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Figure 4.1: The proposed framework structure 

 

A novel scale- and rotation-invariant detector and descriptor, has been coined as 

Speeded-Up Robust Features (SURF) by Herbert Bay et.al in 2006 [Bay, H. et al., 

2006] and 2008 [Bay, H. et al., 2008]. It provides better approximations in 

comparison to previously proposed schemes with respect to repeatability, 

distinctiveness, and robustness, yet can be computed and compared much faster. 

Focus is on scale and in-plane rotation-invariant detection and descriptions. These 

seem to offer a good compromise between feature complexity and robustness to 

commonly occurring photometric deformations in thoracic images. Skewing, 

anisotropic scaling, and perspective effects are assumed to be second order 

effects, that are covered to some degree by the overall robustness of the 

descriptor. For guaranteed invariance to any scale changes the input thoracic 

images are analyzed at different scales. The detected interest points are provided 

with a rotation and scale-invariant descriptor. The detector is based on Hessian 

matrix based on its good performance in accuracy [Bay, H. et al., 2008]. Blob-like 

structures are detected at locations with maximum determinant. In comparison to 

the Hessian-Laplace detector [Mikolajczyk, K. & Schmid, C., 2001] Hessian 

determinant is used for scale selection [Lindeberg, T., 1998]. 
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Figure 4.2: The working model of SURF 

 

Given a point a = (x, y) in an image
AP

NI , the Hessian matrix Ĥ(a, σ) at scale σ is 

defined as follows 
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where ),( saLxx  is the convolution of the Gaussian second derivative 2

)(
a

g
¶

¶ s

with the image AP

NI at point a, similarly for ),( saLxy
and ),( saLyy

. 

Though, Gaussians are optimal for scale-space analysis [Koenderink, J. J., 1984], 

they have to be made discrete and cropped in practice. This results in loss in 

repeatability of the detector for thoracic CT image rotations around odd multiples 

of π/4. 

The SURF method consists of multiple stages to obtain relevant feature 

points from a sequence of thoracic images. The single SURF stages are (as shown 

in fig 4.2): 

1. An integral image is constructed for each frame of the input thoracic 

image sequence, it allows for fast computation of box type convolution 

filters [Viola, P. & Jones, M., 2001]. This enables very few memory 
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accesses and hence results in drastic improvement in computational time 

[Cornelis, N. & Gool, L. V., 2008], which is especially crucial when we 

are dealing with a sequence of images. An integral image ( )aI AP

N å  at a 

location a= (x, y)
T
 represents the sum of all pixels in the input image 

AP

NI  

within a rectangular region formed by the origin and a 
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2. Candidate feature points are searched by the creation of a Hessian scale-

space pyramid (SURF detector). Approximation of the Hessian as a 

combination of box filters allows fast filtering. High contrast feature 

points are selected. 

3. Feature vector is calculated (SURF descriptor) based on its characteristic 

direction to provide rotation invariance. Feature vector is normalized for 

immunity to changes in lighting conditions. 

4. Matching of descriptor vectors between the thoracic image sequence 

frames using distance measures such as Mahalonobis distance and 

Euclidean distances etc. 

Optical flow is the pattern of apparent motion of objects, surfaces, and edges 

in a visual scene caused by the relative motion between an observer (an eye or a 

camera) and the scene [Warren, D. H. & Strelow, E. R., 1985]. In recent times, the 

term optical flow has been co-opted by computer vision experts to incorporate 

related techniques from image processing and control of navigation, such as 

motion detection, object segmentation, time-to-contact information, focus of 

expansion calculations, luminance and motion compensated encoding and stereo 
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disparity measurement [Beauchemin, S. S. & Barron, J. L., 1995]. Sequences of 

ordered thoracic images allow the estimation of motion as either instantaneous 

image velocities or discrete image displacements [Aires, K. R. et al., 2008]. 

Barron et.al provided a performance analysis of a number of optical flow 

techniques. It emphasizes the accuracy and density of measurements [Barron, J. L. 

et al., 1994]. 

Suppose we have a continuous thoracic image frame ( )tyxI
AP

N
,, ; ( )tyxf ,,  refers 

to the gray-level of (x, y) at time t. It represents a dynamic thoracic image as a 

function of position and time. Few assumptions also work in hindsight: 

· The detected feature point moves but does not actually change intensity. 

· Feature point at location (x, y) in frame i is the feature point at (x+∆x, 

y+∆y) in frame i+1 (detailed in figure 4.3). 

For making computation simpler and quicker the real world three dimensional (3-

D+time) objects are transferred to a (2-D+time) case. Then the thoracic image can 

be described by the 2-D dynamic brightness function of ),,( tyxI . Provided that in 

the neighbourhood of the feature point, change of brightness intensity does not 

happen in the motion field, following expression can be used: 

 ),,(),,( ttyyxxItyxI ddd +++=  (4.3) 

Taylor series is used for the right-hand side of the above equation, to obtain 
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From equations 4.3 and 4.4; neglecting the higher order terms, 
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Dividing the terms in equation 4.5 by Δt on both sides (to get the equation in 

terms of x, y component velocity) 
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Where xV  and yV  are the x and y components of velocity or optical flow of

),,( tyxI ; 
x

I

¶
¶

, 
y

I

¶
¶

and 
t

I

¶
¶

being the spatio-temporal derivatives of ),,( tyxI  

 tyyxx IvIvI -=+ ..  (4.8) 

Vector representation being 

 
tIvI -==Ñ .  (4.9) 

Where IÑ is the spatial gradient of brightness intensity and v  is the optical flow 

(velocity vector) of the previously detected feature points, tI  being the time 

derivative of the brightness intensity. 

 

Figure 4.3: Flow of a common feature point (x, y) through a sequentially 

temporal thoracic image sequence with N frames, arrows indicate the 

changing velocity vector v  
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4.4 Results and Discussion 

The feature detector/descriptor implemented on the temporal image sequence 

gave out matching feature points among the six continuous frames of the thoracic 

continuous temporal image sequence ( )6.01.0 ££ t  where t is the timestamp of 

frames in the sequence for all Anatomical Positions (AP) with average translation 

values. The average translation between inter-frame durations for all common 

points ‘P’ from the initial to final frame: 

 

 

Below figures (4.4 to 4.6) indicate the image registration process from the 

sequence for all test subjects through all three APs.  

 

 

Figure 4.4: Image sequence frames and the registered image for all subjects-
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Figure 4.5: Image sequence frames and the registered image for all subjects-

Coronal 

 

 

Figure 4.6: Image sequence frames and the registered image for all subjects-

Sagittal 

 

Though the proposed method was applied on all the subject data at hand, for 

representation purposes, subject ‘case 5’ sagittal AP data has been extensively 

used (as can be seen in fig. 4.7 to 4.11). The temporal sequence starting from t=0 

to t=0.6 s is considered with a gap of 0.1 seconds between two consecutive frames 

in the sequence. So, frame 1 is the one acquired at t=0.1 and frame 6 is the one 

corresponding to t=0.6 s. 
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origin of the respective tracks. ‘Track_Min/Max/Mean Speeds’ are the minimum, 

maximum and mean speeds of the feature point trail/track for each point through 

the sequence. The displacement/translation obtained is inherently in pixel units. 

With the knowledge of PPI (pixel per inch) value of the respective images in 

question, the displacements can be converted into more tangible units. These 

average translations for all such feature points for all test subjects through all 

three APs are shown in tables 4.2 to 4.4. Their corresponding line plots for all 10 

subjects are shown as figures 4.12 to 4.14 for easier comparative analysis over the 

complete breathing pattern. A corresponding false-color registered image 

representation is shown as fig. 4.9. Optical flow representation of the image 

sequence with respect to registered image along with a flow orientation scheme is 

shown in fig. 4.10. The optical flow at any point in the image can be decoded 

using the flow orientation scheme coding pinwheel given alongside. There was a 

rather large strip of single color found in the optical flow representation, which is 

synonymous with the false color representation in fig. 4.9. That is the location 

with maximum displacement/translation in the sequence and also of maximum 

deformation with respect to the reference frame. 
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Figure 4.8: The color coded feature points and their colored trails showing 

the distinct paths for Sagittal AP ‘case 5’, frames are labeled in order of their 

temporal sequence 

 

 

 

Figure 4.9: The registered image for the corresponding temporal sequence 

for subject ‘case 5’ Sagittal AP 
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Figure 4.10: Color-coded Optic flow for subject ‘case 5’ sagittal AP with flow 

orientation scheme 

 

Where fig. 4.10 indicated the optical flow orientation, magnitude of the optical 

flow is an important aspect that can be ignored when observing an image 

sequence over time. Fig. 4.11 represents the optical flow magnitude spread over 

the complete sequence with the first frame as reference. As can be seen from the 

magnitude scale provided alongside, the bigger red arrows indicate areas with 

higher magnitude of flow and larger deformations, while the blue and black 

arrows indicate areas lower optical flow magnitude and smaller deformations in 

respective locations. 

98 



 

Figure 4.11: The overall image sequence optic flow with magnitude scale 

 

Table 4.2: Average translations (in pixels) for all test subjects through Axial AP 

AXIAL Average translation (pixels) 

slices  case1  case2  case3  case4  case5  case6  case7  case8  case9  case10  

1  0.047 0.000 0.050 0.128 0.103 0.122 0.105 0.081 0.148 0.235 

2  0.074 0.054 0.212 0.263 0.220 0.192 0.173 0.176 0.157 0.235 

3  0.121 0.090 0.078 0.260 0.217 0.232 0.160 0.197 0.154 0.491 

4  0.236 0.041 0.077 0.120 0.335 0.224 0.123 0.236 0.273 0.550 

5  0.165 0.087 0.235 0.054 0.229 0.277 0.175 0.227 0.346 0.415 

 

 

99 



Table 4.3: Average translations (in pixels) for all test subjects through Coronal AP 

CORONAL Average translation (pixels)  

slices  case1  case2  case3  case4  case5  case6  case7  case8  case9  case10  

1  0.049 0.241 0.090 0.337 0.090 0.272 0.413 0.316 0.705 0.389 

2  0.257 0.445 0.284 0.441 0.545 0.444 0.574 0.563 1.515 0.587 

3  0.544 0.451 0.490 0.436 0.574 0.434 0.547 0.600 1.541 2.594 

4  0.555 0.396 0.443 0.414 0.617 0.458 0.522 0.700 1.508 0.707 

5  0.361 0.381 0.529 0.495 0.682 0.532 0.503 0.645 1.432 0.586 

 

 

Table 4.4: Average translations (in pixels) for all test subjects through Sagittal AP 

SAGITTAL Average translation (pixels)  

slices  case1  case2  case3  case4  case5  case6  case7  case8  case9  case10  

1  0.056 0.102 0.033 0.198 0.022 0.218 0.283 0.387 0.318 0.348 

2  0.067 0.038 0.031 0.225 0.081 0.515 0.451 0.603 0.410 0.439 

3  0.229 0.144 0.036 0.184 0.131 0.511 0.504 0.639 0.336 0.476 

4  0.120 0.125 0.041 0.228 0.092 0.483 0.574 0.666 0.374 0.521 

5  0.131 0.042 0.027 0.237 0.079 0.545 0.504 0.659 0.326 0.505 
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Figure 4.12: Average displacement for all subjects in Axial AP 

 

 

Figure 4.13: Average displacement for all subjects in Coronal AP 
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Figure 4.14: Average displacement for all subjects in Sagittal AP 

 

As we can see in fig. 4.12, the axial translations were recorded highest for subject 

‘case 10’ and the lowest corresponding values were for ‘case 2’. The average 

value for ‘case 10’ was recorded at 0.3851 pixels, which was way above the 

population average of 0.184 shown by a line across the plot. In case of coronal AP 

as can be seen in fig. 4.13, the biggest deformations throughout the sequence are 

exhibited by the subjects ‘case 10’ and ‘case 9’ at 2.594 and 1.54 pixels 

respectively. The population average in this case being 0.5847 marked by a 

straight line in the corresponding plot. Though apart from ‘case 10’ only ‘case 

9’exhibited bigger deviations than the average value, the change in deformation 

with respect to inter-frame durations was more or less constant; on the other hand 

‘case 10’ exhibited enormous shift from the average value while transitioning 

from 3rd frame to 4th frame. Looking at fig. 4.14 for the sagittal AP, all subjects 

though a bit above and below the average maintain an almost constant rate of 
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change in the deformations and do not exactly exhibit any erratic patterns through 

the observed full inhale to exhale process. After having a comprehensive look at 

all subjects’ deformation pattern data through axial, coronal and sagittal APs 

collectively, it was inferred that subject ‘case 10’ singled out as the only one with 

maximum deformation. This analysis indicates anomalous breathing patterns from 

the aforementioned subject among the considered consensus average. 

4.5 Conclusion 

A framework has been presented showing how to use a feature point set generated 

using a Hessian-matrix based feature detector and Haar wavelets based descriptor 

such as SURF through a motion estimation technique such as OFM tracking for 

deformable image transformations in medical images such as the thoracic ‘pectus 

excavatum’ [Haller, J. A. et al., 1987; Kim, H. C. et al., 2010] full exhale and full 

inhale used in this work. This conclusion is of high clinical relevance from a 

diagnostic point of view as well; the artifacts and position uncertainties due to 

uneven breathing patterns which hamper the image guided clinical interventions 

can be corrected to a point where there influence on the actual data and the 

diagnostics based on them is brought down to the least. 

 This work can be looked upon as an automatic way of deformable image 

registration for high contrast medical images using landmark (control) points. 

Although the proposed methodology provides with a fast and accurate way of DIR 

for medical images and thus an account of deformity in the thoracic periphery, 

there is much scope for improvement in the overall process. One way this can be 

achieved in future is by modifying the SURF and/or the Motion estimation 

procedure involved in the process. Another way is to improve and enhance the 

quality as well as the quantity of the database used. Also, the aforementioned 
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procedure can provide better results if applied for a different human anatomy 

altogether. 

 However diligently and accurately it may have been done, there might still 

be some scope of improvement and betterment in the methodology and also in its 

presentation. The search and pursuit of better methods for deformable medical 

image registration is still on.  
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CHAPTER 5: DEFORMABLE THORACIC CT IMAGES 

SEQUENCE REGISTRATION USING STRAIN ENERGY 

MINIMIZATION 

 

The idea of deformable image registration (DIR) has been explored for a thoracic 

CT (computed tomography) image database of ten subjects. Thoracic CT image 

acquisition for clinical interventions requires a well-defined procedure which has 

already been underlined on the basis of field expertise and past experiences. 

Despite strict adherence to the procedure, the acquired images are prone to 

distortions and artefacts. This might happen due to organ motion during breathing 

process (at times even in breath-hold procedures), slight (even involuntary) 

movements or acquisition variations in supine and prone positions etc. An 

intensity differences based energy minimization method has been proposed. The 

moving image is transformed in the process such that it gets maximum alignment 

with the fixed image. This is achieved by energy minimization of the moving 

image in an iterative process. It is a simpler and more practical method for 

thoracic CT image registration than the prevalent approaches. This has been 

shown by lower mean registration errors for the patient data; the errors were as 

such axial: 0.283±0.08, coronal: 0.784±0.32 & sagittal: 0.66±0.2 pixels. This 

registration of moving image onto the fixed image in the sequence will help in 

minimizing the adverse effects of the otherwise present discrepancies, phase 

errors and discontinuity artifacts that might have crept in during the acquisition. 

