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Abstract. The powerful framework of cluster expansion–cluster variation methods (CE–CVM) expresses  
alloy free energy in terms of energy (model) parameters, macroscopic variables (composition and temperature) 
and microscopic variables (correlation functions). A simultaneous optimization of thermodynamic and phase 
equilibria data using CE–CVM is critically dependent on giving good initial values of energy parameters, 
macroscopic and microscopic variables, respectively. No standard method for obtaining the initial values of 
the energy parameters is available in literature. As a starting point, a method has been devised to estimate the 
values of energy parameters from consolute point (miscibility gap maximum) data. Empirical relations among 
energy parameters, temperature (Tc), composition (xc) and d2T/dx2 at the consolute point, have been developed 
using CE–CVM free energy functions for bcc and fcc structures in the tetrahedron and tetrahedron–
octahedron approximations, respectively. Thus from the observed data of Tc, xc and d2T/dx2 in the above relations, 
good initial values of energy parameters can be obtained. Further, a necessary modification to the classical 
NR method for solving simultaneous nonlinear/transcendental equations with a double root in one variable 
and a simple root in the other has been presented. 
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1. Introduction 

The framework of cluster expansion (CE) method due to 
Sanchez et al (1984) and cluster variation method (CVM) 
proposed by Kikuchi (1951) offers a physically meaningful 
and mathematically tractable hierarchy of approximations 
to handle the ever-present short range order in materials 
systems. It also subsumes many of the classical approxi-
mations of the alloy problem as lower levels of the hie-
rarchy. In fact, CE–CVM has become the method of choice 
for computation of phase diagrams and thermodynamics 
of materials systems using the energy parameters esti-
mated from first-principles quantum mechanical calcula-
tions (de Fontaine 1994). While the first-principles cal-
culations have been quite successful in obtaining the 
correct topologies of the phase diagrams, the quantitative 
agreement with the observed data needs significant  
improvement (Saunders and Miodownik 1998). In view 
of this, it becomes important to be able to find an optimi-
zed set of model parameters for the case of standard CE–
CVM approximations in different materials systems. These 
parameters will characterize the chosen alloy system if 
they are found by simultaneous (nonlinear) optimization 
of all types of available thermodynamic and phase equi-

libria data. Success of these nonlinear optimization pro-
cedures critically depends on the ability to provide good 
initial values for the model parameters. If appropriate 
initial values are not chosen, the topology of the phase 
diagram will be different from that of the observed one. 
Under such circumstances, the errors (the deviations between 
the calculated and observed compositions/temperatures) 
cannot even be evaluated, leading to a breakdown of the 
optimization procedure. Even so, there is no standard 
procedure for estimating the initial values of CE–CVM 
model parameters available in literature. In this commu-
nication, we present the details of an empirical procedure 
using which the model parameters can be estimated from 
the miscibility gap data in binary systems. In § 2, a brief 
outline of the CE–CVM formulations of free energy for 
disordered binary bcc and fcc structures is presented. A 
modified Newton–Raphson method for the determination 
of consolute point (miscibility gap maximum) is presen-
ted in § 3, whereas an empirical procedure for the estima-
tion of CE–CVM energy parameters from miscibility gap 
data is given in § 4. 

