	1.25	1.81	1.12
37	Track _36	5	0	5	0.58	333.0 6	171.7 7	0.73	1.32	0.02	0.74	0.58
38	Track _37	5	0	5	1.28	48.70	176.5 2	0.63	0.94	0.22	0.69	0.27
39	Track _38	5	0	5	12.9	129.5 3	166.7 1	2.76	5.21	0.43	2.15	2.09

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
41	Track _40	4	0	4	8.59	159.0 5	173.0 6	2.32	4.94	0.72	2.55	1.92
42	Track _41	4	0	4	1.06	9.5	190.7 7	1.28	1.67	0.53	1.65	0.66
43	Track _42	5	0	5	2.58	8.75	187.3 1	2.75	6.64	0	1.52	3.16
44	Track _43	5	0	5	8.3	182.5 1	177.4 2	2.57	5.05	0.96	1.59	1.86
45	Track _44	1	0	1	5.49	113.5 8	180.3 1	5.49	5.49	5.49	5.49	NaN
46	Track _45	5	0	5	13.6 8	220.4 4	185.4 4	3.35	7.23	1.13	2.54	2.33
47	Track _46	5	0	5	1.95	293.0 2	184.7 4	0.56	1.35	0.04	0.45	0.57
48	Track _47	5	0	5	18.1 9	143.7 8	196.5 8	5.77	12.8 5	1.4	3.82	4.71
49	Track _48	5	0	5	1.4	47.88	195.5 1	1.8	3.68	0.12	1.72	1.46
50	Track _49	5	0	5	0.96	295.2 8	192.2 6	0.5	0.75	0.09	0.58	0.25
51	Track _50	5	0	5	1.74	335.9 2	187.9 8	0.75	1.62	0.21	0.69	0.54
52	Track _51	3	0	3	8.74	7.59	183.1 1	2.91	8.74	0	0	5.05
53	Track _52	5	0	5	16.3 6	337.8 3	202.1 9	4.57	9.92	0.74	2.5	3.85
54	Track _53	2	0	2	3.34	146.4 3	205.4 6	1.87	2.16	1.57	2.16	0.41
55	Track _54	5	0	5	0.13	9.4	204.2 4	0.63	1.18	0.21	0.74	0.43
56	Track _55	2	0	2	2.51	220.5 7	205.3 0	2.57	3.4	1.74	3.4	1.18
57	Track _56	5	0	5	0.94	338.1 4	203.9 5	3.17	5.92	0.93	2.25	2.18
58	Track _57	5	0	5	6.3	206.9 4	197.2 3	1.97	2.93	1.18	1.85	0.69
59	Track _58	5	0	5	15.6 1	131.9 1	196.0 9	3.21	7.54	1.22	2.2	2.5
60	Track _59	5	0	5	7.98	192.7 4	192.8 8	2.2	4.29	1.27	1.77	1.21
61	Track _60	5	0	5	3.31	47.03	214.1 6	0.86	2.99	0.08	0.43	1.21

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
62	Track _61	5	0	5	0.54	8.61	214.3 8	0.52	1.03	0.04	0.5	0.48
63	Track _62	5	0	5	0.52	303.4 4	213.9 1	0.5	1.31	0.07	0.43	0.48
64	Track _63	5	0	5	12.5 8	224.7 4	206.3 6	4.88	8.03	2.2	4.61	2.23
65	Track _64	5	0	5	23.5	72.35	216.3 9	4.72	7.19	0.51	6.67	3.08
66	Track _65	5	0	5	16.6 3	130.4	219.8 4	3.87	7.32	2.02	3.24	2.22
67	Track _66	5	0	5	2.4	9	226.2 6	1.78	4.21	0.12	1.43	1.56
68	Track _67	5	0	5	16.8	159.5 8	214.9	3.42	7.59	0.35	2.23	3.3
69	Track _68	5	0	5	1.79	339	220.7 3	1.08	2.57	0.26	0.74	0.89
70	Track _69	2	0	2	10.3 7	134.5 6	216.3 5	5.45	8.47	2.43	8.47	4.27
72	Track _71	5	0	5	1.12	49.74	235.9 2	0.65	1.02	0.32	0.67	0.29
73	Track _72	5	0	5	0.31	9.59	239.5 2	0.43	0.78	0.1	0.49	0.3
74	Track _73	5	0	5	2.81	303.8 8	229.4 9	0.96	1.87	0.67	0.75	0.51
75	Track _74	5	0	5	21.9 8	118.8	220.1	4.49	7.92	0.44	3.9	3.26
76	Track _75	5	0	5	19.2 4	148.3 7	220.5 7	4.89	7.99	2.76	3.1	2.75
77	Track _76	5	0	5	8.33	250.3 9	243.7 7	3.82	7.39	0.08	4.32	2.66
78	Track _77	5	0	5	0.27	50	250.9 4	0.23	0.4	0.12	0.19	0.12
79	Track _78	5	0	5	14.2 8	202.3	233.7 4	4.46	9.2	0.93	3.46	3.77
80	Track _79	5	0	5	12.2	219.5 7	238.3 2	7.39	13.8	2.64	6.6	4.11
81	Track _80	5	0	5	2.72	339.9 4	245.2 4	1.17	3.89	0.13	0.33	1.57
82	Track _81	5	0	5	3.15	284.2 3	243.5 7	1.30	2.2	0.26	1.22	0.79
83	Track _82	5	0	5	21.9 8	122.6 3	245.8 6	5.03	13.5 5	1.47	1.79	5.21