The proposed method begins with a pair of images of same dimensions; these 

images are part of an image sequence and have considerable temporal difference 

between them. The image sequence has been acquired as a part of the breathing 
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process. Of the two, image appearing earlier in the temporal timeline is considered 

as the target image and the one appearing later is considered as the source image. 

These both images represent the extremes of a breathing cycle such that the first 

image is full inhale and the last image is full exhale. These both images have their 

own specific energy signatures. Both these images have to be registered against 

each other. For the registration process, no direct comparisons between images are 

done; instead the source image is independently transformed in such a way that 

the transformed image has minimum intensity difference with the target image. It 

is an iterative process (as can be referred to in fig. 5.2), at each stage of which 

transformed versions of source image are compared to the target image for 

intensity difference of zero or less than a third decimal place value. If none of the 

two conditions are met, the transformed image goes into further transformation 

and the process continues until the source image is transformed to a level that it 

satisfies previously laid conditions. In our experiments, SNR (signal to noise 

ratio), PSNR (peak SNR), mean SSIM (Structural SIMilarity) index & NCC 

(Normalized Cross Correlation) have been used to estimate and establish 

increased similarity between the later transformed – target image pair in 

comparison to previous source – target image pair. Mean Registration Error 

( ) is used as the quantitative measure for the evaluation of performance. The 

obtained for the dataset was found to be considerably lower than more 

traditional and prevalent transforms such as affine and b-splines based 

approaches. 

5.1 Introduction 

Organ motion pertaining to breathing can lead to image artefacts and position 

uncertainties during image guided clinical interventions. A particular case for 
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such image guided interventions (IGI) can be the radiotherapy planning of 

thoracic and abdominal tumours; the respiratory motion causes important 

uncertainties and is a significant source of error [Keall, P. J. et al., 2006]. During 

a process of image acquisition, slight movement from the subject can translate 

into potential discrepancies in the acquired image sequence. Images in such an 

acquired sequence more than often end up out of sync and prove to be not of 

much use for both medical application and/or research purposes. A non-invasive 

method to describe lung deformations was proposed using NURBS surfaces based 

on imaging data from CT scans of actual patients [Tsui, B. M. W. et al., 2000]. 

Image registration has recently started playing an important role in this scenario; it 

helps in the estimation of any motion caused due to breathing during acquisition 

and the description of the temporal change in position and shape of the structures 

of interest by establishing the correspondence between images acquired at 

different phases of the breathing cycle [Ehrhardt, J. et al., 2011]. 

Image Registration is the alignment/overlaying of two or more images so 

that the best superimposition can be achieved. These images can be of the same 

subject at different points in time, from different viewpoints or by different 

sensors. This way the contents from all the images in question can be integrated to 

provide richer information. It helps in understanding and thus reducing the 

differences occurred due to variable imaging conditions. Most common 

applications of Image Registration include remote sensing (integrating 

information for GIS), combining data obtained from a variety of imaging 

modalities (combining a CT and an MRI view of the same patient) to get more 

information about the disease at once, cartography, image restoration etc. An 

image registration method targets to find the optimal transformation that aligns 
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the images in the best way possible. Image registration methods can be broadly 

classified into three basic classes, landmark (or point) based registration 

[Mcgregor, B., 1998; Rohr, K. et al., 2001; Bookstein, F. L., & Green, W. D., 

1993], segmentation based registration [Sull, S., & Ahuja, N., 1995; Feldmar, J., 

& Ayache, N., 1996; Jain, A. K. et al., 1996] and the image intensity based 

registration [Szeliski, R., & Coughlan, J., 1994; Kybic, J., & Unser, M., 2003] 

depending on them being more cost efficient, fast and flexible over the others with 

respect to the image family it is being used to register and the application of the 

registration process. It is further categorized into two kinds based on the type of 

image it is being applied for. The two kinds of images are Rigid Images and 

Deformable Images. Rigid images are those of structures with rigid morphological 

properties e.g. bones, buildings, geographical structures etc. If the underlying 

transformation model allows local deformations, i.e. nonlinear fields’ u(x), then it 

is called Deformable Image Registration (DIR) [Muenzing, S. E. A. et al., 2014]. 

Deformable images are those of structures shape and size of which can be 

modelled after tangible physically deformable models [Sotiras, A. et al., 2013]. 

Rigid image registration although is an important aspect of registration it is not 

the topic of discussion in this article. Since the discussion is about Medical Image 

Registration and almost all anatomical parts or organs of the human body are 

deformable structures, the concentration here is on DIR [Oliviera, F. P. M. & 

Tavares, J. M. R. S., 2012]. 

The proposed methodology is based on intensity based registration. It is 

fully automatic in its mode of operation and helps in faster and more accurate 

image registration in comparison to pure landmark based registration methods. 

This factor gives our method an upper hand when it comes to real-life medical 
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image registration problems. The intensity based energy minimization 

methodology seems more practical, stable and cost efficient for deformable 

images in comparison to landmark based or segmentation based methodologies 

for similar purposes. The method is simpler and faster than its contemporaries 

because the energy function is worked upon directly without solving large matrix 

system assemblies. 

5.2 Background 

The background study of this chapter initially includes a study of few most 

prominent proposed algorithms in the direction of study of the energy 

minimization based non-linear elastic image registration and its applications. Then 

the proposed methods relating to image registration of thoracic CT images are 

discussed. The propositions are categorically discussed keeping in mind their 

acute relevance and their year of occurrence. Propositions occurring at a later 

instant in timeline are given higher priority in terms of detailed discussion in 

comparison to earlier works to establish better context. These methods are 

compared in a tabular format in table D.1 in Appendix D. 

 Pennec and associates [Pennec, X. et al., 2005] suggested a statistical 

regularization framework for non-linear registration based on the concept of 

Riemannian Elasticity. In the proposed method, elastic energy has been 

interpreted as the distance of the Green-St. Venant strain tensor to the identity, 

which in turn reflects the deviation of the local deformation from a rigid 

transformation. By changing the usually employed Euclidean metric for a more 

suitable Riemannian one, a consistent statistical framework has been defined to 

quantify the amount of deformation. These statistics were then used as parameters 

in a Mahalanobis distance to measure the statistical deviation from the observed 
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variability, giving a new regularization criterion that is called the statistical 

Riemannian elasticity. It was found that this new criterion is able to handle 

anisotropic deformations and is inverse-consistent. Preliminary results and 

observations showed that it can be quite easily implemented in a non-rigid 

registration algorithm. 

 Bao Zhang and associates [Zhang, B. et al., 2011] proposed a three-

dimensional elastic image registration methodology based on strain energy 

minimization with its application to prostate magnetic resonance imaging. The 

registration algorithm was also applied on ten sets of human prostate data, each 

with two typical deformation states (one with 0 cc of air and the other with 40–60 

cc of air inflated in the endorectal coil balloon). There were a total of 200-400 

landmarks used to derive the transformation depending on the size of each 

prostate. They described it as a novel 3-D elastic registration procedure that is 

based on the minimization of a physically motivated strain energy function that 

requires the identification of similar features (points, curves, or surfaces) in the 

source and target images. The Gauss-Seidel method was used in the numerical 

implementation of the registration algorithm. The registration procedure was 

validated on synthetic digital images, MR images from prostate phantom, and MR 

images obtained on patients. Registration errors were assessed by averaging the 

displacement of a fiducial landmark in the target to its corresponding point in the 

registered image. The registration error on patient data was 1.8±0.7 pixels. 

Registration also improved image similarity (normalized cross-correlation) from 

0.72±0.10 to 0.96±0.03 on patient data. Registration results on prostate data in 

vivo demonstrated that the registration procedure could be used to significantly 

improve both the accuracy of localized therapies such as brachytherapy or 
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external beam therapy and can be valuable in the longitudinal follow-up of 

patients after therapy. 

 Ronald W. K. So and associates [So, R. W. K. et al., 2011] proposed a 

technique for non-rigid image registration of brain magnetic resonance images 

using graph-cuts. A graph-cut based method was proposed for non-rigid medical 

image registration on brain magnetic resonance images. In this proposal the non-

rigid medical image registration problem has been reformulated as a discrete 

labelling problem. They modelled the non-rigid registration as a multi-labeling 

problem by Markov random field. The image registration problem was therefore 

modeled by two energy terms based on intensity similarity and smoothness of the 

displacement field. The MRF energy was minimized using graph-cuts algorithm 

via α expansions. The registration results of the proposed method were compared 

with two state-of-the-art medical image registration approaches: free-form 

deformation based method and demons method. In addition, the registration 

results were also compared with that of the linear programming based image 

registration method. The proposed method was found to be more robust against 

different challenging non-rigid registration cases with consistently higher 

registration accuracy than those three methods, and gives realistic recovered 

deformation fields. 

 Andrew R. Dykstra and associates [Dykstra, A. R. et al., 2012] proposed a 

method which co-registers high-resolution preoperative MRI with postoperative 

computerized tomography (CT) for the purpose of individualized functional 

mapping of both normal and pathological (e.g., interictal discharges and seizures) 

brain activity. The proposed method accurately (within 3 mm, on average) 

localizes electrodes with respect to an individual's neuroanatomy. Furthermore, 
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they outlined a principled procedure for either volumetric or surface-based group 

analyses. The method was demonstrated in five patients’ data with medically-

intractable epilepsy undergoing invasive monitoring of the seizure focus prior to 

its surgical removal. Accuracy of the method was found within 3mm of average. 

The straight-forward application of this procedure to all types of intracranial 

electrodes, robustness to deformations in both skull and brain, and the ability to 

compare electrode locations across groups of patients makes this procedure an 

important tool for basic scientists as well as clinicians. 

 H. P. Heinrich and associates [Heinrich, H. P. et al., 2013] proposed a 

MRF-Based Deformable Registration and Ventilation Estimation of Lung CT. In 

the proposed method three major challenges associated with lung ct registration 

viz. large motion of small features, sliding motions between organs and changing 

image contrast due to compression are addressed and potentially higher quality of 

discrete approaches is preserved. First, an image-derived minimum spanning tree 

is used as a simplified graph structure, which coped well with the complex sliding 

motion and allowed to find the global optimum very efficiently. Second, a 

stochastic sampling approach for the similarity cost between images is introduced 

within a symmetric, diffeomorphic B-spline transformation model with diffusion 

regularization. The complexity is reduced by orders of magnitude and enables the 

minimization of much larger label spaces. In addition to the geometric transform 

labels, hyper-labels are introduced, which represent local intensity variations in 

this task, and allow for the direct estimation of lung ventilation. The 

improvements are validated in accuracy and performance on exhale-inhale CT 

volume pairs using a large number of expert landmarks. The three challenges 

posed in the beginning are met. 
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 Keita Nakagomi and associates [Nakagomi, K. et al., 2013] proposed a 

segmentation based registration methodology which uses multi-shape graph cuts 

with neighbour prior constraints for lung segmentation from a chest CT volume. 

A novel graph cut algorithm has been proposed that can take into account multi-

shape constraints with neighbor prior constraints, and reports on a lung 

segmentation process from a three-dimensional computed tomography (CT) 

image based on this algorithm. It is a novel segmentation algorithm that improves 

lung segmentation for cases in which the lung has a unique shape and pathologies 

such as pleural effusion by incorporating multiple shapes and prior information on 

neighbour structures in a graph cut framework. The efficacy of the proposed 

algorithm is demonstrated by comparing it to conventional one using a synthetic 

image and clinical thoracic CT volumes. 

5.3 Method 

5.3.1 Preparation 

The dataset used comprised of a total (3×10)×10 i.e. 300 thoracic CT images 

across 10 subjects. All images were anonymized and all procedures followed were 

in accordance with the ethical standards of the responsible committee on human 

experimentation (institutional and national) and with the Declaration of Helsinki 

1975, as revised in 2008 (5). Informed consent was obtained from all patients for 

being included in the study. All patients or legal representatives signed informed 

consent. The images lie between CT phases 0-5 i.e. end-inspiration to end-

expiration in timestamp range t00→t05. The image dimensions lie between 

396×396 to 432×400 pixels. There were 6 frames from a temporal thoracic image 

sequence each for every Anatomical Plane (AP)  i.e. Axial (supine), Coronal and 

Sagittal for all the 10 subjects acquired simultaneously with a gap of 0.1 second 
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starting from time t= 0.1 to 0.6 seconds. All images were identified as 

where , (x, y) are the x & y 

coordinates in the Cartesian plane and AP signifies the three anatomical planes of 

view i.e. Axial (a), Coronal (c) and Sagittal (s). Suppose the 3rd frame from 

coronal AP for subject ‘case 9’, would be notified as . A view of the 

image database is shown in the table 5.1 for representational purposes. 

Table 5.1: All three anatomical viewpoints for all the 10 subjects at time t=0.1 & 0.6 sec 

 
ANATOMICAL PLANES (T & S Images) 

 

 
Axial Coronal Sagittal 

1 

                 

2 

                     

3 

                   

4 

                 

5 

                     

6 

                 

7 

                  

8 

                      

9 

                 

10 

                    
 

5.3.2 Proposed Methodology 

What we have is a temporal sequence of images starting from time t=0.1 to t=0.6 

seconds. It starts from the end- inspiration phase and continues up to the end-
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expiration phase of the breathing cycle. The last image of the aforementioned 

sequence being diametrically most deformed with respect to the first image. We 

have proposed a method to register these two images with respect to each other. 

The two images are the target  and the source images  at t=0.1 and t=0.6 

sec. respectively. These images belong to the same domain Ω and are related 

through a transformation . This transformation is such that the resulting 

transformed image ′  has the minimum energy distribution difference in terms 

of a similarity measure with the target image , this has been shown in fig. 5.1. In 

simpler terms it can be stated as: ‘a transformation sought such that the 

transformed image has minimum intensity difference with the target image’. 

 

Figure 5.1: Overview of the proposed methodology 
 

There is a potential energy associated with an elastic system at a time. 

Since, the images involved in the study are of a human body organ, they can be 

categorized as non-rigid or deformable images and the energy principles of elastic 

systems are applicable to this set of images. Potential energy of an elastic two 

dimensional system at static equilibrium is pure strain energy; it can be defined as 

[Ugural, A. C., & Fenster, S. K., 2003]: 
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  (5.1) 

where Ω is the image dimension,  is the tensile stress (engineering constant),  is 

the shear modulus, together they are called the Lame’ constants;  and  are 

normal strains in the x and y directions respectively,  is the shear strain in the 

x-y plane pointing towards the y direction and ‘e’ is the unit change in image 

dimensions. 

 The Poisson’s ratio value for Lung tissue averages close to 0.46 [Al-

Mayah, A. et al., 2008; Brock, K. K. et al., 2005; Sundaram, T. A., & Gee, J. C., 

2005, Zhang, T. et al., 2004]. In equation 5.1, the first term ‘ ’ can be ignored 

since it is two order lower than the rest of the terms. This makes the energy 

expression independent of tensile stress : 

   

 

this can be further simplified to: 

  (5.2) 

 

Suppose u, v are the displacements in x and y directions respectively. Normal 

strain is defined as  in the direction ‘ ’ (a= x, y); shear strain  

in the plane a-b would be the sum of angle of shear (for smaller degrees of shear). 