2. CE–CVM formulations for bcc and fcc structures 

For the sake of completeness, a brief outline of the CE–
CVM formulations for disordered binary bcc (Ackerman 
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et al 1989) and fcc (Sanchez and de Fontaine 1978) struc-
tures, respectively under tetrahedron and tetrahedron–
octahedron approximations is given below. An excellent 
review on this subject by Inden and Pitsch (1991) may be 
consulted for the details of cluster algebra. As usual, we 
shall present the results for a typical choice of energy 
parameters in an orthogonal basis corresponding to the 
following relations among the site operator, σi, and the 
site occupation operators B
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 The four vertices of the tetrahedron motif in bcc are 
labelled 1, 2, 3 and 4, respectively such that 12, 23, 34 and 
14 distances represent first neighbour pairs while 13 and 
24 represent second neighbour pairs. All the triangles 
forming part of the motif are crystallographically identical. 
Accordingly we have the following correlation functions 
(ui): <σ1σ2>, <σ1σ3>, <σ1σ2σ3>, <σ1σ2σ3σ4> and <σ1>. 
Of these, the point correlation function <σ1> is related to 
composition through the relation <σ1> = − xA + xB = 2 xB – 1 
and is fixed for an alloy of fixed composition. Thus, we 
have 4 independent correlation functions which describe 
the microscopic state of the system. The probabilities of 
occurrence of different types of atomic arrangements on 
the motif/submotif sites are called cluster variables. There 
are a total of 20 distinct clusters present in the structure. 
These cluster probabilities are linear functions of ui. 
 Following the CE method, the configurational energy 
of the system is expressed as a bilinear sum of the pro-
ducts of the ui (along with the appropriate multiplicities 
of the submotifs) and the corresponding energy coeffi-
cients, ei. The configurational entropy can be obtained by 
using CVM through appropriate linear combinations of 
the Boltzmann entropy summations of cluster probabilities 
corresponding to each of the motif/submotifs, such that 
each of the cluster/subcluster configurations is counted 
only once. This is done through the so-called Kikuchi–
Barker overlap correction coefficients (Kikuchi 1951; Barker 
1953). 
 Thus the free energy of the system is expressed as a 
function of the model energy parameters (ei), the macro-
scopic variables (composition, xB and temperature, T) 
and the microscopic internal variables (ui) in a hierarchi-
cal manner. Similar formulation has been carried out for 
disordered binary fcc structure using regular tetrahedron 
and octahedron as motifs (Sanchez and de Fontaine 
1978). In this case, there are a total of 9 correlation func-
tions (and hence 9 energy parameters) apart from the 
point correlation function. These correspond to first 
neighbour pair, second neighbour pair, basal (equilateral) 
triangle, lateral (isosceles) triangle, regular tetrahedron, 
irregular tetrahedron, square, 5-point pyramid and octa-
hedron. The free energy expression is obtained as in the 
case of bcc. 

3. Determination of consolute point 

The composition, xc and temperature, Tc, of the consolute 
point can be determined from the following set of two 
equations (Lupis 1983): 
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where G is a function of x and T. Introducing standard 
notation for partial derivatives, these equations can be 
written as 

Gxx = 0, (2a) 

and 

Gxxx = 0. (3a) 

 Explicit solutions for xc and Tc as given, for example, 
by Lupis (1983) cannot be found in the present case, be-
cause the internal variables ui have an implicit variation 
with x and T. Hence, they have to be determined for each 
x and T by minimizing G. Thus, xc and Tc can be found 
by using numerical procedures such as the Newton–
Raphson (NR) method by a simultaneous solution of 
equations in (2) and (3). Since the second and third partial 
derivatives of G have to be simultaneously zero at the 
consolute point, we have a double root in x but a simple 
root in T (Mathews 1998). The NR procedure needs to be 
modified for such cases, as given below. 
 Consider a function, f(x,T), which has a double root at 
x0 in x and a simple root at T0 in T. Further, consider a 
Taylor expansion of f(x,T) and fx(x,T) around x and T. 

2
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 (5) 

 Note that only the first order deviations in x and T are 
considered in (5). All the derivatives present in (5) and 
lower ones are retained in (4). Solving (5) for (T0 – T) 
after setting the left hand side to zero, we have 
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 Substituting (6) in (4) and simplifying, we obtain 
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 This is a quadratic in (x0 – x) and can be easily solved 
to yield the Newton step for x. 
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 For positive (negative) values of fxx fT, the positive 
(negative) sign should be selected for the discriminant. 
Substituting (8) in (6) then yields an expression for (T0 –
T). For very small departures from the correct solution, 
fxx fT can be taken out as a common factor from the dis-
criminant in (8), the remainder can be expanded using 
binomial theorem and retaining only the leading term in 
the same to obtain 

)./()()( 0 TxxTxxT ffffffxx −=−  (9) 

 Note that the above method can be utilized to find the 
consolute point in which f(x, T) = Gxx and fx(x, T) = Gxxx. 
The NR iterations are carried out using these corrections 
till a suitable convergence criterion (e.g. the magnitudes 
of Gxx and Gxxx are less than, say, 0⋅001) is met. 