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
84	Track _83	3	0	3	4.63	266.2 6	251.8 3	2.22	5.14	0.45	1.09	2.54
85	Track _84	5	0	5	6.34	258.7	247.6 8	1.85	4.46	0.97	1.15	1.48
86	Track _85	5	0	5	17.1 2	188.5 3	245.2	5.38	10.9 3	0.44	3.71	4.52
87	Track _86	5	0	5	0.18	11.6	253.9 5	0.38	1.03	0.04	0.21	0.42
88	Track _87	2	0	2	3.83	341.2 8	265.7 5	2.56	4.46	0.67	4.46	2.69
89	Track _88	5	0	5	0.33	12.97	270.9	0.24	0.5	0.05	0.24	0.17
90	Track _89	5	0	5	20.9 8	175.7 8	252.7 1	4.6	12.0 3	1.53	3	4.22
91	Track _90	5	0	5	0.21	53.34	260.2 5	0.26	0.46	0.09	0.28	0.14
93	Track _92	5	0	5	0.52	16.20	302.0 2	0.21	0.54	0.04	0.14	0.20
94	Track _93	5	0	5	4.29	346.9 9	298.9 9	1.46	3.8	0.27	1.08	1.39
95	Track _94	5	0	5	0.13	60.22	289.9 9	0.19	0.26	0.07	0.21	0.08
96	Track _95	5	0	5	27.1 4	93.69	280.6 3	5.43	11.1 9	1.4	3.13	4.55
98	Track _97	5	0	5	1.96	344.1 3	282.5 8	1.18	2.77	0.47	0.69	0.96
99	Track _98	5	0	5	0.86	112.2 4	7.41	0.18	0.32	0.07	0.18	0.09
102	Track _101	5	0	5	0.91	19.46	11.41	2.01	4.57	0	1.01	1.95
103	Track _102	5	0	5	1.36	139.3 1	11.53	0.35	0.77	0.06	0.12	0.34
104	Track _103	5	0	5	17.8 1	342.3 8	272.5 9	3.66	8.23	0.22	1.43	3.93
105	Track _104	5	0	5	0.78	126.5 5	7.76	0.48	1.52	0.06	0.07	0.65
106	Track _105	5	0	5	22.8 3	102.9 4	261.3 2	4.59	14.9 1	0.91	2.99	5.88
107	Track _106	4	0	4	17.1 7	161.3 5	266.2 3	6.38	11.7 5	1.18	10.5 2	5.52