Thus,  and , similarly  . Exacting these values to 

equation 5.2: 

  (5.3) 
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So, the expression for energy function ‘U’ in equation 5.1 has been reduced to 

strictly a strain energy function in equation 5.3, the equation 5.3 hence can be 

rewritten for  as: 

                 (5.4) 

The strain energy ‘ ’ minimization requires that over the image boundary 

conditions between the source and the target images: 

 
 (5.5) 

 

Such that the minimization constraint can be expressed in terms of intensity 

difference between the transformed image ′  and the target image (T) over the 

image dimensions’ (Ω) as: 

 
 (5.6) 
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Figure 5.2: Flowchart of the iterative process in the registration procedure 
 

It is an iterative process; as we can see in the fig 5.2, during the iteration, each 

time a transformed image is obtained, it is compared against the fixed image and 

an intensity difference mapping and value is calculated. These intensity 

differences are checked at each step. If very little or negligible change (say up to 

third decimal place) is observed, the iteration is stopped and the finally 

transformed image is considered as the required registered image. In case of 

progressively changing intensity differences for consecutive iterations, the 

iteration is continued until the stopping factor comes into play. 
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5.4 Results and Discussion 

Iterative energy minimization using intensity differences across the image 

boundaries yield a transformed image ( ) which was pitted against the actual 

target image ( ) at different stages of the iteration to assess the level of 

transformation. Out of the ten subjects’ data at hand, the coronal AP of subject 

‘case 3’ has been chosen to elaborate and demonstrate the proposed technique 

with results. The transformed image ( )  after the complete registration process 

showed an increase of 51.64% SNR (signal-to-noise ratio) value with respect to 

the target image ( ) in comparison to the source image ( ) with respect to target 

image. The change in PSNR (peak SNR) value was recorded at 41.64% in  in 

comparison to  pair. A new metric called the SSIM (Structural Similarity) 

index has been used [Wang, Z. et al., 2004]. It has been used to estimate and 

measure the similarity between two images. It has been used as a deciding metric 

which would give a percentage similarity between the two images in question i.e. 

the fixed and the moving image and the fixed-transformed image pair. The mean 

SSIM index for the  pair was calculated at 0.4975, the same index for the  

pair came at 0.735. Along with similarity measures such as SNR, PSNR and m-

SSIM, NCC (normalized cross-correlation) has been used to demonstrate as to 

how close the transformed image ( ) has come to the target image ( ) as a result 

of the registration process. The NCC value for  pair was estimated at 0.8817, 

for the  pair it was calculated at a higher value of 0.9749 which further helps 

in establishing the closeness of the transformed image to the target source and 

hence, the proposed methodology as an efficient deformable image registration 

approach. 
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Figure 5.3: The iterative process graphical results on ‘case 3’ coronal AP 

The earlier discussed iterative process and how it results in the finally registered 

image has been shown in the fig. 5.3. Figure 5.3(a) & (b) are the fixed and moving 

images respectively, they are also the diametrically opposite images of a breathing 

cycle (i.e. full inhale and full exhale) in a respiration process. Figure 5.3(c) is the 

intensity difference mapping (IDM) of (a) & (b) before the iteration starts. 

Transformation is applied to the moving image and transformed image is 

obtained. An IDM and corresponding value is calculated for the newly 

transformed moving image and the fixed image. Changes in IDM and value for 
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current and previous stage is observed, if the change is zero or negligible in 

comparison to the intensity difference value at either of the two stages of the 

iteration, the iteration is stopped there and last transformed image is the registered 

image. Figure 5.3(d) is the transformed image at the 7th iteration, 5.3(e) is its 

IDM with respect to the fixed image. In this particular instance of subject ‘case 3’, 

it took 174 iterations to obtain the finally registered image which is the fig. 5.3(l); 

5.3(m) is the final IDM indicating minimal difference of the registered image with 

respect to the fixed image indicating a seamless and smooth registration process. 

Figures 5.3(f) and (g) are the transformed and IDM (with the fixed image) images 

at 20th iteration; figs. 5.3(h) and (i) are the transformed and IDM (with the fixed 

image) at the 55th iteration; similarly 5.3(j) and (k) are the same at the 130th 

iteration. Figure 5.3(n) and (o) are the deformation vector and deformation field 

representations respectively for the finally registered image. 

 Figure 5.4 shows the energy minimization process for subject ‘case 3’ 

coronal AP, the iterative process continues until a finally registered image is 

obtained at 174
th

 iteration (that is where the minimization process stops). The 

initial descent was observed as fast with respect to iterations until 110
th

 iteration, 

after which the minimization process progresses with diminutive changes in 

intensity differences. It finally picks up at 124
th

 iteration until to finally finish the 

process at 174
th

. 
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Figure 5.4: Energy minimization vs. Iterations for ‘case 3’ coronal AP 

 

Table 5.2: SNR, pSNR, m-SSIM, NCC for all subjects under study from all APs; S-T 

is the source-target pair, R-T is registered-target pair for proposed method 

Similarity estimation of S-T and R-T using various metrics for all subjects 

 
Axial Coronal Sagittal 

    
 

S-T R-T S-T R-T S-T R-T 

       SNR 

(dB) 
16.23±1.48 16.29±1.96 12.51±1.37 16.29±1.62 12.62±1.3 16.13±1.6 

PSNR 

(dB) 
20.52±1.14 20.58±1.62 15.35±1.36 19.13±1.6 16.33±1.5 19.83±1.8 

m-

SSIM 

index 

0.744±0.05 0.742±0.04 0.49±0.08 0.58±0.12 0.57±0.13 0.64±0.14 

NCC 0.964±0.01 0.969±0.01 0.85±0.03 0.93±0.02 0.89±0.03 0.95±0.03 

 

The proposed technique was practically implemented on all the subject data at 

hand i.e. three anatomical positions across ten subjects. After obtaining the finally 

registered images for complete dataset, they were pitted against the fixed images 

122 



of their own sequence’s respective sub-datasets. Similarity metrics such as SNR, 

pSNR, mean-SMIM index and NCC were calculated and compared for each S-T 

and R-T pairs for improvements (if any) which might suggest closeness of the 

registered image towards the fixed image. The observations are collected in table 

2, they are average values over the complete dataset through all APs; all similarity 

metrics clearly seem to improve from S-T to R-T image pair for all subjects. 

Where there are significant changes in the case of coronal and sagittal APs, 

respective changes are not as notable in axial AP’s data, this can be explained by 

usually comparatively smaller deformations in the ‘anterior-posterior’ direction. 

 

 

Figure 5.5: mean Registration error (pixels) for all 10 subjects through all APs 

 

As can be seen in the figure 5.5, the mean registration errors ( ) obtained for 

all the subjects involved in the test have been plotted through all three APs. 

Without the scope of any significant deformations comparable with coronal and 

sagittal APs, lowest mean registration errors were recorded for axial APs after 
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using all the tested transforms. The proposed method yielded least mean  (for 

all APs) while followed by b-spline and affine transforms in order. Not relying on 

landmark based features to establish correspondences instead applying purely 

intensity difference based energy minimization can be attributed for these results. 

5.5 Conclusion 

A novel, practically more feasible and accurate deformable image registration 

methodology for thoracic image sequences has been proposed. It could be a boon 

for real-life applications such as image acquisition for radiotherapy planning of 

thoracic lesions, dosimetric evaluation, tumour growth progression (with time) 

and determination of subject-specific deformable motion models. 

 An effort has been made to model elastic image deformations after real life 

2D elastic object deformations such that all the constituents of that object are 

constantly in spontaneous motion and are not at equilibrium. Motion of 2D elastic 

objects due to internal forces has been used as an inspiration to determine 

deformations in thoracic CT images. Results from our study showed average 

target registration error of less than 1 pixel over the entire thoracic ct image 

volume. Such an accurate registration of thoracic ct images obtained in the 

deformed state can be useful in treatment planning and also for longitudinal 

evaluation of progression/regression in patients with lung cancer. Although the 

utility of this method has been shown for ct image volume, the method can be 

applied to images of any other imaging modalities as well. 
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CHAPTER 6: CONCLUSION & FUTURE WORK 

 

Deformable image registration is a challenging problem due to various types of 

possible deformations and high chance of false registration. In particular, 

registration of CT image stacks/sequences is a very difficult task because of the 

sheer number of landmark feature points involved in the registration process. DIR 

techniques able to account for displacement and deformation of organs in a series 

of medical images acquired in connection with fractions of radiotherapy are a key 

component in the efforts to improve the treatment guided by image data. The 

conclusions of work of this thesis and suggestions for future research are 

presented in this chapter. 

6.1 Concluding Remarks 

The study was set out to explore new and accurate deformable image registration 

techniques for thoracic CT image pairs and image sequences. The investigations 

were set up on a three dimensional CT image database of 10 subjects. For each 

subject there were 10 images in temporal sequence through all three anatomical 

positions i.e. axial, coronal and sagittal, out of which first six were temporally 

aligned with a gap of 0.1 seconds from full inhale to full exhale position. The 

objective was to register the image pair and sequences accurately from the above 

mentioned data (or any other modality image) by applying geometrical 

transformation based registration algorithms. Three such registration algorithms 

were proposed, both standalone and composite algorithms. One of the objectives 

of the algorithms was to determine an image registration model for a variety of 

breathing motion data from many subjects. It is known that different individuals 

have different breathing frequencies depending on many factors like their 

respective lifestyles, genetic or hereditary diseases etc. The study was conducted 
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to develop algorithms to adjust and normalize these variations, thus providing a 

common denominator upon which more accurate analyses can be made in future, 

both from medical imaging and clinical research perspectives. There hasn’t been a 

consolidated method to assess the deformations happening in the thoracic region 

during the process of breathing. The proposed method helps in assessing this 

deformation in form of average displacement of all common landmark points in 

that image sequence from full inhale to exhale positions. This has been 

implemented on all test subjects and has been demonstrated for one subject in 

further detail. Also, the displacing points on the image leave clear and color 

coordinated paths which reflect the exact motion of those points through frames of 

the image sequence. This would help in assessing and analysing individual motion 

separately at every point of the medical image if required. This would be highly 

beneficial in detecting abnormal behaviour in organs when compared to normal 

established baselines. Accuracy of these algorithms was determined using metrics 

like Target registration error, image similarity metrics etc. Lower values of target 

registration error for applied algorithms in comparison to those prevalent 

indicated higher deformable image registration accuracies. Likewise, similarity 

metrics indicating higher percentage of correspondence between the transformed 

image and target image (post registration) in comparison to the initial similarity 

between source and target image indicate better registration than the usually 

employed methods to achieve same objective. 

6.2 Scope for Future Work 

The proposed methods proved to be accurate and fulfilling the objectives keeping 

in mind which the work was started, they can be seen as the stepping stones to 

more accurate and fast techniques to achieve deformable image registration in the 
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future. The proposed methods seem to exhaust the scope of this thesis, there are a 

few modifications in already existing methods and few new ideas that are in order 

to be taken up in the future to enhance and push the boundaries of image 

processing and medical imaging in particular. One of the primary modifications 

would be soft computing based feature point marking system. The idea is to use 

an automatic/semiautomatic learning based relevant landmark point marking 

system. Organ based information from both medical and image processing 

perspectives will be used as a pre-requisite for the learning procedure to enable 

the landmark point marker to highlight only relevant areas instead of either 

manually plotting points or using an automatic method which marks landmark 

points randomly (based on presumptions other than the medical kind). This would 

help in highlighting those areas of the medical image which actually do move 

rather than those which do not most of the time thus making better use of the 

resources and making the whole process faster and more relevant. The image 

registration resulting from these relevant common landmark point cloud would be 

less erroneous and more dynamic according to the organ of which the medical 

images are being registered. 

 Deformable image registration has been playing a pivotal role in 

correcting the ‘human error’ aspect of medical image acquisition irrespective of 

the image modality it is being used for and has been a major contributor in clinical 

research based on these images for similar reasons. The methods proposed in this 

work will become a small part of an already vast cluster of similar algorithms, all 

working in tandem towards a common objective: fast, accurate and efficient 

image based clinical intervention as when required.  
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APPENDIX 

 

Appendix-A:  Geometrical Deformation models for elastic images 

Table A.1: Elastic Body Models 

Author  Year  Title  About  Method  Findings  Remarks  

M. 

Droske 

et al.  

2004  A variational 

approach to 

non rigid 

morphologic

al image 

registration  

A novel 

variational 

method to 

non rigid 

registration 

of 

multi-modal 

data.  

A suitable 

deformation was 

determined via the 

minimization of a 

morphological i.e., 

contrast invariant, 

matching 

functional along 

with an 

appropriate 

regularization 

energy.  

It was found 

suitable for the 

registration of 

multimodal 

data, as 

confirmed by 

some 

numerical 

results.  

 

A. leow 

et al.  

2005  Inverse 

consistent 

mapping in 

3D 

deformable 

image 

registration: 

Its 

construction 

and statistical 

properties  

A new 

approach to 

inverse 

consistent 

image 

registration. 

A 

uni-directio

nal 

algorithm is 

developed 

using 

symmetric 

cost 

functionals 

and 

regularizers.  

Instead of 

enforcing inverse 

consistency using 

an additional 

penalty that 

penalizes 

inconsistency 

error, the new 

algorithm directly 

models the 

backward 

mapping by 

inverting the 

forward mapping. 

The resulting 

minimization 

problem could 

then be solved 

uni-directionally 

involving only the 

forward mapping, 

without 

optimizing in the 

backward 

direction.  

The algorithm 

was evaluated 

by applying it 

to the serial 

MRI scans of a 

clinical case of 

semantic 

dementia. The 

statistical 

distributions of 

the local 

volume change 

(Jacobian) 

maps were 

examined by 

considering the 

Kullback-Liebl

er distances on 

the material 

density 

functions.  

Statisticall

y 

significant 

difference

s were 

detected 

between 

consistent 

versus 

inconsiste

nt 

matching 

when 

permutatio

n tests 

were 

performed 

on the 

resulting 

deformatio

n maps.  
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X. 

Pennec 

et al.  

2005  Riemannian 

elasticity: A 

statistical 

regularizatio

n framework 

for 

non-linear 

registration  

The elastic 

energy has 

been 

interpreted 

as the 

distance of 

the Green-St 

Venant 

strain tensor 

to the 

identity, 

which 

reflects the 

deviation of 

the local 

deformation 

from a rigid 

transformati

on.  

By changing the 

Euclidean metric 

for a more suitable 

Riemannian one, a 

consistent 

statistical 

framework is 

defined to quantify 

the amount of 

deformation. 

These statistics are 

then used as 

parameters in a 

Mahalanobis 

distance to 

measure the 

statistical 

deviation from the 

observed 

variability, giving 

a new 

regularization 

criterion that we 

called the 

statistical 

Riemannian 

elasticity.  

It was found 

that the new 

criterion is able 

to handle 

anisotropic 

deformations 

and is 

inverse-consist

ent.  

Preliminar

y results 

showed 

that it can 

be quite 

easily 

implement

ed in a 

non-rigid 

registratio

n 

algorithm.  