4. Estimation of energy parameters from miscibility 
gap data 

Consolute point data consist of the critical temperature, 
Tc, composition, xc and the curvature of the miscibility 
gap boundary at the consolute point, which is related  
to (d2T/dx2)(Tc, xc) = Txx. This Txx is in fact equal to (1/3) 
[(∂4G/∂x4)/(∂2S/∂x2)] [see Lupis (1983) for details]. These 
quantities have been obtained for bcc disordered structure 
in the tetrahedron approximation by using the modified 
Newton–Raphson method presented in the previous section 
for an initial choice of energy parameters, e1 = – 250 J mol–1, 
e2 = 2e1/3 and e3 = e4 = 0. These are Tc = 305⋅825 K, xc = 
0⋅5 and Txx = – 397⋅209 K. This choice of e2 = 2e1/3 makes 
the total contribution of first and second neighbour pairs 
to the enthalpy of bcc structure comparable to that from 
first neighbours in fcc structure. By varying the ratios, 
e3/e1 and e4/e1, in the range from 0⋅2 to – 0⋅2 in steps of 
0⋅1, the consolute point data mentioned above have been 
obtained and given in table 1. 
 By fitting suitable polynomial functions of e3/e1 and 
e4/e1 to the tabulated data for Tc, xc and Txx, the following 
relations have been obtained. 
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 Division of (11) with (12) eliminates the individual e1 
term and gives the following equation in e3/e1 and e4/e1. 
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 By substituting e4/e1 = 0 in (10) and solving for e3/e1, 
we get an approximate value for e3/e1. These can be used 
as initial values for simultaneously solving (10) and (13) 
for e3/e1 and e4/e1 using two-dimensional Newton–Raph-
son method. Substitution of these in (11) or (12) gives e1, 
from which e3 and e4 can be found. 
 The energy parameters thus found can be used for ob-
taining the corresponding consolute point data for com-
parison with the observed data in order to test the validity 
of this procedure. Results of a couple of such tests are 
summarized in table 2. Comparison of observed and cal-
culated data reveals that the differences in calculated and 
observed data are well within tolerable limits and the 
topology of the phase diagram can be reproduced very 

Table 1. Consolute point data for disordered bcc structure in 
the tetrahedron approximation. 
     
     
e3/e1 e4/e1 Tc (K) xc Txx (K) 
          
  0⋅2 
  0⋅2 
  0⋅2 
  0⋅2 
  0⋅2 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

406⋅179 
380⋅245 
355⋅789 
333⋅092 
312⋅543 

 0⋅685289 
 0⋅668601 
 0⋅650946 
 0⋅633034 
 0⋅615662 

– 799⋅585 
– 725⋅385 
– 675⋅977 
– 650⋅112 
– 646⋅647 

 
  0⋅1 
  0⋅1 
  0⋅1 
  0⋅1 
  0⋅1 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

364⋅967 
341⋅936 

  320⋅37 
300⋅497 
282⋅755 

0⋅63705 
 0⋅615201 
 0⋅595764 
 0⋅579158 
 0⋅565332 

– 494⋅972 
– 478⋅627 
– 485⋅075 
– 508⋅214 
– 546⋅61 

 
  0⋅0 
  0⋅0 
  0⋅0 
  0⋅0 
  0⋅0 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