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
108	Track _107	5	0	5	0.12	58.68	273.7 1	0.34	0.74	0.03	0.15	0.33
109	Track _108	5	0	5	0.48	15.2	280.8 6	0.64	1.67	0.17	0.45	0.61
110	Track _109	5	0	5	2.43	93.57	17.05	0.78	1.25	0.12	0.66	0.48
111	Track _110	5	0	5	5.9	267.8 4	17.04	2.18	3.87	0	2.3	1.39
112	Track _111	5	0	5	0.59	161.0 1	23.23	0.38	0.55	0.1	0.42	0.2
113	Track _112	5	0	5	0.57	15.07	23.49	0.14	0.28	0.07	0.11	0.09
114	Track _113	5	0	5	23.7 3	88.74	326.6 4	5.25	12.9 7	1	4.09	4.54
115	Track _114	5	0	5	1.55	87.2	25.72	0.36	0.7	0.13	0.34	0.24
116	Track _115	5	0	5	5.34	65.33	334.3 8	1.08	2.11	0.55	0.95	0.62
117	Track _116	5	0	5	11.8 8	269.5	20.07	4.44	7.49	0.27	4.88	2.61
118	Track _117	5	0	5	1.5	101.6 5	12.63	0.45	0.91	0.08	0.32	0.4
119	Track _118	5	0	5	2.61	265.4 2	12.41	0.7	1.78	0.05	0.82	0.8
120	Track _119	2	0	2	0.42	18.92	13.11	0.21	0.42	0	0.42	0.29
121	Track _120	5	0	5	1.42	23.71	331.5 6	0.75	1.17	0.48	0.61	0.3
122	Track _121	5	0	5	3.67	266.2 2	13.85	1.72	3.29	0.61	1.78	1.13
123	Track _122	5	0	5	0.86	148.7 9	16.17	0.24	0.58	0.04	0.15	0.21
124	Track _123	5	0	5	5.21	350.6 7	320.8 9	2.52	8.22	0.32	1.62	3.26
125	Track _124	3	0	3	0.04	274.5 1	29.69	7.72	11.6	0.23	11.3 3	6.49
127	Track _126	5	0	5	0.43	17.89	314.5 1	0.17	0.4	0.01	0.18	0.15
128	Track _127	5	0	5	1.02	75.39	39.33	1.60	2.56	0.46	2.12	1.04
129	Track _128	5	0	5	0.57	63.53	323.3 5	1.32	1.97	0.31	1.42	0.7

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
130	Track _129	5	0	5	14.7 5	349.3 7	313.0 1	3.45	5.63	1.25	4.18	2.01
131	Track _130	5	0	5	26.2 4	99.35	313.9 4	7.46	13.6 1	0.71	7.91	4.88
132	Track _131	5	0	5	0.12	280.1 2	41.08	0.15	0.27	0.06	0.14	0.09
133	Track _132	5	0	5	1.94	165.9	26.92	0.42	1.3	0.04	0.27	0.51
134	Track _133	5	0	5	13	348.3 5	307.1 3	3.93	9.25	1.48	1.95	3.31
135	Track _134	5	0	5	7.08	273.3 2	27.35	6.06	11.4 1	0.09	7.25	5.64
136	Track _135	5	0	5	0.91	172.1 8	31.78	0.3	0.39	0.09	0.37	0.13
137	Track _136	5	0	5	28.7 7	109.7 3	304.0 7	7.14	12.2 0	0.71	6.88	4.23
138	Track _137	5	0	5	0.53	66.46	312.4 2	0.22	0.27	0.09	0.24	0.07
139	Track _138	5	0	5	3.78	109.2	57.81	0.86	1.69	0.39	0.71	0.49
140	Track _139	5	0	5	2.30	354.6 6	367.1 5	1.67	2.62	0.63	1.54	0.89
141	Track _140	5	0	5	0.47	67.93	57.83	2.86	6.36	0.45	3.61	2.7
142	Track _141	5	0	5	0.84	207.4 8	56.88	0.24	0.63	0.11	0.16	0.22
143	Track _142	5	0	5	6.89	11.65	59.83	1.45	4.64	0.18	0.44	1.89
144	Track _143	3	0	3	0.04	285.3 5	51.72	0.51	0.77	0.28	0.47	0.25
145	Track _144	5	0	5	5.17	137.4 9	51.54	1.11	2.47	0.23	0.85	0.86
147	Track _146	4	0	4	1.14	196.0 7	48.82	0.51	0.95	0.18	0.57	0.33
148	Track _147	5	0	5	2.1	21.23	361.5 0	0.99	1.45	0.24	1.43	0.58
149	Track _148	5	0	5	32.2 2	82.45	33 <u>9.2</u> 8	6.72	12.0 9	2.52	5.28	3.75
150	Track _149	5	0	5	1.4	20.37	355.2 6	0.49	0.73	0.05	0.49	0.26
151	Track _150	5	0	5	0.53	186.4 6	42.1	0.47	0.88	0.19	0.44	0.26