A.D. 

Leow et 

al.  

2007  Statistical 

properties of 

Jacobian 

maps and the 

realization of 

unbiased 

large-deform

ation 

nonlinear 

image 

registration 

A method 

has been 

proposed to 

provide 

rigorous 

mathematic

al analyses 

of the 

Jacobian 

maps, and 

use them to 

motivate a 

new 

numerical 

method to 

construct 

unbiased 

nonlinear 

image 

registration. 

It is established 

that that 

logarithmic 

transformation is 

crucial for 

analyzing 

Jacobian values 

representing 

morphometric 

differences. 

Statistical 

distributions of 

log-Jacobian maps 

are examined by 

defining the 

Kullback-Leibler 

(KL) distance on 

material density 

functions arising 

in 

continuum-mecha

nical models. 

symmetrizatio

n of image 

registration 

statistically 

reduces 

skewness in 

the 

log-Jacobian 

map. 

 

I. 

Yanovs

ky et al.  

2008  Unbiased 

volumetric 

registration 

via nonlinear 

elastic 

A new 

nonlinear 

image 

registration 

model 

The nonlinear 

elastic and the 

unbiased 

regularization 

terms are 

The new 

unbiased 

nonlinear 

elasticity 

model was 
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regularizatio

n  

which is 

based on 

nonlinear 

elastic 

regularizatio

n and 

unbiased 

registration.  

simplified using 

the change of 

variables by 

introducing an 

unknown that 

approximates the 

Jacobian matrix of 

the displacement 

field. This reduces 

the minimization 

to involve linear 

differential 

equations. The 

new model is 

written in a unified 

variational form 

and is minimized 

using gradient 

descent.  

found to be 

computationall

y more 

efficient and 

easier to 

implement 

than the 

unbiased fluid 

registration. 

The unbiased 

large-deformat

ion nonlinear 

elasticity 

method was 

tested using 

volumetric 

serial magnetic 

resonance 

images and 

showed 

advantages for 

medical 

imaging 

applications.  

C.L. 

Guyade

r & L.A. 

Vese  

2011  A combined 

segmentation 

and 

registration 

framework 

with a 

nonlinear 

elasticity 

smoother  

A new 

non-paramet

ric 

combined 

segmentatio

n and 

registration 

method.  

The modeling is 

twofold: first, 

registration is 

jointly performed 

with segmentation 

since guided by 

the segmentation 

process; it means 

that the algorithm 

produces both a 

smooth mapping 

between the two 

shapes and the 

segmentation of 

the object 

contained in the 

reference image. 

Secondly, the use 

of a nonlinear- 

elasticity-type 

regularizer allows  

large deformations 

to occur, which 

makes the model 

comparable in this 

point with the 

viscous fluid 

registration 

method. 

The shapes to 

be matched 

were viewed as 

Ciarlet–Geymo

nat materials. 

Existence of 

minimizers of 

the introduced 

functional was 

proved and an 

approximated 

problem based 

on the Saint  

Venant–Kirchh

off stored  

energy for the 

numerical  

implementatio

n and  

solved by an 

augmented  

Lagrangian 

technique. 

Several 

applicatio

ns are 

proposed 

here to 

demonstra

te the 

potential 

of this 

method to 

both 

segmentati

on of one 

single 

image and 

to 

registratio

n between 

two 

images.  
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Table A.2: Viscous Fluid Flow Model 

 

Author  Year  Title  About  Method  Findings  Remarks  

W.R. 

Crum et 

al.  

2005  Anisotrop

ic 

multi-scal

e fluid 

registratio

n: 

Evaluatio

n in 

magnetic 

resonance 

breast 

imaging  

A multi-resolution 

fluid registration 

algorithm which 

improves on 

previous works on 

multiple levels of 

free form 

deformation 

(FFD).  

Directly solving 

the 

Navier-Stokes 

equation at the 

resolution of the 

images; 

accommodating 

image sampling 

anisotropy using 

semi-coarsening 

and implicit 

smoothing in a 

full multi-grid 

(FMG) solver; 

and exploiting 

the inherent 

multi-resolution 

nature of FMG 

to implement a 

multi-scale 

approach.  

Evaluation 

was on five 

magnetic 

resonance 

(MR) breast 

images subject 

to six 

biomechanical 

deformation 

fields over 11 

multi-resoluti

on schemes. 

Quantitative 

assessment 

was by tissue 

overlaps and 

target 

registration 

errors and by 

registering 

using the 

known 

correspondenc

es rather than 

image features 

to validate the 

fluid model.  

The results 

showed 

that fluid 

registratio

n of 3D 

breast MR 

images to 

sub-voxel 

accuracy is 

possible in 

minutes on 

a 1.6 GHz 

Linux-bas

ed Athlon 

processor 

with 

coarse 

solutions 

obtainable 

in a few 

tens of 

seconds. 

Accuracy 

and 

computati

on time are 

comparabl

e to FFD 

techniques 

validated 

for this 

applicatio

n.  

N.D. 

Cahill et 

al.  

2007  Fourier 

methods 

for 

nonparam

etric 

image 

registratio

n  

It was shown that 

Fourier methods 

can be employed 

to quickly solve 

the linear PDE 

systems for every 

combination of 

standard 

regularizers 

(diffusion, 

curvature, elastic, 

and fluid) and 

boundary 

conditions 

(Dirichlet, 

Neumann, and 

periodic).  

Faster 

techniques 

based on Fourier 

methods, 

multigrid 

methods, and 

additive 

operator 

splitting; exist 

for solving the 

linear PDE 

systems for 

specific 

combinations of 

regularizers and 

boundary 

conditions were 

applied on a 

Fourier 

methods can 

be employed 

to quickly 

solve the 

linear PDE 

systems for 

every 

combination 

of standard 

regularizers.  
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mammography 

image set.  

M.-C. 

Chiang 

et al.  

2008  Fluid 

registratio

n of 

diffusion 

tensor 

images 

using 

informati

on theory  

This work 

presented an 

information-theore

tic cost metric, 

symmetrised 

Kullback-Leibler 

(sKL) divergence, 

or J-divergence, to 

fluid registration 

of diffusion tensor 

images.  

Three-dimensio

nal DTI data 

from 34 subjects 

were fluidly 

registered to an 

optimized target 

image. The flow 

was regularized 

with a 

large-deformati

on 

diffeomorphic 

mapping based 

on the 

kinematics of a 

Navier-Stokes 

fluid. A driving 

force was 

developed to 

minimize the 

J-divergence 

between the 

deforming 

source and 

target  

diffusion 

functions, while  

reorienting the 

flowing tensors  

to preserve fiber 

topography. 

It was showed 

that the 

sKL-divergen

ce based on 

full diffusion 

PDFs is 

adaptable to 

higher-order 

diffusion 

models, such 

as high 

angular 

resolution 

diffusion 

imaging 

(HARDI). The 

sKL-divergen

ce was 

sensitive to 

subtle 

differences 

between two 

diffusivity 

profiles, 

showing 

promise for 

nonlinear 

registration  

applications 

and multi  

subject 

statistical 

analysis  

of HARDI 

data. 
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Table A.3: Diffusion Model 

 

Author  Year  Title  About  Method  Findings  Remarks  

J.M. 

Peyrat 

et al.  

2008  Registration 

of 4D 

time-series 

of cardiac 

images with 

multichanne

l 

diffeomorph

ic demons  

A generic 

framework for 

intersubject 

non-linear 

registration of 

4D time-series 

images.  

Spatio-temporal 

registration is 

defined by 

mapping 

trajectories of 

physical points 

as opposed to 

spatial 

registration that 

solely aims at 

mapping 

homologous 

points. The 

trajectories were 

determined 

which had to be 

registered in 

each sequence 

using a motion 

tracking 

algorithm based 

on the 

Diffeomorphic 

Demons 

algorithm. 

Simultaneously 

pairwise 

registrations 

were performed 

of corresponding 

time-points with 

the constraint to 

map the same 

physical points 

over time.  

It was shown 

that this 

trajectory 

registration 

can be 

formulated as 

a 

multichannel 

registration 

of 3D 

images.  

This 

framework is 

applied to the 

inter-subject 

non-linear 

registration 

of 4D cardiac 

CT 

sequences.  

141 



BTT 

Yeo et 

al.  

2009  DT-REFinD

: Diffusion 

tensor 

registration 

with exact 

finite-strain 

differential  

The 

DT-REFinD 

algorithm for 

the 

diffeomorphic 

nonlinear 

registration of 

diffusion 

tensor images.  

Results were 

borrowed from 

the pose 

estimation 

literature in 

computer vision 

to derive an 

analytical 

gradient of the 

registration 

objective 

function. By 

utilizing the 

closed-form 

gradient and the 

velocity field 

representation of 

one parameter 

subgroups of 

diffeomorphism

s, the resulting 

registration 

algorithm came 

to be 

diffeomorphic 

and fast. The 

algorithm was 

contrasted and 

compared with a 

traditional FS 

alternative that 

ignores the 

reorientation in 

the gradient 

computation.  

It was shown 

that the exact 

gradient 

leads to 

significantly 

better 

registration 

at the cost of 

computation 

time. 

Alignment 

quality was 

assessed with 

a battery of 

metrics 

including 

tensor 

overlap, 

fractional 

anisotropy, 

inverse 

consistency 

and closeness 

to synthetic 

warps.  

The 

improvement

s persist even 

when a 

different 

reorientation 

scheme, 

preservation 

of principal 

directions, 

was used to 

apply the 

final 

deformations

.  

M. 

Modat 

et al. 

2010  Diffeomorp

hic demons 

using 

normalized 

mutual 

information, 

evaluation 

on  

multimodal 

brain MR 

images 

A 

diffeomorphic 

demons 

implementatio

n using the 

analytical 

gradient of 

Normalised 

Mutual  

Information 

(NMI) in a 

conjugate 

gradient 

optimiser. 

Hailed as the 

first reported 

qualitative and 

quantitative 

assessment of 

the demons for 

inter-modal 

registration. 

Experiments 

to spatially 

normalise 

real MR 

images, and 

to recover 

simulated 

deformation 

fields, 

demonstrated 

similar  

accuracy 

from 

NMI-demons 

and classical 

demons 

when the 

latter may be 

used, and 

similar 
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accuracy for 

NMI-demons 

on T1w–T1w 

and  

T1w–T2w 

registration. 

BTT 

Yeo et 

al. 

2010  Spherical 

demons: 

Fast 

diffeomorph

ic 

landmark-fr

ee surface 

registration  

The Spherical 

Demons 

algorithm for 

registering two 

spherical 

images.  

Exploiting 

spherical vector 

spline 

interpolation 

theory, it was 

shown that a 

large class of 

regularizors for 

the modified 

Demons 

objective 

function can be 

efficiently 

approximated on 

the sphere using 

iterative 

smoothing. 

Based on one 

parameter 

subgroups of 

diffeomorphism

s, the resulting 

registration is 

diffeomorphic 

and fast. The 

Spherical 

Demons 

algorithm can 

also be modified 

to register a 

given spherical 

image to a 

probabilistic 

atlas. 

Two variants 

of the  

algorithm 

correspondin

g to warping 

the atlas or 

warping the 

subject were 

demonstrated

. Registration 

of a cortical 

surface mesh 

to an atlas 

mesh, both 

with more 

than 160 k 

nodes 

requires less 

than 5 min 

when 

warping the 

atlas and less 

than 3 min 

when 

warping the 

subject on a 

Xeon 3.2 

GHz single 

processor 

machine. 

This is 

comparable 

to the fastest 

non 

diffeomorphi

c 

landmark-fre

e surface 

registration 

algorithms. 

Technique 

was validated 

in two 

different 

applications 

that use 

registration 

to transfer 

segmentation 

labels onto a 

new image 1) 

parcellation 

of in vivo 

cortical 

surfaces and 

2) Brodmann 

area 

localization 

in ex vivo 

cortical 

surfaces. 
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Table A.4: Curvature Registration 

Author Year Title About Method Findings Remarks 

B. 

Glocker 

et al.  

2009  Approximated 

curvature 

penalty in 

non-rigid 

registration 

using pairwise 

MRFs  

An 

approximated 

curvature 

penalty using 

second-order 

derivatives 

defined on 

the MRF 

pairwise 

potentials is 

proposed.  

Labeling of 

discrete 

Markov 

Random Fields 

(MRFs) for 

solving the 

problem of 

non-rigid 

image 

registration. 

Smoothness is 

achieved by 

penalizing the 

derivatives of 

the 

displacement 

field.  

It was 

demonstrated 

that the  

approximated 

term has similar 

properties as 

higher-order 

approaches 

(invariance to 

linear 

transformations), 

while the 

computational 

efficiency of pair 

wise models 

remained  

preserved.  

 

B. 

Beuthien 

et al.  

2010  Recursive 

Green’s 

function 

registration  

It has been 

tried to 

minimize a 

joint 

functional 

that is 

comprised of 

a similarity 

measure and 

a regularizer 

in order to 

obtain a 

reasonable 

displacement 

field that 

transforms 

one image to 

the other.  

A generalized 

and efficient 

numerical 

scheme for 

solving such 

system of PDEs 

simply by 

applying 

1-dimensional 

recursive 

filtering to the 

right hand side 

of the system 

based on the 

Green’s 

function of the 

differential 

operator that 

corresponds to 

the chosen 

regularizer.  

The associated 

Green’s function 

for the diffusive 

and curvature 

regularizers was 

presented and it 

was shown that 

how one may 

efficiently 

implement the 

whole process by 

using recursive 

filter 

approximation.  
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Table A.5: Flows of Diffeomorphisms 

 

Author  Year  Title  About  Method  Findings  Remarks  

M. 

Hernand

ez et al.  

2009  Registration 

of 

anatomical 

images 

using paths 

of 

diffeomorph

isms 

parameteriz

ed with 

stationary 

vector field 

flows  

Proposed 

paradigm for 

diffeomorphic 

registration is 

the Large 

Deformation 

Diffeomorphi

c Metric 

Mapping 

(LDDMM). In 

this 

framework, 

transformatio

ns are 

characterized 

as end points 

of paths 

parameterized 

by 

time-varying 

flows of 

vector fields 

defined on the 

tangent space 

of a 

Riemannian 

manifold of 

diffeomorphis

ms and 

computed 

from the 

solution of the 

non-stationary 

transport 

equation 

associated to 

these flows. 

Optimization 

in LDDMM is 

performed on 

the space of 

non-stationar

y vector field 

flows 

resulting into 

a time and 

memory 

consuming 

algorithm. 

The stationary 

parameterizat

ion is 

included for 

diffeomorphi

c registration 

in the 

LDDMM 

framework. 

The 

variational 

problem 

related to this 

registration 

scenario is 

formulated 

and 

associated 

Euler-Lagran

ge equations 

are derived.  

The 

performance of 

the 

non-stationary 

vs. the 

stationary 

parameterizatio

ns in real and 

simulated 

3D-MRI brain 

datasets is 

evaluated. 

Compared to 

the 

non-stationary 

parameterizatio

n, proposed 

method 

provides 

similar results 

in terms of 

image 

matching and 

local 

differences 

between the 

diffeomorphic 

transformations 

while 

drastically 

reducing 

memory and 

time 

requirements.  
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M.D. 