345⋅203 
325⋅147 
305⋅825 
287⋅715 
271⋅472 

 0⋅5 
 0⋅5 
 0⋅5 
 0⋅5 
 0⋅5 

– 279⋅681 
– 341⋅866 
– 397⋅209 
– 451⋅324 
– 511⋅098 

 
– 0⋅1 
– 0⋅1 
– 0⋅1 
– 0⋅1 
– 0⋅1 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

364⋅967 
341⋅936 
320⋅370 
300⋅497 
282⋅755 

0⋅36295 
 0⋅384799 
 0⋅404236 
 0⋅420842 
 0⋅434668 

– 494⋅972 
– 478⋅627 
– 485⋅075 
– 508⋅214 
– 546⋅61 

 
– 0⋅2 
– 0⋅2 
– 0⋅2 
– 0⋅2 
– 0⋅2 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

406⋅179 
380⋅245 
355⋅789 
333⋅092 
312⋅543 

 0⋅314711 
 0⋅331399 
 0⋅349054 
 0⋅366966 
 0⋅384338 

– 799⋅585 
– 725⋅385 
– 675⋅977 
– 650⋅112 
– 646⋅647 
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well. Hence the estimated energies can serve as very good 
starting values for CE–CVM optimization programs. 
 As in the case of bcc disordered structure, consolute 
point data have been obtained for fcc disordered structure 
in the tetrahedron–octahedron approximation by using 
modified Newton–Raphson method for an initial choice 
of e1 = – 250 J mol–1 and ej = 0 (j = 2 to 9). These are Tc 
= 300⋅903 K, xc = 0⋅5 and Txx = – 362⋅215 K. In general, 
the energies corresponding to all the submotifs contain-
ing second neighbour distances have been neglected in 
the literature. Accordingly, we set e2 = e4 = e6 = e7 = e8 = 
e9 = 0 and vary the ratios, e3/e1 and e5/e1, in the range 
from – 0⋅2 to 0⋅2 in steps of 0⋅1, and obtain the corre-
sponding consolute point data which are given in table 3. 

 Once again by fitting suitable polynomial functions of 
e3/e1 and e5/e1 to the tabulated data for Tc, xc and Txx, the 
following relations have been obtained for fcc structure. 
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2

13 eeee− , (15) 

)/(79837.1)/(531.1344886.1[ 15
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2

13 eeee+ . (16) 

 Once again, this set of equations can be solved in a 
manner similar to that of the bcc case. Further, this pro-
cedure has been verified to be valid and the differences 
among observed and estimated data have been well 
within the permissible limits. 
 The empirical fits given above span the range – 0⋅2 to 
+ 0⋅2 for the energy parameter ratios and cover an asy-
mmetry of the xc which is commonly observed in real 
systems. While the relations found here may be valid for 
small extrapolations outside the domain considered, this 
procedure can be extended by considering wider ranges 
of energy parameter ratios to cover greater degree of 
asymmetry of the xc, depending on a specific require-
ment. It may be noted that the solution of the (empirical) 
polynomial equations given above involves NR iterations 
in itself. Hence care should be exercised to obtain real 
and meaningful solutions for the energy parameter ratios. 
 It may be pointed out that the modified NR (presented 
in § 3) for the case of a double root in x and a simple root 
in T is applicable to the determination of two other spe-
cial points in phase diagrams: (i) critical point of an  
order–disorder boundary (first order transition)—This is 
given by ∆G(x,T) = Gα – Gβ = 0 and ∆Gx(x,T) = Gα

x  – 
Gβ

x = 0, where one of the phases is ordered, the other 
being disordered and (ii) congruent extrema in two phase 
boundaries. This case is very similar to that of the critical 
point in (i) except that the two phases involved need not 
be structurally related to each other. 

Table 2. Comparison of observed and calculated data for bcc structure. 
        