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
152	Track _151	5	0	5	0.16	12.29	40.84	1.03	2.51	0.24	0.71	0.91
153	Track 152	2	0	2	2.78	67.71	350.6 7	1.4	1.94	0.87	1.94	0.76
154	Track _153	5	0	5	3.04	236.0 6	80	0.68	1.25	0.21	0.75	0.41
155	Track _154	5	0	5	3.66	293.5 4	69.27	2.37	4.71	0.2	3.01	1.93
156	Track _155	5	0	5	5.89	295.3 6	73.1	7.42	10.3 6	4.47	9	2.73
157	Track _156	5	0	5	6.81	97.02	67.06	1.45	2.03	0.34	1.49	0.69
158	Track _157	5	0	5	11.7 7	294.6 5	71.48	4.26	13.1 4	1.07	2.3	5
160	Track _159	5	0	5	6.51	353.7 3	342.7 5	2.65	5.06	1.58	1.81	1.46
161	Track _160	5	0	5	0.34	64.57	67.3	0.24	0.49	0.02	0.16	0.22
164	Track _163	5	0	5	6.32	115.1 6	88.62	1.51	2.64	0.75	1.03	0.9
165	Track _164	5	0	5	1.16	244.2 5	93.56	0.4	0.63	0.21	0.41	0.16
166	Track _165	5	0	5	2.7	151.4 1	91.27	1.25	1.85	0.78	1.08	0.49
168	Track _167	5	0	5	0.22	305.1 8	392.1	0.53	1.21	0.12	0.39	0.44
169	Track _168	5	0	5	3.71	316.5 9	392.1 8	0.74	1.02	0.24	0.93	0.35
170	Track _169	5	0	5	7.67	336.7 8	392.2 3	2.83	4.74	0.73	3.23	2.01
172	Track _171	5	0	5	13.3 6	262.0 7	392.1 4	3.90	5.4	1.96	4.24	1.38
173	Track _172	5	0	5	11	239.7 8	392.1 7	3.29	4.64	1.45	3.8	1.24
174	Track _173	5	0	5	4.58	284.9	392.1 4	3.74	8.77	0.5	2.86	3.28
175	Track _174	3	0	3	1.18	272.8	392.1 3	4.55	7.41	1.72	4.51	2.84

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
176	Track _175	4	0	4	0.27	298.5 6	79.61	0.82	1.57	0.20	1.17	0.66
177	Track _176	5	0	5	15.9 6	210.1 5	392.1 8	3.81	10.9 7	0.07	1.52	4.71
178	Track _177	5	0	5	0.59	7.80	82.33	0.18	0.55	0.01	0.09	0.22
179	Track _178	5	0	5	4.02	189.5 9	392.1 3	1.03	2.78	0.09	0.59	1.04
181	Track _180	5	0	5	0.32	189.8 1	78.59	1.45	2.75	0.16	1.27	1.05
182	Track _181	4	0	4	7.54	102.5 2	76.17	1.75	2.7	0.57	1.97	1.09
183	Track _182	3	0	3	5.51	142.3 4	392.1 5	1.84	3.04	0.62	1.86	1.21
184	Track _183	5	0	5	9.56	176.9 4	392.1 2	4.51	13.1 9	0.41	3.38	5.92
185	Track _184	5	0	5	8.35	164.0 4	392.1 4	2.67	7.89	0.02	2.49	3.18
186	Track _185	5	0	5	0.91	61.99	80.08	0.49	0.75	0.29	0.48	0.17
187	Track _186	5	0	5	0.3	94.97	392.1 3	0.31	0.41	0.21	0.33	0.09
188	Track _187	5	0	5	0.73	84.73	392.1 7	0.27	0.43	0.12	0.27	0.12
189	Track _188	5	0	5	8.72	130.0 2	392.1 4	2.06	7.91	0.02	0.77	3.3
190	Track _189	5	0	5	3.7	116.0 9	392.1 5	4.33	11.4 6	1.22	2.65	4.1
191	Track _190	5	0	5	1.28	312.9 7	107.7 5	1.54	3.59	0	0.86	1.75
192	Track _191	5	0	5	0.27	56.67	392.1	0.41	0.86	0.04	0.39	0.36
193	Track _192	5	0	5	0.24	66.68	392.1 4	0.33	0.45	0.17	0.31	0.11
194	Track _193	5	0	5	0.06	33.04	391.9 7	0.03	0.05	0.01	0.02	0.02
195	Track _194	5	0	5	6.08	314.5 1	111.6 8	4.06	7.11	0	3.95	2.77
196	Track _195	5	0	5	1.21	7.21	105.6 7	0.89	1.03	0.66	0.97	0.16
197	Track _196	5	0	5	9.24	307.4	95.57	2.11	9.39	0.06	0.38	4.07