Craene 

et al.  

2009  Large 

diffeomorph

ic FFD 

registration 

for motion 

and strain 

quantificati

on from 

3D-US 

sequences  

A new 

registration 

method for the 

in vivo 

quantification 

of cardiac 

deformation 

from a 

sequence of 

possibly noisy 

images.  

In the 

proposed 

method, 

referred to as 

Large 

Diffeomorphi

c Free Form 

Deformation 

(LDFFD), the 

displacement 

field at each 

time step is 

computed 

from a 

smooth 

non-stationar

y velocity 

field, thus 

imposing a 

coupling 

between the 

transformatio

ns at 

successive 

time steps. 

Main 

contribution 

is to extend 

this 

framework to 

the estimation 

of motion and 

deformation 

in an image 

sequence. 

Similarity is 

captured for 

the entire 

image  

sequence 

using an 

extension of  

the pairwise 

mutual 

information  

metric. The 

LDFFD 

algorithm is  

applied here 

to recover  

longitudinal 

strain curves 

from  

healthy and 

Left-Bundle 

Strain curves 

for the healthy 

subjects were in 

accordance 

with the 

literature. For 

the LBBB 

patient, strain 

quantified 

before and after 

Cardiac 

Resynchronizat

ion Therapy 

showed a clear 

improvement 

of cardiac 

function in this 

subject, in 

accordance 

with clinical 

observations.  
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Branch  

Block 

(LBBB) 

subjects. 

J. 

Ashburn

er et al.  

2011  Diffeomorp

hic 

registration 

using 

geodesic 

shooting 

and 

Gauss-Newt

on 

optimisation  

A nonlinear 

image 

registration 

algorithm 

based on the 

setting of 

Large 

Deformation 

Diffeomorphi

c Metric 

Mapping 

(LDDMM), 

but with a 

more efficient 

optimisation 

scheme, both 

in terms of 

memory 

required and 

the number of 

iterations 

required in 

reaching 

convergence.  

Instead of 

performing a 

variational 

optimisation 

on a series of 

velocity 

fields, the 

algorithm is 

formulated to 

use a geodesic 

shooting 

procedure, so 

that only an 

initial 

velocity is 

estimated. A 

Gauss-Newto

n optimisation 

strategy is 

used to 

achieve faster 

convergence.  

The algorithm 

was evaluated 

using freely 

available 

manually 

labelled 

datasets, and 

found to 

compare 

favourably with 

other 

inter-subject 

registration 

algorithms 

evaluated using 

the same data.  

- 

L. Risser 

et al.  

2011  Simultaneo

us 

multi-scale 

registration 

using large 

deformation 

diffeomorph

ic metric 

mapping  

A practical 

methodology 

to integrate 

prior 

knowledge 

about the 

registered 

shapes in the 

regularizing 

metric.  

First 

presented the 

notion of 

characteristic 

scale at which 

image 

features are 

deformed. 

Then 

proposes a 

methodology 

to compare 

anatomical 

shape 

variations in a 

multi-scale 

Ability of the 

proposed 

method is 

compared to 

segregate a 

group of 

subjects having 

Alzheimer's 

disease and a 

group of 

controls with a 

classical coarse 

to fine 

approach, on 

standard 3D 

MR 

The method 

registers 

accurately 

volumetric 

images 

containing 

feature 

differences 

at several 

scales 

simultaneou

sly with 

smooth 

deformation

s.  
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fashion, i.e., 

at several 

characteristic 

scales 

simultaneousl

y. In this 

context, a 

strategy was 

proposed to 

quantitatively 

measure the 

feature 

differences 

observed at 

each 

characteristic 

scale 

separately.  

longitudinal 

brain images. It 

was finally 

applied to 

quantify the 

anatomical 

development of 

the human 

brain from 3D 

MR 

longitudinal 

images of 

pre-term 

babies.  

G. 

Auzias 

et al.  

2011  Diffeomorp

hic brain  

registration 

under  

exhaustive 

sulcal 

constraints 

A global, 

geometric  

approach that 

performs  

the alignment 

of the 

exhaustive 

sulcal 

imprints 

(cortical 

folding 

patterns) 

across 

individuals. 

The 

DIffeomorphi

c 

Sulcal-based  

COrtical 

(DISCO) 

technique  

proceeded to 

the automatic 

extraction, 

identification 

and 

simplification 

of sulcal 

features 

from 

T1-weighted 

Magnetic 

Resonance 

Image (MRI) 

series. 

These 

features are 

then used as 

control 

measures for 

fully-3-D 

diffeomorphi

c 

deformations. 

Quantitative 

and qualitative  

evaluations 

showed that  

DISCO 

correctly aligns 

the sulcal folds 

and gray and 

white matter 

volumes across 

individuals. 

The 

comparison 

with a recent, 

iconic 

diffeomorphic 

approach 

(DARTEL) 

highlighted 

how 

the absence of 

explicit 

cortical 

landmarks may 

lead 

to the 

misalignment 

of 

cortical sulci. 

DISCO can 

also be  

combined 

with  

(DARTEL) 

to further 

improve the 

consistency 

and 

accuracy of 

alignment 

performance

s. 
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Appendix-B: Table B.1: Tabular Literature Survey, Chapter 3 

 

Author Year Title About Method Findings Remarks 

M. Alexa 
et al. 

2003 Computing 

and 

rendering 

point set 

surfaces 

Use of point 

sets to 

represent 

shapes. 

Defining 

surfaces 

from a set of 

points close 

to an original 

surface, this 

is 

approximate

d using 

MLS. 

A projection 

procedure is 

defined which 

projects any 

point near the 

point set onto 

the surface. 

Then, the 

MLS surface 

is defined as 

the points 

projecting 

onto 

themselves. 

The 

smoothness 

conjecture is 

motivated and 

respective 

projection is 

computed 

The proposed 

model was 

tested on 'the 

Stanford bunny' 

along with 

other models. 

The proposed 

approach 

showed 

smoother 

silhouettes and 

more accurate 

highlights in 

comparison to 

more 

traditional 

methods like 

Splatting and 

Gouraud- 

shaded mesh 

model. 

Thus, it is 

possible to 

provide a 

point set 

representati

on that 

conforms to 

a specified 

tolerance. 

The use of a 

point set 

(without 

connectivit

y) as a 

representati

on of 

shapes. 

S. 

Schaefer 

et al. 

2006 
Image 

deformatio

n using 

moving 

least 

squares 

An image 

deformation 

method 

based on 

Moving 

Least 

Squares 

using 

various 

classes of 

linear 

functions 

including 

affine, 

similarity 

and rigid 

transformati

ons. These 

deformation

s are realistic 

and give the 

user the 

impression 

of 

manipulatin

g real-world 

objects. 

Image 

deformations 

were built 

based on 

collections of 

points with 

which the user 

controls the 

deformation. 

A deformation 

function was 

constructed 

satisfying the 

three 

properties of 

Interpolation, 

Smoothness & 

Identity using 

MLS. 

The proposed 

method was 

applied for 

Affine, 

Similarity, 

Rigid & Elastic 

deformations 

on a set of 

images. It was 

found to 

perform 

deformations 

faster than the 

contemporary 

methods. 

It was 

showed 

how 

solutions 

could be 

computed 

directly 

from the 

closed-form 

deformation 

using 

similarity 

transformati

ons thereby 

bypassing 

the 

non-linear 

minimizatio

n. The 

method is 

general 

enough to 

accommoda

te different 

distance 

metrics 

dependent 

on the 
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topology of 

the shape 

rather than 

the simple, 

Euclidean 

distance 

used as our 

weight 

factor. 

P. 

Lancaster

, K. 

Salkausk

as 

1981 
Surfaces 

generated 

by moving 

least 

squares 

methods 

An analysis 

of least 

squares 

methods for 

smoothing 

and 

interpolating 

scattered 

data was 

presented. In 

particular, 

theorems are 

proved 

concerning 

the 

smoothness 

of 

interpolants 

and the 

description 

of MLS 

processes as 

projection 

methods. 

A 

non-interpolat

ing least 

squares 

method as an 

alternate 

representation 

of the local 

approximation 

based on the 

choice of 

weight 

functions. 

The differences 

between 

interpolating 

and 

non-interpolati

ng MLS 

method as 

projection 

methods. 

The effects of 

the choice of 

weight 

functions and 

the asymptotic 

behaviour of 

such single 

variable and 

multivariate 

functions. 

NA 

R. 

Castillo 

et al. 

2009 
A 

framework 

for 

evaluation 

of 

deformable 

image 

registration 

spatial 

accuracy 

using large 

landmark 

point sets 

Deformable 

Image 

Registration 

using 

Moving least 

squares for 

correspondin

g sets of 

feature 

landmark 

point pairs. 

APRIL 

(Matlab based 

in house sw 

UI) for 

manual 

selection of 

landmark 

feature points. 

This point set 

is subjected to 

MLS, which 

registers the 

source 

landmark 

point set to the 

corresponding 

target point 

set. 

USE α 1/(LPP)
1/2

 
USE  α SDSE  

The uncertainty 

of spatial error 

estimates was 

found to be 

inversely 

proportional to 

the square root 

of the number 

of landmark 

point pairs and 

directly 

proportional to 

the standard 

deviation of 

spatial errors. 

No 

proposition 

on the 

estimation 

of 

deformity 

between the 

registered 

image pairs. 

K. 

Murphy 

et al. 

2011 
Evaluation 

of 

Registratio

EMPIRE10 

(Evaluation 

of Methods 

Methods on 

comparison: 

Asclepios1, 

All methods 

were fully 

automatic with 

The 

EMPIRE10 

challenge 
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n Methods 

on 

Thoracic 

CT: The 

EMPIRE10 

Challenge 

for 

Pulmonary 

Image 

REgistration 

2010) is a 

public 

platform for 

fair and 

meaningful 

comparison 

of 

registration 

algorithms 

which are 

applied to a 

database of 

intrapatient 

thoracic CT 

image pairs. 

Evaluation 

of non-rigid 

registration 

techniques. 

Asclepios2, 

CMS, DIKU, 

DROP, 

elastix, IMI 

Lubeck 

Diffeomorph, 

Lyon FFD, 

MGH, Nifty 

Reggers, 

OFDP, picsl 

exp, picsl 

gsyn, Robust 

TreeReg 

Leuven, 

Spline MIRIT 

Leuven. 

the exception of 

MGH. Generic 

registration 

algorithms can 

perform better 

than data 

specific 

methods. It 

may still be the 

case that 

combining 

aspects of both 

could improve 

performance 

even further, 

particularly on 

more difficult 

scan pairs. 

enabled 

detailed, 

independent 

and fair 

evaluation 

of non-rigid 

registration 

algorithms. 

E. 

Castillo 

et al. 

2014 
A Moving 

Least 

Squares 

Approach 

for 

Computing 

Spatially 

Accurate 

Transforma

tions That 

Satisfy 

Strict 

Physiologic 

Constraints 

Computation 

of a 

physiologica

lly realistic 

spatial 

transformati

on from a 

sparse point 

cloud of 

displacemen

t estimates 

using MLS 

and any 

combination 

of upper 

bound, lower 

bound, or 

equality 

constraints 

placed on the 

Jacobian. 

MLS defined 

a spatial 

transformatio

n from a 

sparse point 

cloud of 

estimated 

displacements 

and provided 

simple 

analytic 

derivative 

estimates for 

all voxel 

locations. 

Given 

displacement 

estimates 

from 

automated 

block 

Two MLS 

transformations 

were computed 

for five (5) 

pairs of 

inhale-exhale 

thoracic CT 

images, one 

with no 

Jacobian 

constraints and 

the other with 

strict 

contraction 

Jacobian 

constraints. 

Despite 

registering 

from 

inhale-exhale, 

the constrained 

MLS yielded a 

strict 

contraction (all 

Jacobian 

values between 

0 and 1) 

while the 

unconstrained 

MLS resulted 

in regions 

of expansion. 

The 

proposed 

MLS 

approach 

was found 

capable of 

producing 

Jacobian 

constrained 

transformati

ons without 

degrading 

spatial 

accuracy. 
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Appendix-C: Table C.1: Tabular Literature Survey, Chapter 4 

 

Author Year Title About Method Findings Remarks 

D. Sarrut 

et al. 

2006 Simulation 

of 

four-dimens

ional CT 

images 

from 

deformable 

registration 

between 

inhale and 

exhale 

breath-hold 

CT scans 

Simulation 

of an 

artificial 

four-dimensi

onal (4-D) 

CT image of 

the thorax 

during 

breathing. It 

is performed 

by 

deformable 

registration 

of two CT 

scans 

acquired at 

inhale and 

exhale 

breath-hold. 

Dense 

deformable 

registrations 

were 

performed. 

The method 

was a 

minimization 

of the sum of 

squared 

differences 

(SSD) using 

an 

approximate

d 

second-order 

gradient. 

Statistically 

better results 

than the 

reference 

method. The 

mean (and 

standard 

deviation) of 

distances 

between 

automatically 

found 

landmark 

positions and 

landmarks set 

by experts 

were 2.7(1.1) 

mm with 

APLDM, and 

6.3(3.8) mm. 

The mean 

difference 

between 

automatic and 

manual 

landmark 

positions for 

intermediate 

CT images was 

2.6(2.0)mm. 

The generation 

of 4-D CT 

images by 

deformable 

registration of 

inhale and 

exhale CT 

images is 

feasible. This 

can lower the 

dose needed 

for 4-D CT 

acquisitions or 

can help to 

correct 4-D 

acquisition 

artifacts.  The 

4-D CT model 

can be used to 

propagate 

contours, to 

compute a 4-D 

dose map, or 

to simulate CT 

acquisitions 

with an 

irregular 

breathing 

signal. It could 

serve as a basis 

for 4-D 

radiation 

therapy 

planning. 

N. Stevo 

et al. 

2009 Registration 

of Temporal 

Sequences 

of Coronal 

and Sagittal 

Images 

Obtained 

from 

Magnetic 

Resonance 

For each 

image in 

coronal and 

sagittal MRI 

sequences, 

the 

information 

contained in 

the 

intersection 

segment was 

determined, 

and the 

matching is 

done to 

determine 

the best 

sagittal 

One of the 

registration 

approaches 

used is 

determining 

the distance 

between the 

images by 

comparing 

pixel by pixel 

and 

combining 

these 

differences in 

a single 

value. The 

other one is 

Fourier 

The resulting 

pairs from both 

algorithms 

were different. 

It was noticed 

that both pairs 

have a 

satisfactory 

visual 

registration. 

The temporal 

sequence of 

images 

represented 

discrete 

instants in 

time, and such 

an almost 

The temporal 

registration 

algorithm 

based on pixel 

by pixel 

comparison 

and Fourier 

transform 

showed 

several 

satisfactory 

results, 

however it is 

not possible to 

overcome the 

temporal low 

rate of image 

acquisition. 
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images for 

each coronal 

image and 

vice-versa.  

The 

registration 

is the 

determinatio

n of the best 

images in a 

sequence 

that fits a 

chosen 

image in 

another 

sequence. 

Transform 

based. 

perfect fitting 

is very rare. 

