LIST OF FIGURES

Figure No.	Description	Page No.
1.1	Stribeck curve: Dependence of the friction coefficient on viscosity, speed and load for a lubricated sliding system	5
1.2	Mechanisms of formation of iron sulfide tribofilms from sulfur compounds adsorbed at iron surface	13
1.3	Chemical processes leading to MoS ₂ formation from MoDTC	17
1.4	Structure of zinc dialkyldithiophosphate	19
1.5	Hydrolysis of borate esters	22
1.6	A schematic representation of the tribochemical reactions between borate esters and stainless steel surfaces	24
2.1	Four ball lubricant tester	36
3.1a	Effect of change in concentration of different additive formulations on mean wear scar diameter in paraffin oil at 392N applied load for 60 min duration	45
3.1b	Variation of mean wear scar diameter in absence and presence of different concentrations of AAPM with borate ester in paraffin oil at 392N applied load and 60 min duration	45
3.2	Variation of mean wear scar diameter with time in paraffin oil containing (1% w/v) zinc dibutyldithiophosphate (ZDDP), borate ester, Schiff bases and synergistic formulations at 392N applied load	48
3.3	Variation of friction coefficient with time in paraffin oil containing (1% w/v) zinc dibutyldithiophosphate (ZDDP), borate ester, Schiff bases and synergistic formulations at 392N applied load	48

3.4	Determination of overall wear rate by varying mean wear volume with time in paraffin oil containing (1% w/v) zinc dibutyldithiophosphate (ZDDP), borate ester, Schiff bases and synergistic formulations at 392N applied load	51
3.5	Wear-rates for paraffin oil in the presence and absence of different additives and their synergistic formulations (1%w/v) at 392 N applied load for 90 min test duration	51
3.6	Variation of mean wear scar diameter with applied load in paraffin oil containing (1% w/v) zinc dibutyldithiophosphate (ZDDP), borate ester, Schiff bases and synergistic formulations for 30 min test duration	53
3.7	SEM micrographs of the worn steel surface lubricated with paraffin oil in presence and absence of different additives (1% w/v) for 90 min test duration at 392N applied load: (a) Paraffin oil, (b) AAPM, (c) ZDDP and (d) AAPM+BE	54
3.8	SEM micrographs of the worn steel surface lubricated with (a) ZDDP, (b) AAPM and (c) AAPM+BE (1% w/v) in paraffin oil for 30 min test duration at 588N applied load	56
3.9	Surface Roughness parameters obtained from digital processing software of Nanosurf-basic Scan 2 for different additives at 392N load for 90 min test duration	56
3.10	3D-AFM images of the worn steel surface with and without additives (1% w/v) in paraffin oil for 90 min test duration at 392N applied load	57
3.11	3 <i>D</i> -AFM images and corresponding line profile of the worn steel surface lubricated with different additives in paraffin oil for 30 min test duration at 588N applied load	58
3.12	XPS spectra of tribochemical film formed on worn steel surface lubricated with AAPM+BE (1% w/v) at 392N applied load for 90 min test duration in liquid paraffin	61
3.13	Optimized structures of Schiff bases calculated with B3LYP/6-	63

	31G++(dp) basis set: (a) AAPB, (b) AAPS, (c) AAPC and (d) AAPM	
3.14	Graphical representation of energy gaps (eV) between HOMO and LUMO density distributions for the studied Schiff base	64
4.1	Variation of mean wear scar diameter for the paraffin oil as a function of increasing different additive concentrations at 392N applied load and 60 min duration	70
4.2	Variation of mean wear scar diameter for paraffin oil with and without different antiwear additives (1% w/v) at 392N applied load for 60 min test duration	74
4.3	Variation of mean wear scar diameter with time for paraffin oil containing (1% w/v) zinc dibutyldithiophosphate (ZDDP), Schiff bases and their copper complexes at 392N applied load	77
4.4	Determination of overall wear rate by varying mean wear volume with time (h) for paraffin oil containing (1% w/v) zinc dibutyldithiophosphate (ZDDP), Schiff bases and their copper complexes at 392N applied load	77
4.5	Variation of mean wear scar diameter with applied load for paraffin oil containing (1% w/v) zinc dibutyldithiophosphate (ZDDP), Schiff bases and their copper complexes for 30 min test duration	79
4.6	SEM micrographs at different magnifications of the worn steel surface lubricated with different additives (1% w/v) in paraffin oil for 90 min test duration at 392 N applied load: (a) Paraffin oil, (b) H-Sbh, (c) H-Abh, (d) ZDDP, (e) [Cu(Sbh) ₂] and (f) [Cu(Abh) ₂]	81
4.7	SEM micrographs of the worn steel surface lubricated with (a) ZDDP, (b) [Cu(Sbh) ₂] and (c) [Cu(Abh) ₂] (1% w/v) in paraffin oil for 30 min test duration at 588N applied load	82
4.8	2D and 3 <i>D</i> -AFM images of the worn steel surface lubricated with different additives (1% w/v) in paraffin oil for 90 min test duration at 392N applied load: (a) Paraffin oil, (b) H-Abh, (c) H-Sbh, (d) ZDDP, (e) [Cu(Abh) ₂] and (f) [Cu(Sbh) ₂]	84
4.9	Surface Roughness parameters obtained from digital processing software of Nanosurf basic Scan 2 for different additives at 392N load for 90 min test duration	85