Initial choice of energies  
(J mol–1) 

Consolute point data for the  
initial choice of energies 

Energies calculated from  
(10)–(13) (J mol–1) 

Consolute point data 
 for the calculated energies 

        
e1 = – 250 
e2 = – 500/3 
e3 = 50 
e4 = 50 

Tc = 312⋅543 K 
xc = 0⋅38433 
Txx = – 646⋅64 K 

e1 = – 245⋅998 
e2 = – 163⋅999 
e3 = 49⋅6889 
e4 = 43⋅4941 

 

Tc = 312⋅747 K 
xc = 0⋅379574 
Txx = – 637⋅831 K 

e1 = – 250 
e2 = – 500/3 
e3 = 50 
e4 = 0 

Tc = 355⋅89 K 
xc = 0⋅349054 
Txx = – 675⋅57 K 

e1 = – 247⋅511 
e2 = – 165⋅007 
e3 = 46⋅805 
e4 = – 7⋅05899 

Tc = 354⋅463 K 
xc = 0⋅348275 
Txx = – 656⋅571 K 

        

Table 3. Consolute point data for disordered fcc structure. 
     
     
e3/e1 e5/e1 Tc (K) xc Txx (K) 
          
  0⋅2 
  0⋅2 
  0⋅2 
  0⋅2 
  0⋅2 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

327⋅975 
325⋅959 
324⋅083 
322⋅339 
320⋅729 

0⋅634889 
0⋅625987 
0⋅617829 
0⋅610353 
0⋅603475 

– 433⋅94 
– 458⋅815 
– 489⋅58 
– 526⋅321 
– 569⋅23 

 
  0⋅1 
  0⋅1 
  0⋅1 
  0⋅1 
  0⋅1 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

310⋅185 
308⋅656 
307⋅17 
305⋅725 
304⋅333 

0⋅580431 
0⋅573463 
0⋅567457 
0⋅562235 
0⋅557636 

– 325⋅856 
– 359⋅551 
– 398⋅323 
– 442⋅574 
– 492⋅867 

 
  0⋅0 
  0⋅0 
  0⋅0 
  0⋅0 
  0⋅0 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

303⋅447 
302⋅185 
300⋅903 
299⋅611 
298⋅326 

 0⋅5 
 0⋅5 
 0⋅5 
 0⋅5 
 0⋅5 

– 280⋅81 
– 319⋅389 
– 362⋅215 
– 410⋅004 
– 463⋅596 

 
– 0⋅1 
– 0⋅1 
– 0⋅1 
– 0⋅1 
– 0⋅1 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

310⋅185 
308⋅656 
307⋅170 
305⋅725 
304⋅333 

0⋅419569 
0⋅426537 
0⋅432543 
0⋅437765 
0⋅442364 

– 325⋅856 
– 359⋅551 
– 398⋅323 
– 442⋅574 
– 492⋅867 

 
– 0⋅2 
– 0⋅2 
– 0⋅2 
– 0⋅2 
– 0⋅2 

  0⋅2 
  0⋅1 
  0⋅0 
– 0⋅1 
– 0⋅2 

327⋅975 
325⋅959 
324⋅083 
322⋅339 
320⋅729 

0⋅365111 
0⋅374013 
0⋅382171 
0⋅389647 
0⋅396525 

– 433⋅94 
– 458⋅815 
– 489⋅58 
– 526⋅321 
– 569⋅23 
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5. Conclusions 

A method has been devised to establish empirical rela-
tions among CE–CVM energy parameters and the obser-
ved consolute point data from phase diagrams. Using 
these relations, good initial estimates of parameters can 
be obtained. These parameters reproduce the observed 
topology of the phase diagrams and can thus be used for 
subsequent simultaneous optimization of thermodynamic, 
structural and phase equilibria data for materials systems. 
Further, a necessary modification to the classical NR 
method for solving simultaneous nonlinear/transcendental 
equations with a double root in one variable and a simple 
root in the other has been presented. Three applications 
of the modified NR method to find special points in 
phase diagrams have also been pointed out. 
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