One of the 

future works 

would be the 

definition of a 

new 

registration 

algorithm 

combining 

pixel 

comparison 

and time 

segmentation. 

E. 

Castillo 

et al. 

2010 Four-dimen

sional 

deformable 

image 

registration 

using 

trajectory 

modeling 

A 

four-dimensi

onal 

deformable 

image 

registration 

(4D DIR) 

algorithm, 

referred to as 

4D local 

trajectory 

modelling 

(4DLTM), is 

presented 

and applied 

to thoracic 

4D 

computed 

tomography 

(4DCT) 

image sets. 

The method 

exploits the 

incremental 

continuity 

present in 

4DCT 

component 

images to 

calculate a 

dense set of 

parameterize

d voxel 

trajectories 

through 

space as 

functions of 

time. The 

spatial 

accuracy of 

the 4DLTM 

algorithm is 

compared 

with an 

alternative 

registration 

approach in 

which 

component 

phase to 

phase (CPP) 

DIR is 

utilized to 

determine the 

full 

displacement 

between 

maximum 

inhale and 

exhale 

Cubic 

polynomials 

were found to 

provide 

sufficient 

flexibility and 

spatial 

accuracy for 

describing the 

point 

trajectories 

through the 

expiratory 

phases. The 

resulting 

average spatial 

error between 

the maximum 

phases was 

1.25 mm for 

the 4DLTM 

and 1.44 mm 

for the CPP. 

The 4DLTM 

method 

captures the 

long-range 

motion 

between 

4DCT 

extremes with 

high spatial 

accuracy. 
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images.  

J. 

Ehrhardt 

et al. 

2011 Statistical 

Modeling of 

4D 

Respiratory 

Lung 

Motion 

Using 

Diffeomorp

hic Image 

Registration 

An approach 

to generate a 

mean motion 

model of the 

lung based 

on thoracic 

4D 

computed 

tomography 

(CT) data of 

different 

patients to 

extend the 

motion 

modeling 

capabilities. 

The 

modeling 

process 

consisted of 

three steps: 

an 

intra-subject 

registration 

to generate 

subject-speci

fic motion 

models, the 

generation of 

an average 

shape and 

intensity 

atlas of the 

lung as 

anatomical 

reference 

frame, and 

the 

registration 

of the 

subject-speci

fic motion 

models to the 

atlas in order 

to build a 

statistical 4D 

mean motion 

model 

(4D-MMM).  

In all steps, a 

symmetric 

diffeomorphi

c nonlinear 

intensity-bas

ed 

registration 

method was 

employed. 

The model was 

evaluated by 

applying it for 

estimating 

respiratory 

motion of ten 

lung cancer 

patients. The 

prediction was 

evaluated with 

respect to 

landmark and 

tumor motion, 

and the 

quantitative 

analysis 

resulted in a 

mean target 

registration 

error (TRE) of 

3.3 ±1.6 mm. 

With regard to 

lung tumor 

motion, it was 

shown that 

prediction 

accuracy is 

independent of 

tumor size and 

motion 

amplitude in 

the considered 

data set. 

The statistical 

respiratory 

motion model 

is capable of 

providing 

valuable prior 

knowledge in 

many fields of 

applications. 

We present 

two examples 

of possible 

applications in 

radiation 

therapy and 

image guided 

diagnosis. 

A.K. 

Sato et 

al. 

2011 Registration 

of temporal 

sequences 

of coronal 

and sagittal 

MR images 

through 

respiratory 

patterns 

This work 

discussed 

the 

determinatio

n of the 

breathing 

patterns in 

time 

sequence of 

images 

obtained 

from 

A time 

sequence of 

this 

intersection 

segment of 

orthogonal 

coronal and 

sagittal 

sequences 

were stacked, 

defining a 

two-dimensi

The results of 

the proposed 

method in the 

form of 

synchronised 

sequences are 

compared with 

the 

pixel-by-pixel 

comparison 

method. 

The proposed 

method 

increases the 

number of 

registered 

pairs 

representing 

composed 

images and 

allows an easy 

check of the 

breathing 
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magnetic 

resonance 

(MR) and 

their use in 

the temporal 

registration 

of coronal 

and sagittal 

images. 

on 

spatio-tempo

ral (2DST) 

image. An 

interval 

Hough 

transform 

algorithm 

searches for 

synchronized 

movements 

with the 

respiratory 

function. A 

greedy active 

contour 

algorithm 

adjusts small 

discrepancies 

originated by 

asynchronou

s movements 

in the 

respiratory 

patterns. 

phase. 

G. Xiong 

et al. 

2012 Tracking 

the motion 

trajectories 

of junction 

structures in 

4D CT 

images of 

the lung 

A novel 

method to 

detect a large 

collection of 

natural 

junction 

structures in 

the lung and 

use them as 

the reliable 

markers to 

track the 

lung motion. 

The image 

intensities 

within a 

small region 

of interest 

surrounding 

the center are 

selected as its 

signature. 

Under the 

assumption 

of the cyclic 

motion, the 

trajectory 

was 

described by 

a closed 

B-spline 

curve and 

search for the 

control 

points by 

maximizing a 

metric of 

combined 

correlation 

coefficients. 

Local 

extrema are 

suppressed 

The method 

was applied to 

13 real 4D CT 

images. More 

than 700 

junctions in 

each case are 

detected with 

an average 

positive 

predictive 

value of greater 

than 90%. The 

average 

tracking error 

between 

automated and 

manual 

tracking is 

sub-voxel and 

smaller than 

the published 

results using 

the same set of 

data. 

-- 
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by improving 

the initial 

conditions 

using random 

walks from 

pair-wise 

optimizations

. Several 

descriptors 

are 

introduced to 

analyze the 

motion 

trajectories. 

Y. Zhang 

et al. 

2013 Modeling 

respiratory 

motion for 

reducing 

motion 

artifacts in 

4D CT 

images 

A 

patient-speci

fic 

respiratory 

motion 

model, based 

on principal 

component 

analysis 

(PCA) of 

motion 

vectors 

obtained 

from 

deformable 

image 

registration, 

with the 

main goal of 

reducing 

image 

artifacts 

caused by 

irregular 

motion 

during 4D 

CT 

acquisition. 

Displacemen

t vector fields 

relative to a 

reference 

phase were 

calculated 

using an 

in-house 

deformable 

image 

registration 

method. The 

authors then 

used PCA to 

decompose 

each of the 

displacement 

vector fields 

into linear 

combinations 

of principal 

motion bases. 

These 

projections 

were 

parameterize

d using a 

spline model 

to allow the 

reconstructio

n of the 

displacement 

vector fields 

at any given 

phase in a 

respiratory 

cycle. 

Finally, the 

displacement 

vector fields 

were used to 

The initial 

large 

discrepancies 

across the 

landmark pairs 

were 

significantly 

reduced after 

deformable 

registration, 

and the 

accuracy was 

similar to or 

better than that 

reported by 

state-of-the-art 

methods. The 

motion model 

was used to 

reduce 

irregular 

motion 

artifacts in the 

4D CT images 

of three lung 

cancer patients. 

Visual 

assessment 

indicated that 

the proposed 

approach could 

reduce severe 

image artifacts. 

The proposed 

approach can 

mitigate shape 

distortions of 

anatomy 

caused by 

irregular 

breathing 

motion during 

4D CT 

acquisition. 
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deform the 

reference CT 

image to 

synthesize 

CT images at 

the selected 

phase with 

much 

reduced 

image 

artifacts. 

B. Fuerst 

et al. 

2014 Patient-Spe

cific 

Biomechani

cal Model 

for the 

Prediction 

of Lung 

Motion 

From 4-D 

CT Images 

An approach 

to predict the 

deformation 

of the lungs 

and 

surrounding 

organs 

during 

respiration. 

A 

computationa

l model of the 

respiratory 

system, 

which 

comprises an 

anatomical 

model 

extracted 

from 

computed 

tomography 

(CT) images 

at 

end-expiratio

n (EE), and a 

biomechanic

al model of 

the 

respiratory 

physiology, 

including the 

material 

behavior and 

interactions 

between 

organs. 

The method 

was then tested 

on five public 

datasets.  

Results 

showed that the 

model was able 

to predict the 

respiratory 

motion with an 

average 

landmark error 

of 3.40 ±1.0 

mm over the 

entire 

respiratory 

cycle.  

The estimated 

3-D lung 

motion may 

constitute as 

an advanced 

3-D surrogate 

for more 

accurate 

medical image 

reconstruction 

and patient 

respiratory 

analysis. 
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Appendix-D: Table D.1: Tabular Literature Survey, Chapter 5 

 

Author Year Title About Method Findings Remarks 

X. 

Pennec et 

al. 

2005 Riemannia

n 

Elasticity: 

A 

Statistical 

Regulariza

tion 

Framewor

k for 

Non-linear 

Registratio

n 

The elastic 

energy has 

been 

interpreted as 

the distance of 

the Green-St 

Venant strain 

tensor to the 

identity, which 

reflects the 

deviation of 

the local 

deformation 

from a rigid 

transformation

. 

By changing 

the Euclidean 

metric for a 

more suitable 

Riemannian 

one, a 

consistent 

statistical 

framework is 

defined to 

quantify the 

amount of 

deformation. 

These statistics 

are then used 

as parameters 

in a 

Mahalanobis 

distance to 

measure the 

statistical 

deviation from 

the observed 

variability, 

giving a new 

regularization 

criterion that 

we called the 

statistical 

Riemannian 

elasticity. 

It was found 

that the new 

criterion is 

able to handle 

anisotropic 

deformations 

and is 

inverse-consi

stent. 

Preliminary 

results 

showed that 

it can be quite 

easily 

implemented 

in a non-rigid 

registration 

algorithm. 

B. Zhang 

et al. 

2011 Three-dim

ensional 

elastic 

image 

registration 

based on 

strain 

energy 

minimizati

on: 

application 

to prostate 

magnetic 

resonance 

imaging 

A novel 3-D 

elastic 

registration 

procedure that 

is based on the 

minimization 

of a physically 

motivated 

strain energy 

function that 

requires the 

identification 

of similar 

features 

(points, 

curves, or 

surfaces) in 

the source and 

target images. 

The 

Gauss-Seidel 

method was 

used in the 

numerical 

implementatio

n of the 

registration 

algorithm. The 

registration 

procedure was 

validated on 

synthetic 

digital images, 

MR images 

from prostate 

phantom, and 

MR images 

obtained on 

patients. The 

The 

registration 

error on 

patient data 

was 1.8 ± 0.7 

pixels. 

Registration 

also 

improved 

image 

similarity 

(normalized 

cross-correlat

ion) from 

0.72 ± 0.10 to 

0.96 ± 0.03 

on patient 

data. 

Registration 

results on 

prostate data 

in vivo 

demonstrated 

that the 

registration 

procedure 

could be used 

to 

significantly 

improve both 

the accuracy 

of localized 

therapies 

such as 

brachytherap

y or external 

beam therapy 

and can be 
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registration 

error, assessed 

by averaging 

the 

displacement 

of a fiducial 

landmark in 

the target to its 

corresponding 

point in the 

registered 

image. 

valuable in 

the 

longitudinal 

follow-up of 

patients after 

therapy. 

R.W.K. 

So et al. 

2011 Non-rigid 

image 

registration 

of brain 

magnetic 

resonance 

images 

using 

graph-cuts 

A graph-cut 

based method 

for non-rigid 

medical image 

registration on 

brain magnetic 

resonance 

images. The 

non-rigid 

medical image 

registration 

problem is 

reformulated 

as a discrete 

labelling 

problem. 

Modelled the 

non-rigid 

registration as 

a 

multi-labeling 

problem by 

Markov 

random field. 

The image 

registration 

problem is 

therefore 

modeled by 

two energy 

terms based on 

intensity 

similarity and 

smoothness of 

the 

displacement 

field. The 

MRF energy is 

minimized by 

graph-cuts 

algorithm via 

α-expansions.  

Compared 

the 

registration 

results of the 

proposed 

method with 

two 

state-of-the-a

rt medical 

image 

registration 

approaches: 

free-form 

deformation 

based method 

and demons 

method. In 

addition, the 

registration 

results were 

also 

compared 

with that of 

the linear 

programming 

based image 

registration 

method. 

The proposed 

method was 

found to be 

more robust 

against 

different 

challenging 

non-rigid 

registration 

cases with 

consistently 

higher 

registration 

accuracy than 

those three 

methods, and 

gives realistic 

recovered 

deformation 

fields. 

A. R. 

Dykstra 

et al. 

2012 Individuali

zed 

localizatio

n and 

cortical 

surface-bas

ed 

registration 

of 

intracranial 

electrodes 

A method 

which 

co-registers 

high-resolutio

n preoperative 

MRI with 

postoperative 

computerized 

tomography 

(CT) for the 

purpose of 

individualized 

functional 

mapping of 

both normal 

The method 

accurately 

(within 3 mm, 

on average) 

localizes 

electrodes with 

respect to an 

individual's 

neuroanatomy. 

Furthermore, 

we outline a 

principled 

procedure for 

either 

volumetric or 

The method 

was 

demonstrated 

in five 

patients with 

medically-int

ractable 

epilepsy 

undergoing 

invasive 

monitoring of 

the seizure 

focus prior to 

its surgical 

removal. 

The 

straight-forw

ard 

application of 

this 

procedure to 

all types of 

intracranial 

electrodes, 

robustness to 

deformations 

in both skull 

and brain, 

and the 

ability to 
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and 

pathological 

(e.g., interictal 

discharges and 

seizures) brain 

activity. 

surface-based 

group 

analyses. 

Accuracy 

was within 

3mm of 

average. 

compare 

electrode 

locations 

across groups 

of patients 

makes this 

procedure an 

important 

tool for basic 

scientists as 

well as 

clinicians. 

H.P. 

Heinrich 

et al. 

2013 MRF-Base

d 

Deformabl

e 

Registratio

n and 

Ventilation 

Estimation 

of Lung 

CT 

Three major 

challenges 

associated 

with lung ct 

registration 

viz. large 

motion of 

small features, 

sliding 

motions 

between 

organs and 

changing 

image contrast 

due to 

compression 

are addressed 

and potentially 

higher quality 

of discrete 

approaches is 

preserved. 

First, an 

image-derived 

minimum 

spanning tree 

is used as a 

simplified 

graph 

structure, 

which coped 

well with the 

complex 

sliding motion 

and allowed us 

to find the 

global 

optimum very 

efficiently. 

Second, a 

stochastic 

sampling 

approach for 

the similarity 

cost between 

images is 

introduced 

within a 

symmetric, 

diffeomorphic 

B-spline 

transformation 

model with 

diffusion 

regularization. 

The 

complexity is 

reduced by 

orders of 

magnitude and 

enables the 

minimization 

of much larger 

label spaces. In 

addition to the 

The 

improvement

s are 

validated in 

accuracy and 

performance 

on 

exhale-inhale 

CT volume 

pairs using a 

large number 

of expert 

landmarks. 

The three 

challenges 

posed in the 

beginning are 

met. 
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geometric 

transform 

labels, 

hyper-labels 

are introduced, 

which 

represent local 

intensity 

variations in 

this task, and 

allow for the 

direct 

estimation of 

lung 

ventilation. 

K. 

Nakago

mi et al. 