4.10	3D-AFM images of the worn steel surface lubricated with different additives (1% w/v) in paraffin oil for 30 min test duration at 588N applied load: (a) H-Abh, (b) H-Sbh, (c) ZDDP, (d) [Cu(Abh) ₂] and (e) [Cu(Sbh) ₂]	86
4.11	XPS spectra of tribochemical film formed on worn steel surface lubricated with $[Cu(Sbh)_2]$ (1% w/v) at 392N applied load for 90 min test duration in liquid paraffin: (a). C 1s, (b). N 1s, (c). O 1s, (d). Cu 2p and (e). Fe 2p	88
4.12	Graphical representation of energy gaps (eV) between HOMO and LUMO density distributions for the studied Schiff base ligands and their respective copper complexes	91
4.13	Optimized structures with Mulliken charge of Schiff bases and their copper complexes; (a) H-Sbh, (b) H-Abh, (c) [Cu(Sbh) ₂] and (d) [Cu(Abh) ₂]	95
5.1	X-ray diffraction patterns of $CaCu_{2.90}Zn_{0.10}Ti_4O_{12}$ (CCZTOs) nanoparticle	100
5.2	EDX spectra of $CaCu_{2.90}Zn_{0.10}Ti_4O_{12}$ (CCZTOs) nanoparticles	101
5.3	FT-IR spectra of stearic acid, CCZTO-6h and surface modified SCCZTO-6h nanoparticles	102
5.4	TEM images of surface-modified SCCZTOs and bare CCZTO-6h nanoparticles: (a). SCZTO-6h, (b). SCCZTO-8h (c). SCCZTO-12h and (d). CCZTO-6h nanoparticles	104
5.5	Variation of mean wear scar diameter in absence and presence of different concentrations of SCCZTOs nanoparticles in paraffin oil at 392N applied load and 60 min duration	104
5.6	Variation of mean wear scar diameter with time in paraffin oil containing (1% w/v) zinc dibutyldithiophosphate and SCCZTOs nanoparticles at 392N applied load	106
5.7	Variation of friction coefficient with time in paraffin oil containing (1% w/v) zinc dibutyldithiophosphate and SCCZTOs nanoparticles at 392N applied load	107
5.8	Determination of overall wear rate by varying mean wear volume	108 xiii

	dibutyldithiophosphate and SCCZTOs nanoparticles at 392N applied load	
5.9	Variation of mean wear scar diameter with applied load in paraffin oil containing (1% w/v) zinc dibutyldithiophosphate and SCCZTOs nanoparticles for 30 min test duration	109
5.10	SEM micrographs of the worn steel surface lubricated with different additives (1% w/v) in paraffin oil for 90 min test duration at 392N applied load: (a) Paraffin oil, (b) SCCZTO-6h, (c) SCCZTO-8h, (d) ZDDP and (e) SCCZTO-12h	111
5.11	SEM micrographs of the worn steel surface lubricated with (a) ZDDP and (b) SCCZTO-6h nanoparticles (1% w/v) in paraffin oil for 30 min test duration at 588N applied load	112
5.12	2D and 3D AFM images of the worn steel surface with and without SCCZTOs nanoparticles (1% w/v) in paraffin oil for 90 min test duration at 392N applied load: (a) Paraffin oil, (b) Zinc dibutyldithiophosphate, (c) SCCZTO-6h, (d) SCCZTO-8h and (e) SCCZTO-12h	114
5.13	EDX analysis data of the worn steel surface lubricated with paraffin oil in presence and absence of additives (1% w/v) for 90 min test duration at 392N applied load: (a) Paraffin oil, (b) Zinc dibutyldithiophosphate (ZDDP) and (c) SCCZTO-6h	115
5.14	EDX analysis data of the worn steel surface lubricated with paraffin oil in presence of additives (1% w/v) for 30 min test duration at 588N applied load: (a) Zinc dibutyldithiophosphate (ZDDP) and (b) SCCZTO-6h	115
5.15	XPS spectra of tribochemical film formed on worn steel surface lubricated with SCCZTO-6h nanoparticles (1% w/v) at 392N applied load for 90 min test duration in liquid paraffin. (a). C 1s, (b). Ca 2p, (c). Cu 2p, (d). Ti 2p, (e). O 1s, and (f). Fe 2p	118
6.1	SEM images of (a) MRG, (b) B-N-MRG and (c) TiO ₂ -B-N-MRG with EDX spectrum	128
6.2	TEM and HRTEM images respectively for MRG (a and b), B-N-MRG (c and d) and TiO ₂ -B-N-MRG (e and f)	128