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
198	Track 197	5	0	5	1.61	59.02	97.7	0.58	0.96	0.32	0.58	0.25
199	 	2	0	2	5.54	195.3 7	93.01	3	5.59	0.42	5.59	3.66
200	Track _199	5	0	5	1.46	177.4 9	95.71	0.99	1.32	0.39	1.06	0.37
201	Track _200	5	0	5	0.12	24.42	369.1 5	0.37	0.88	0.1	0.29	0.3
202	Track _201	3	1	4	5.8	293.5 4	392.1 4	2.62	6.82	0.23	0.8	3.65
203	Track _202	4	1	5	0.43	285.3 1	51.76	0.32	0.47	0.14	0.38	0.15
204	Track _203	4	1	5	2.97	126.6 4	39.73	0.82	1.7	0.1	0.79	0.66
205	Track _204	4	1	5	1.26	294.0 9	70.43	6.72	11.6 7	2.3	10.3 2	4.97
206	Track _205	4	1	5	0.55	218.6 1	57.98	0.26	0.38	0.15	0.3	0.1
208	Track _207	4	1	5	2	47.88	221.0 5	1.07	2.53	0.36	0.75	0.99
209	Track _208	4	1	5	4.18	234.0 2	239.7 1	4.06	5.35	2.31	4.93	1.37
211	Track _210	4	1	5	11.8 2	108.7 4	170.7 7	3.87	7.38	1.65	4.7	2.74
212	Track _211	4	1	5	3.16	18.39	14.75	0.93	3.16	0	0.27	1.5
213	Track _212	4	1	5	12.8	154.6 6	205.4 8	3.55	5.94	1.86	3.58	1.74
214	Track _213	4	1	5	0.74	62.44	299.0 5	0.64	1.03	0.31	0.63	0.3
216	Track _215	3	2	5	8.8	344.9 3	285.6 2	5.22	11.7 5	0.47	3.43	5.85
219	Track _218	3	2	5	11.8 7	164.1	255.7 3	4.81	8.87	1.68	3.87	3.69
220	Track _219	3	2	5	1.45	75.43	39.32	0.94	2.12	0.23	0.46	1.03
222	Track _221	3	2	5	1	75.01	40.21	1.69	3.03	0.67	1.37	1.21
223	Track _222	3	2	5	1.57	154.9	392.1 4	1.23	1.95	0.68	1.06	0.66
224	Track _223	3	2	5	1.35	137.9 8	121.2 2	1.02	1.61	0.65	0.80	0.52

	Track_label	Track_duration	Track_start	Track_stop	Track_displaceme nt	Track_x_location	Track_y_location	Track_mean_spee_d	Track_max_speed	Track_min_speed	Track_median_sp eed	Track_std_speed
226	Track _225	3	2	5	5.41	312.1 3	105.9 2	2.09	5.29	0.48	0.51	2.77
227	Track _226	3	2	5	4.2	245.6 1	217.0 9	3.52	6.23	0.47	3.86	2.9
228	Track _227	2	2	4	0.37	293.9 9	187.5 8	0.37	0.55	0.19	0.55	0.25
229	Track _228	3	2	5	5.94	153.4 2	178.7 4	4.01	7.16	1.48	3.38	2.89
230	Track _229	3	2	5	13.6 4	147.3 4	188.8 6	5.57	8.2	1.43	7.07	3.63
231	Track _230	2	3	5	18.3 6	111.3 8	294.2 6	9.58	13.9 9	5.17	13.9 9	6.24
232	Track _231	2	3	5	5.94	143.7 2	270.0 3	2.97	3.09	2.85	3.09	0.17
233	Track _232	2	3	5	9.26	129.4 4	278.8	5.28	8.57	1.99	8.57	4.66
234	Track _233	2	3	5	1.4	289.3 1	60.99	0.71	1.24	0.18	1.24	0.75
235	Track _234	2	3	5	6.57	188.5 1	181.9 8	3.61	3.93	3.29	3.93	0.45
236	Track _235	2	3	5	2.08	323.0 6	133.8 7	1.26	2.28	0.25	2.28	1.44
237	Track _236	2	3	5	0.61	330.3 9	160.8 7	2.09	2.16	2.03	2.16	0.09
240	Track _239	2	3	5	10.5	205.3 7	392.1 7	5.25	10.0 9	0.41	10.0 9	6.84
241	Track _240	2	3	5	1.42	354.1 7	355.4 9	0.71	1.18	0.24	1.18	0.67
242	Track _241	2	3	5	22.3 4	352.2 5	334.2 1	11.1 7	14.3 8	7.97	14.3 8	4.53