2013 Multi-shap

e graph 

cuts with 

neighbour 

prior 

constraints 

and its 

application 

to lung 

segmentati

on from a 

chest CT 

volume 

A novel graph 

cut algorithm 

that can take 

into account 

multi-shape 

constraints 

with neighbor 

prior 

constraints, 

and reports on 

a lung 

segmentation 

process from a 

three-dimensi

onal computed 

tomography 

(CT) image 

based on this 

algorithm. 

A novel 

segmentation 

algorithm that 

improves lung 

segmentation 

for cases in 

which the lung 

has a unique 

shape and 

pathologies 

such as pleural 

effusion by 

incorporating 

multiple 

shapes and 

prior 

information on 

neighbour 

structures in a 

graph cut 

framework. 

The efficacy 

of the 

proposed 

algorithm is 

demonstrated 

by comparing 

it to 

conventional 

one using a 

synthetic 

image and 

clinical 

thoracic CT 

volumes. 

-- 
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  Appendix-E: Table E.1: Track data for subject ‘case 5’ sagittal AP.  
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1 
Track

_0 
5 0 5 0.26 55.58 

114.1

3 
0.97 1.96 0.34 0.54 0.73 

2 
Track

_1 
5 0 5 

14.3

3 
99.35 110.7 3.2 4.87 1 3.69 1.77 

3 
Track

_2 
5 0 5 5.09 

160.2

7 

111.0

2 
1.39 2.42 0.73 1.50 0.68 

4 
Track

_3 
5 0 5 2.93 

187.6

4 

112.8

5 
1.64 3.53 0.66 1.09 1.22 

5 
Track

_4 
5 0 5 10.9 

113.7

8 
113.1 2.32 4.59 0.87 1.42 1.64 

6 
Track

_5 
5 0 5 0.24 

264.4

1 

115.4

5 
0.6 1.17 0.28 0.55 0.35 

7 
Track

_6 
5 0 5 6.52 

138.6

9 

113.6

5 
1.91 4.04 0.18 1.05 1.8 

8 
Track

_7 
5 0 5 1.5 

319.2

2 

122.7

6 
1.21 1.92 0.35 1.22 0.72 

9 
Track

_8 
5 0 5 0.27 

270.1

8 

130.2

2 
0.77 1.91 0 0.13 0.97 

10 
Track

_9 
5 0 5 0.77 8.18 

125.8

1 
0.99 2.09 0.24 0.62 0.78 

11 
Track

_10 
5 0 5 4.28 

170.2

6 

125.4

2 
1.44 2.59 0.61 0.97 0.98 

12 
Track

_11 
5 0 5 0.55 

271.0

8 

132.7

5 
0.62 1.8 0 0.38 0.69 

13 
Track

_12 
5 0 5 0.45 51.16 

136.9

1 
0.27 0.46 0.14 0.25 0.12 

14 
Track

_13 
4 0 4 0.46 

323.0

7 

133.4

5 
1.41 2.39 0.66 1.9 0.87 

15 
Track

_14 
5 0 5 7.7 

324.7

7 

139.2

7 
2.71 9.07 0.23 1.36 3.63 

16 
Track

_15 
5 0 5 2.27 

231.2

9 

134.5

1 
1.27 2.42 0.65 0.95 0.73 

17 
Track

_16 
5 0 5 6.42 

150.6

7 

137.1

2 
1.79 6.24 0.3 0.82 2.51 

18 
Track

_17 
5 0 5 0.26 

273.8

0 

138.7

0 
0.4 0.74 0.25 0.34 0.2 
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19 
Track

_18 
5 0 5 3.42 

232.3

3 

146.6

8 
2.04 2.91 0.71 2.26 0.93 

20 
Track

_19 
3 0 3 4.38 

169.3

6 

145.2

7 
2.15 3.85 0.56 2.03 1.65 

21 
Track

_20 
4 0 4 3 

203.6

9 

143.5

2 
1.27 2.89 0.31 1.51 1.21 

22 
Track

_21 
5 0 5 5.85 

181.6

0 

142.2

4 
1.79 4.55 0.5 1.24 1.59 

23 
Track

_22 
5 0 5 1.1 

326.9

7 

146.7

3 
0.56 0.98 0.06 0.56 0.33 

24 
Track

_23 
5 0 5 6.84 

137.8

7 

140.0

6 
2.17 6.7 0.66 1.21 2.55 

25 
Track

_24 
5 0 5 0.73 8.86 

150.8

7 
0.54 1.31 0.09 0.38 0.47 

26 
Track

_25 
5 0 5 

13.0

8 
74.93 

142.7

4 
3.11 

12.9

8 
0.41 0.81 5.52 

27 
Track

_26 
5 0 5 0.63 50.12 

155.3

7 
0.29 0.48 0.07 0.28 0.15 

28 
Track

_27 
5 0 5 0.21 

286.4

8 

155.8

4 
0.81 1.28 0.24 0.74 0.4 

29 
Track

_28 
5 0 5 7.55 

156.1

2 

149.8

2 
2.89 7.1 0.71 2.26 2.61 

30 
Track

_29 
5 0 5 6.43 

168.7

8 

154.2

2 
1.84 3.06 0.95 1.47 0.96 

31 
Track

_30 
5 0 5 0.9 

330.2

8 

160.5

2 
2.16 2.88 0.29 2.77 1.1 

32 
Track

_31 
4 0 4 14 81.56 

152.4

1 
3.63 

11.6

6 
0.68 1.16 5.36 

33 
Track

_32 
5 0 5 1.63 

289.1

9 

162.5

6 
3.99 8.81 0.22 1.99 3.85 

34 
Track

_33 
4 0 4 

13.1

3 

332.6

9 

170.3

6 
3.37 7.19 0.27 5.26 3.4 

35 
Track

_34 
4 0 4 

10.5

9 

140.9

9 

163.0

5 
2.66 4.72 1.34 3.19 1.62 

36 
Track

_35 
5 0 5 7.33 

177.9

8 

165.7

0 
2.2 3.84 1.25 1.81 1.12 

37 
Track

_36 
5 0 5 0.58 

333.0

6 

171.7

7 
0.73 1.32 0.02 0.74 0.58 

38 
Track

_37 
5 0 5 1.28 48.70 

176.5

2 
0.63 0.94 0.22 0.69 0.27 

39 
Track

_38 
5 0 5 12.9 

129.5

3 

166.7

1 
2.76 5.21 0.43 2.15 2.09 
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41 
Track

_40 
4 0 4 8.59 

159.0

5 

173.0

6 
2.32 4.94 0.72 2.55 1.92 

42 
Track

_41 
4 0 4 1.06 9.5 

190.7

7 
1.28 1.67 0.53 1.65 0.66 

43 
Track

_42 
5 0 5 2.58 8.75 

187.3

1 
2.75 6.64 0 1.52 3.16 

44 
Track

_43 
5 0 5 8.3 

182.5

1 

177.4

2 
2.57 5.05 0.96 1.59 1.86 

45 
Track

_44 
1 0 1 5.49 

113.5

8 

180.3

1 
5.49 5.49 5.49 5.49 NaN 

46 
Track

_45 
5 0 5 

13.6

8 

220.4

4 

185.4

4 
3.35 7.23 1.13 2.54 2.33 

47 
Track

_46 
5 0 5 1.95 

293.0

2 

184.7

4 
0.56 1.35 0.04 0.45 0.57 

48 
Track

_47 
5 0 5 

18.1

9 

143.7

8 

196.5

8 
5.77 

12.8

5 
1.4 3.82 4.71 

49 
Track

_48 
5 0 5 1.4 47.88 

195.5

1 
1.8 3.68 0.12 1.72 1.46 

50 
Track

_49 
5 0 5 0.96 

295.2

8 

192.2

6 
0.5 0.75 0.09 0.58 0.25 

51 
Track

_50 
5 0 5 1.74 

335.9

2 

187.9

8 
0.75 1.62 0.21 0.69 0.54 

52 
Track

_51 
3 0 3 8.74 7.59 

183.1

1 
2.91 8.74 0 0 5.05 

53 
Track

_52 
5 0 5 

16.3

6 

337.8

3 

202.1

9 
4.57 9.92 0.74 2.5 3.85 

54 
Track

_53 
2 0 2 3.34 

146.4

3 

205.4

6 
1.87 2.16 1.57 2.16 0.41 

55 
Track

_54 
5 0 5 0.13 9.4 

204.2

4 
0.63 1.18 0.21 0.74 0.43 

56 
Track

_55 
2 0 2 2.51 

220.5

7 

205.3

0 
2.57 3.4 1.74 3.4 1.18 

57 
Track

_56 
5 0 5 0.94 

338.1

4 

203.9

5 
3.17 5.92 0.93 2.25 2.18 

58 
Track

_57 
5 0 5 6.3 

206.9

4 

197.2

3 
1.97 2.93 1.18 1.85 0.69 

59 
Track

_58 
5 0 5 

15.6

1 

131.9

1 

196.0

9 
3.21 7.54 1.22 2.2 2.5 

60 
Track

_59 
5 0 5 7.98 

192.7

4 

192.8

8 
2.2 4.29 1.27 1.77 1.21 

61 
Track

_60 
5 0 5 3.31 47.03 

214.1

6 
0.86 2.99 0.08 0.43 1.21 
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62 
Track

_61 
5 0 5 0.54 8.61 

214.3

8 
0.52 1.03 0.04 0.5 0.48 

63 
Track

_62 
5 0 5 0.52 

303.4

4 

213.9

1 
0.5 1.31 0.07 0.43 0.48 

64 
Track

_63 
5 0 5 

12.5

8 

224.7

4 

206.3

6 
4.88 8.03 2.2 4.61 2.23 

65 
Track

_64 
5 0 5 23.5 72.35 

216.3

9 
4.72 7.19 0.51 6.67 3.08 

66 
Track

_65 
5 0 5 

16.6

3 
130.4 

219.8

4 
3.87 7.32 2.02 3.24 2.22 

67 
Track

_66 
5 0 5 2.4 9 

226.2

6 
1.78 4.21 0.12 1.43 1.56 

68 
Track

_67 
5 0 5 16.8 

159.5

8 
214.9 3.42 7.59 0.35 2.23 3.3 

69 
Track

_68 
5 0 5 1.79 339 

220.7

3 
1.08 2.57 0.26 0.74 0.89 

70 
Track

_69 
2 0 2 

10.3

7 

134.5

6 

216.3

5 
5.45 8.47 2.43 8.47 4.27 

72 
Track

_71 
5 0 5 1.12 49.74 

235.9

2 
0.65 1.02 0.32 0.67 0.29 

73 
Track

_72 
5 0 5 0.31 9.59 

239.5

2 
0.43 0.78 0.1 0.49 0.3 

74 
Track

_73 
5 0 5 2.81 

303.8

8 

229.4

9 
0.96 1.87 0.67 0.75 0.51 

75 
Track

_74 
5 0 5 

21.9

8 
118.8 220.1 4.49 7.92 0.44 3.9 3.26 

76 
Track

_75 
5 0 5 

19.2

4 

148.3

7 

220.5

7 
4.89 7.99 2.76 3.1 2.75 

77 
Track

_76 
5 0 5 8.33 

250.3

9 

243.7

7 
3.82 7.39 0.08 4.32 2.66 

78 
Track

_77 
5 0 5 0.27 50 

250.9

4 
0.23 0.4 0.12 0.19 0.12 

79 
Track

_78 
5 0 5 

14.2

8 
202.3 

233.7

4 
4.46 9.2 0.93 3.46 3.77 

80 
Track

_79 
5 0 5 12.2 

219.5

7 

238.3

2 
7.39 13.8 2.64 6.6 4.11 

81 
Track

_80 
5 0 5 2.72 

339.9

4 

245.2

4 
1.17 3.89 0.13 0.33 1.57 

82 
Track

_81 
5 0 5 3.15 

284.2

3 

243.5

7 
1.30 2.2 0.26 1.22 0.79 

83 
Track

_82 
5 0 5 

21.9

8 

122.6

3 

245.8

6 
5.03 

13.5

5 
1.47 1.79 5.21 
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84 
Track

_83 
3 0 3 4.63 

266.2

6 

251.8

3 
2.22 5.14 0.45 1.09 2.54 

85 
Track

_84 
5 0 5 6.34 258.7 

247.6

8 
1.85 4.46 0.97 1.15 1.48 

86 
Track

_85 
5 0 5 

17.1

2 

188.5

3 
245.2 5.38 

10.9

3 
0.44 3.71 4.52 

87 
Track

_86 
5 0 5 0.18 11.6 

253.9

5 
0.38 1.03 0.04 0.21 0.42 

88 
Track

_87 
2 0 2 3.83 

341.2

8 

265.7

5 
2.56 4.46 0.67 4.46 2.69 

89 
Track

_88 
5 0 5 0.33 12.97 270.9 0.24 0.5 0.05 0.24 0.17 

90 
Track

_89 
5 0 5 

20.9

8 

175.7

8 

252.7

1 
4.6 

12.0

3 
1.53 3 4.22 

91 
Track

_90 
5 0 5 0.21 53.34 

260.2

5 
0.26 0.46 0.09 0.28 0.14 

93 
Track

_92 
5 0 5 0.52 16.20 

302.0

2 
0.21 0.54 0.04 0.14 0.20 

94 
Track

_93 
5 0 5 4.29 

346.9

9 

298.9

9 
1.46 3.8 0.27 1.08 1.39 

95 
Track

_94 
5 0 5 0.13 60.22 

289.9

9 
0.19 0.26 0.07 0.21 0.08 

96 
Track

_95 
5 0 5 

27.1

4 
93.69 

280.6

3 
5.43 

11.1

9 
1.4 3.13 4.55 

98 
Track

_97 
5 0 5 1.96 

344.1

3 

282.5

8 
1.18 2.77 0.47 0.69 0.96 

99 
Track

_98 
5 0 5 0.86 

112.2

4 
7.41 0.18 0.32 0.07 0.18 0.09 

102 
Track

_101 
5 0 5 0.91 19.46 11.41 2.01 4.57 0 1.01 1.95 

103 
Track

_102 
5 0 5 1.36 

139.3

1 
11.53 0.35 0.77 0.06 0.12 0.34 

104 
Track

_103 
5 0 5 

17.8

1 

342.3

8 

272.5

9 
3.66 8.23 0.22 1.43 3.93 

105 
Track

_104 
5 0 5 0.78 

126.5

5 
7.76 0.48 1.52 0.06 0.07 0.65 

106 
Track

_105 
5 0 5 

22.8

3 

102.9

4 

261.3

2 
4.59 

14.9

1 
0.91 2.99 5.88 

107 
Track

_106 
4 0 4 

17.1

7 

161.3

5 

266.2

3 
6.38 

11.7

5 
1.18 

10.5

2 
5.52 
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108 
Track

_107 
5 0 5 0.12 58.68 

273.7

1 
0.34 0.74 0.03 0.15 0.33 

109 
Track

_108 
5 0 5 0.48 15.2 

280.8

6 
0.64 1.67 0.17 0.45 0.61 

110 
Track

_109 
5 0 5 2.43 93.57 17.05 0.78 1.25 0.12 0.66 0.48 

111 
Track

_110 
5 0 5 5.9 

267.8

4 
17.04 2.18 3.87 0 2.3 1.39 

112 
Track

_111 
5 0 5 0.59 

161.0

1 
23.23 0.38 0.55 0.1 0.42 0.2 

113 
Track

_112 
5 0 5 0.57 15.07 23.49 0.14 0.28 0.07 0.11 0.09 

114 
Track

_113 
5 0 5 

23.7

3 
88.74 

326.6

4 
5.25 

12.9

7 
1 4.09 4.54 

115 
Track

_114 
5 0 5 1.55 87.2 25.72 0.36 0.7 0.13 0.34 0.24 

116 
Track

_115 
5 0 5 5.34 65.33 

334.3

8 
1.08 2.11 0.55 0.95 0.62 

117 
Track

_116 
5 0 5 

11.8

8 
269.5 20.07 4.44 7.49 0.27 4.88 2.61 

118 
Track

_117 
5 0 5 1.5 

101.6

5 
12.63 0.45 0.91 0.08 0.32 0.4 

119 
Track

_118 
5 0 5 2.61 

265.4

2 
12.41 0.7 1.78 0.05 0.82 0.8 

120 
Track

_119 
2 0 2 0.42 18.92 13.11 0.21 0.42 0 0.42 0.29 

121 
Track

_120 
5 0 5 1.42 23.71 

331.5

6 
0.75 1.17 0.48 0.61 0.3 

122 
Track

_121 
5 0 5 3.67 

266.2

2 
13.85 1.72 3.29 0.61 1.78 1.13 

123 
Track

_122 
5 0 5 0.86 

148.7

9 
16.17 0.24 0.58 0.04 0.15 0.21 

124 
Track

_123 
5 0 5 5.21 

350.6

7 

320.8

9 
2.52 8.22 0.32 1.62 3.26 

125 
Track

_124 
3 0 3 0.04 

274.5

1 
29.69 7.72 11.6 0.23 

11.3

3 
6.49 

127 
Track

_126 
5 0 5 0.43 17.89 

314.5

1 
0.17 0.4 0.01 0.18 0.15 

128 
Track

_127 
5 0 5 1.02 75.39 39.33 1.60 2.56 0.46 2.12 1.04 

129 
Track

_128 
5 0 5 0.57 63.53 

323.3

5 
1.32 1.97 0.31 1.42 0.7 
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130 
Track