with time in paraffin oil containing (1% w/v) zinc

6.3	XRD diffraction pattern of MRGs nanomaterials (a) and the highlighted peak with red circle fitted with three different peak (b)	129
6.4	Raman spectra of (a). MRGs samples and (b). TiO ₂ nanoparticles	129
6.5	XPS survey spectra of (a) MRG and TiO ₂ -B-N-MRG samples and deconvoluted XPS spectra of TiO ₂ -B-N-MRG nanomaterial: (b) C1s core shell spectra, (c) B1s core shell spectra, (d) N1s core shell spectra and (e) Ti2p core shell spectra	130
6.6	Dispersion stabilities of the pure oil containing MRG, B-N-MRG and TiO ₂ -B-N-MRG studied by UV-vis spectrophotometry (a), Optical photographs of the different MRGs samples dispersed in pure oil at different settling times (b)	131
6.7	Variation of mean wear scar diameter for the paraffin oil as a function of increasing additive concentrations at 392N applied load and 60 min duration	134
6.8	Variation in mean wear scar diameter and coefficient of friction in the presence of MRGs nanomaterials in paraffin oil. Load: 392N, sliding speed: 1200 rpm, temperature: 75 °C, test duration: 60 min., concentration of MRGs: 0.15 % w/v	134
6.9	Variation in coefficient of friction as a function of time in the presence of MRGs nanomaterials in paraffin oil. Load: 392N, sliding speed: 1200 rpm, temperature: 75 °C, test duration: 60 min., concentration of MRGs: 0.15 % w/v	136
6.10	Variation of mean wear scar diameter with time for paraffin oil containing 0.15% w/v of different MRGs nanomaterials at 392N applied load	136
6.11	Variation of mean wear volume with time for paraffin oil containing 0.15% w/v of different MRGs nanomaterials at 392N applied load	137
6.12	Variation of mean wear scar diameter with applied load for paraffin oil containing 0.15% w/v of different MRGs nanomaterials for 30 min test duration	138
6.13	Variation in mean wear scar diameter and coefficient of friction in	140

	the presence of MRGs nanomaterials in paraffin oil. Load: 392N, sliding speed: 600 rpm, temperature: 75 °C, test duration: 60 min., concentration of MRGs: $0.15~\%$ w/v	
6.14	Variation of frictional torque as a function of step loading and time for different graphene based nanomaterials. sliding speed: 600 rpm, temperature: 75 °C, concentration of MRGs: 0.15 % w/v	140
6.15	SEM micrographs at different magnifications of the worn steel surface lubricated with different additives (0.15% w/v) in paraffin oil for 60 min test duration at 392 N applied load: (a) Paraffin oil, (b) MRG, (c) B-MRG, (d) N-MRG, (e) B-N-MRG and (f) TiO ₂ -B-N-MRG	143
6.16	SEM micrographs at different magnifications of the worn steel surface lubricated with different additives (0.15% w/v) in paraffin oil for 30 min test duration at 588 N applied load: (a) MRG, (b) B-MRG, (c) B-N-MRG and (d) TiO ₂ -B-N-MRG	143
6.17	2D and 3D-AFM images of the worn steel surface lubricated with different additives (0.15% w/v) in paraffin oil for 60 min test duration at 392 N applied load: (a) Paraffin oil, (b) MRG, (c) B-MRG, (d) N-MRG, (e) B-N-MRG and (f) TiO ₂ -B-N-MRG	144
6.18	2D and $3D$ -AFM images of the worn steel surface lubricated with different additives (0.15% w/v) in paraffin oil for 30 min test duration at 588 N applied load: (a) MRG, (b) B-MRG, (c) N-MRG, (d) B-N-MRG and (e) TiO ₂ -B-N-MRG	144
6.19	Deconvoluted XPS spectra of the tribofilm formed on the steel surface lubricated with TiO ₂ -B-N-MRG nanomaterial under ASTM D5183 test standard: (a) C1s spectra, (b) B1s spectra, (c) N1s spectra, (d) Ti2p spectra, (e) Fe 2p spectra and (f) O1s spectra	145