_129 
5 0 5 

14.7

5 

349.3

7 

313.0

1 
3.45 5.63 1.25 4.18 2.01 

131 
Track

_130 
5 0 5 

26.2

4 
99.35 

313.9

4 
7.46 

13.6

1 
0.71 7.91 4.88 

132 
Track

_131 
5 0 5 0.12 

280.1

2 
41.08 0.15 0.27 0.06 0.14 0.09 

133 
Track

_132 
5 0 5 1.94 165.9 26.92 0.42 1.3 0.04 0.27 0.51 

134 
Track

_133 
5 0 5 13 

348.3

5 

307.1

3 
3.93 9.25 1.48 1.95 3.31 

135 
Track

_134 
5 0 5 7.08 

273.3

2 
27.35 6.06 

11.4

1 
0.09 7.25 5.64 

136 
Track

_135 
5 0 5 0.91 

172.1

8 
31.78 0.3 0.39 0.09 0.37 0.13 

137 
Track

_136 
5 0 5 

28.7

7 

109.7

3 

304.0

7 
7.14 

12.2

0 
0.71 6.88 4.23 

138 
Track

_137 
5 0 5 0.53 66.46 

312.4

2 
0.22 0.27 0.09 0.24 0.07 

139 
Track

_138 
5 0 5 3.78 109.2 57.81 0.86 1.69 0.39 0.71 0.49 

140 
Track

_139 
5 0 5 2.30 

354.6

6 

367.1

5 
1.67 2.62 0.63 1.54 0.89 

141 
Track

_140 
5 0 5 0.47 67.93 57.83 2.86 6.36 0.45 3.61 2.7 

142 
Track

_141 
5 0 5 0.84 

207.4

8 
56.88 0.24 0.63 0.11 0.16 0.22 

143 
Track

_142 
5 0 5 6.89 11.65 59.83 1.45 4.64 0.18 0.44 1.89 

144 
Track

_143 
3 0 3 0.04 

285.3

5 
51.72 0.51 0.77 0.28 0.47 0.25 

145 
Track

_144 
5 0 5 5.17 

137.4

9 
51.54 1.11 2.47 0.23 0.85 0.86 

147 
Track

_146 
4 0 4 1.14 

196.0

7 
48.82 0.51 0.95 0.18 0.57 0.33 

148 
Track

_147 
5 0 5 2.1 21.23 

361.5

0 
0.99 1.45 0.24 1.43 0.58 

149 
Track

_148 
5 0 5 

32.2

2 
82.45 

339.2

8 
6.72 

12.0

9 
2.52 5.28 3.75 

150 
Track

_149 
5 0 5 1.4 20.37 

355.2

6 
0.49 0.73 0.05 0.49 0.26 

151 
Track

_150 
5 0 5 0.53 

186.4

6 
42.1 0.47 0.88 0.19 0.44 0.26 
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152 
Track

_151 
5 0 5 0.16 12.29 40.84 1.03 2.51 0.24 0.71 0.91 

153 
Track

_152 
2 0 2 2.78 67.71 

350.6

7 
1.4 1.94 0.87 1.94 0.76 

154 
Track

_153 
5 0 5 3.04 

236.0

6 
80 0.68 1.25 0.21 0.75 0.41 

155 
Track

_154 
5 0 5 3.66 

293.5

4 
69.27 2.37 4.71 0.2 3.01 1.93 

156 
Track

_155 
5 0 5 5.89 

295.3

6 
73.1 7.42 

10.3

6 
4.47 9 2.73 

157 
Track

_156 
5 0 5 6.81 97.02 67.06 1.45 2.03 0.34 1.49 0.69 

158 
Track

_157 
5 0 5 

11.7

7 

294.6

5 
71.48 4.26 

13.1

4 
1.07 2.3 5 

160 
Track

_159 
5 0 5 6.51 

353.7

3 

342.7

5 
2.65 5.06 1.58 1.81 1.46 

161 
Track

_160 
5 0 5 0.34 64.57 67.3 0.24 0.49 0.02 0.16 0.22 

164 
Track

_163 
5 0 5 6.32 

115.1

6 
88.62 1.51 2.64 0.75 1.03 0.9 

165 
Track

_164 
5 0 5 1.16 

244.2

5 
93.56 0.4 0.63 0.21 0.41 0.16 

166 
Track

_165 
5 0 5 2.7 

151.4

1 
91.27 1.25 1.85 0.78 1.08 0.49 

168 
Track

_167 
5 0 5 0.22 

305.1

8 
392.1 0.53 1.21 0.12 0.39 0.44 

169 
Track

_168 
5 0 5 3.71 

316.5

9 

392.1

8 
0.74 1.02 0.24 0.93 0.35 

170 
Track

_169 
5 0 5 7.67 

336.7

8 

392.2

3 
2.83 4.74 0.73 3.23 2.01 

172 
Track

_171 
5 0 5 

13.3

6 

262.0

7 

392.1

4 
3.90 5.4 1.96 4.24 1.38 

173 
Track

_172 
5 0 5 11 

239.7

8 

392.1

7 
3.29 4.64 1.45 3.8 1.24 

174 
Track

_173 
5 0 5 4.58 284.9 

392.1

4 
3.74 8.77 0.5 2.86 3.28 

175 
Track

_174 
3 0 3 1.18 272.8 

392.1

3 
4.55 7.41 1.72 4.51 2.84 
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176 
Track

_175 
4 0 4 0.27 

298.5

6 
79.61 0.82 1.57 0.20 1.17 0.66 

177 
Track

_176 
5 0 5 

15.9

6 

210.1

5 

392.1

8 
3.81 

10.9

7 
0.07 1.52 4.71 

178 
Track

_177 
5 0 5 0.59 7.80 82.33 0.18 0.55 0.01 0.09 0.22 

179 
Track

_178 
5 0 5 4.02 

189.5

9 

392.1

3 
1.03 2.78 0.09 0.59 1.04 

181 
Track

_180 
5 0 5 0.32 

189.8

1 
78.59 1.45 2.75 0.16 1.27 1.05 

182 
Track

_181 
4 0 4 7.54 

102.5

2 
76.17 1.75 2.7 0.57 1.97 1.09 

183 
Track

_182 
3 0 3 5.51 

142.3

4 

392.1

5 
1.84 3.04 0.62 1.86 1.21 

184 
Track

_183 
5 0 5 9.56 

176.9

4 

392.1

2 
4.51 

13.1

9 
0.41 3.38 5.92 

185 
Track

_184 
5 0 5 8.35 

164.0

4 

392.1

4 
2.67 7.89 0.02 2.49 3.18 

186 
Track

_185 
5 0 5 0.91 61.99 80.08 0.49 0.75 0.29 0.48 0.17 

187 
Track

_186 
5 0 5 0.3 94.97 

392.1

3 
0.31 0.41 0.21 0.33 0.09 

188 
Track

_187 
5 0 5 0.73 84.73 

392.1

7 
0.27 0.43 0.12 0.27 0.12 

189 
Track

_188 
5 0 5 8.72 

130.0

2 

392.1

4 
2.06 7.91 0.02 0.77 3.3 

190 
Track

_189 
5 0 5 3.7 

116.0

9 

392.1

5 
4.33 

11.4

6 
1.22 2.65 4.1 

191 
Track

_190 
5 0 5 1.28 

312.9

7 

107.7

5 
1.54 3.59 0 0.86 1.75 

192 
Track

_191 
5 0 5 0.27 56.67 392.1 0.41 0.86 0.04 0.39 0.36 

193 
Track

_192 
5 0 5 0.24 66.68 

392.1

4 
0.33 0.45 0.17 0.31 0.11 

194 
Track

_193 
5 0 5 0.06 33.04 

391.9

7 
0.03 0.05 0.01 0.02 0.02 

195 
Track

_194 
5 0 5 6.08 

314.5

1 

111.6

8 
4.06 7.11 0 3.95 2.77 

196 
Track

_195 
5 0 5 1.21 7.21 

105.6

7 
0.89 1.03 0.66 0.97 0.16 

197 
Track

_196 
5 0 5 9.24 307.4 95.57 2.11 9.39 0.06 0.38 4.07 
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198 
Track

_197 
5 0 5 1.61 59.02 97.7 0.58 0.96 0.32 0.58 0.25 

199 
Track

_198 
2 0 2 5.54 

195.3

7 
93.01 3 5.59 0.42 5.59 3.66 

200 
Track

_199 
5 0 5 1.46 

177.4

9 
95.71 0.99 1.32 0.39 1.06 0.37 

201 
Track

_200 
5 0 5 0.12 24.42 

369.1

5 
0.37 0.88 0.1 0.29 0.3 

202 
Track

_201 
3 1 4 5.8 

293.5

4 

392.1

4 
2.62 6.82 0.23 0.8 3.65 

203 
Track

_202 
4 1 5 0.43 

285.3

1 
51.76 0.32 0.47 0.14 0.38 0.15 

204 
Track

_203 
4 1 5 2.97 

126.6

4 
39.73 0.82 1.7 0.1 0.79 0.66 

205 
Track

_204 
4 1 5 1.26 

294.0

9 
70.43 6.72 

11.6

7 
2.3 

10.3

2 
4.97 

206 
Track

_205 
4 1 5 0.55 

218.6

1 
57.98 0.26 0.38 0.15 0.3 0.1 

208 
Track

_207 
4 1 5 2 47.88 

221.0

5 
1.07 2.53 0.36 0.75 0.99 

209 
Track

_208 
4 1 5 4.18 

234.0

2 

239.7

1 
4.06 5.35 2.31 4.93 1.37 

211 
Track

_210 
4 1 5 

11.8

2 

108.7

4 

170.7

7 
3.87 7.38 1.65 4.7 2.74 

212 
Track

_211 
4 1 5 3.16 18.39 14.75 0.93 3.16 0 0.27 1.5 

213 
Track

_212 
4 1 5 12.8 

154.6

6 

205.4

8 
3.55 5.94 1.86 3.58 1.74 

214 
Track

_213 
4 1 5 0.74 62.44 

299.0

5 
0.64 1.03 0.31 0.63 0.3 

216 
Track

_215 
3 2 5 8.8 

344.9

3 

285.6

2 
5.22 

11.7

5 
0.47 3.43 5.85 

219 
Track

_218 
3 2 5 

11.8

7 
164.1 

255.7

3 
4.81 8.87 1.68 3.87 3.69 

220 
Track

_219 
3 2 5 1.45 75.43 39.32 0.94 2.12 0.23 0.46 1.03 

222 
Track

_221 
3 2 5 1 75.01 40.21 1.69 3.03 0.67 1.37 1.21 

223 
Track

_222 
3 2 5 1.57 154.9 

392.1

4 
1.23 1.95 0.68 1.06 0.66 

224 
Track

_223 
3 2 5 1.35 

137.9

8 

121.2

2 
1.02 1.61 0.65 0.80 0.52 
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226 
Track

_225 
3 2 5 5.41 

312.1

3 

105.9

2 
2.09 5.29 0.48 0.51 2.77 

227 
Track

_226 
3 2 5 4.2 

245.6

1 

217.0

9 
3.52 6.23 0.47 3.86 2.9 

228 
Track

_227 
2 2 4 0.37 

293.9

9 

187.5

8 
0.37 0.55 0.19 0.55 0.25 

229 
Track

_228 
3 2 5 5.94 

153.4

2 

178.7

4 
4.01 7.16 1.48 3.38 2.89 

230 
Track

_229 
3 2 5 

13.6

4 

147.3

4 

188.8

6 
5.57 8.2 1.43 7.07 3.63 

231 
Track

_230 
2 3 5 

18.3

6 

111.3

8 

294.2

6 
9.58 

13.9

9 
5.17 

13.9

9 
6.24 

232 
Track

_231 
2 3 5 5.94 

143.7

2 

270.0

3 
2.97 3.09 2.85 3.09 0.17 

233 
Track

_232 
2 3 5 9.26 

129.4

4 
278.8 5.28 8.57 1.99 8.57 4.66 

234 
Track

_233 
2 3 5 1.4 

289.3

1 
60.99 0.71 1.24 0.18 1.24 0.75 

235 
Track

_234 
2 3 5 6.57 

188.5

1 

181.9

8 
3.61 3.93 3.29 3.93 0.45 

236 
Track

_235 
2 3 5 2.08 

323.0

6 

133.8

7 
1.26 2.28 0.25 2.28 1.44 

237 
Track

_236 
2 3 5 0.61 

330.3

9 

160.8

7 
2.09 2.16 2.03 2.16 0.09 

240 
Track

_239 
2 3 5 10.5 

205.3

7 

392.1

7 
5.25 

10.0

9 
0.41 

10.0

9 
6.84 

241 
Track

_240 
2 3 5 1.42 

354.1

7 

355.4

9 
0.71 1.18 0.24 1.18 0.67 

242 
Track

_241 
2 3 5 

22.3

4 

352.2

5 

334.2

1 

11.1

7 

14.3

8 
7.97 

14.3

8 
4.53 
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