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Estimation of CE-CVM energy parametersfrom miscibility gap data
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Abstract. The powerful framework of cluster expansion—cluster variation methods (CE-CVM) expresses
alloy free energy in terms of energy (model) parameters, macroscopic variables (composition and temperature)
and microscopic variables (correlation functions). A simultaneous optimization of thermodynamic and phase
equilibria data using CE-CVM s critically dependent on giving good initial values of energy parameters,
macr oscopic and microscopic variables, respectively. No standard method for obtaining the initial values of
the energy parametersis available in literature. As a starting point, a method has been devised to estimate the
values of energy parameters from consolute point (miscibility gap maximum) data. Empirical relations among
energy parameters, temperature (T,), composition (x.) and d?T/dx? at the consolute point, have been developed
using CE-CVM free energy functions for bcc and fcc structures in the tetrahedron and tetrahedron—
octahedron approximations, respectively. Thus from the observed data of T, X, and d”T/dx? in the above relations,
good initial values of energy parameters can be obtained. Further, a necessary modification to the classical
NR method for solving simultaneous nonlinear/transcendental equations with a double root in one variable
and asimpleroot in the other has been presented.
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1. Introduction

The framework of cluster expansion (CE) method due to
Sanchez et al (1984) and cluster variation method (CVM)
proposed by Kikuchi (1951) offers a physically meaningful
and mathematically tractable hierarchy of approximations
to handle the ever-present short range order in materials
systems. It also subsumes many of the classical approxi-
mations of the alloy problem as lower levels of the hie-
rarchy. In fact, CE-CVM has become the method of choice
for computation of phase diagrams and thermodynamics
of materials systems using the energy parameters esti-
mated from first-principles quantum mechanical calcula-
tions (de Fontaine 1994). While the first-principles cal-
culations have been quite successful in obtaining the
correct topologies of the phase diagrams, the quantitative
agreement with the observed data needs significant
improvement (Saunders and Miodownik 1998). In view
of this, it becomes important to be able to find an optimi-
zed set of model parameters for the case of standard CE—
CVM approximations in different materials systems. These
parameters will characterize the chosen aloy system if
they are found by simultaneous (nonlinear) optimization
of all types of available thermodynamic and phase equi-
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libria data. Success of these nonlinear optimization pro-
cedures critically depends on the ability to provide good
initial values for the model parameters. If appropriate
initial values are not chosen, the topology of the phase
diagram will be different from that of the observed one.
Under such circumstances, the errors (the deviations between
the calculated and observed compositions/temperatures)
cannot even be evaluated, leading to a breakdown of the
optimization procedure. Even so, there is no standard
procedure for estimating the initial values of CE-CVM
model parameters available in literature. In this commu-
nication, we present the details of an empirical procedure
using which the model parameters can be estimated from
the miscibility gap data in binary systems. In 8§ 2, a brief
outline of the CE-CVM formulations of free energy for
disordered binary bcc and fcc structures is presented. A
modified Newton—Raphson method for the determination
of consolute point (miscibility gap maximum) is presen-
ted in § 3, whereas an empirical procedure for the estima-
tion of CE-CVM energy parameters from miscibility gap
dataisgivenin § 4.

2. CE-CVM formulationsfor bcc and fcc structures

For the sake of completeness, a brief outline of the CE—
CVM formulations for disordered binary bcc (Ackerman
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et al 1989) and fcc (Sanchez and de Fontaine 1978) struc-
tures, respectively under tetrahedron and tetrahedron—
octahedron approximations is given below. An excellent
review on this subject by Inden and Pitsch (1991) may be
consulted for the details of cluster algebra. As usual, we
shall present the results for a typical choice of energy
parameters in an orthogonal basis corresponding to the
following relations among the site operator, s;, and the
site occupation operators p* and p®:

&0 &1 133935

The four vertices of the tetrahedron motif in bcc are
labelled 1, 2, 3 and 4, respectively such that 12, 23, 34 and
14 distances represent first neighbour pairs while 13 and
24 represent second neighbour pairs. All the triangles
forming part of the motif are crystallographically identical.
Accordingly we have the following correlation functions
(U): <s1S,>, <S1S3>, <S1S,53>, <S15,5354> and <S>.
Of these, the point correlation function <s > is related to
composition through the relation <s;>=- X, +Xz=2xg—1
and is fixed for an alloy of fixed composition. Thus, we
have 4 independent correlation functions which describe
the microscopic state of the system. The probabilities of
occurrence of different types of atomic arrangements on
the motif/submotif sites are called cluster variables. There
are a total of 20 distinct clusters present in the structure.
These cluster probabilities are linear functions of u;.

Following the CE method, the configurational energy
of the system is expressed as a bilinear sum of the pro-
ducts of the u; (along with the appropriate multiplicities
of the submotifs) and the corresponding energy coeffi-
cients, g. The configurational entropy can be obtained by
using CVM through appropriate linear combinations of
the Boltzmann entropy summations of cluster probabilities
corresponding to each of the motif/submotifs, such that
each of the cluster/subcluster configurations is counted
only once. This is done through the so-called Kikuchi—
Barker overlap correction coefficients (Kikuchi 1951; Barker
1953).

Thus the free energy of the system is expressed as a
function of the model energy parameters (g), the macro-
scopic variables (composition, Xz and temperature, T)
and the microscopic internal variables (u;) in a hierarchi-
cal manner. Similar formulation has been carried out for
disordered binary fcc structure using regular tetrahedron
and octahedron as motifs (Sanchez and de Fontaine
1978). In this case, there are a total of 9 correlation func-
tions (and hence 9 energy parameters) apart from the
point correlation function. These correspond to first
neighbour pair, second neighbour pair, basal (equilateral)
triangle, lateral (isosceles) triangle, regular tetrahedron,
irregular tetrahedron, square, 5-point pyramid and octa-
hedron. The free energy expression is obtained as in the
case of bcc.

3. Determination of consolute point

The composition, X, and temperature, T, of the consolute
point can be determined from the following set of two
equations (Lupis 1983):

2
G
:[_[7=0, (2)
and
3
G
27=o, 3

where G is a function of x and T. Introducing standard
notation for partial derivatives, these equations can be
written as

G« =0,
and
Gy = 0.

(2a)

(3a)

Explicit solutions for x. and T, as given, for example,
by Lupis (1983) cannot be found in the present case, be-
cause the internal variables u; have an implicit variation
with x and T. Hence, they have to be determined for each
x and T by minimizing G. Thus, x;. and T, can be found
by using numerical procedures such as the Newton—
Raphson (NR) method by a simultaneous solution of
equations in (2) and (3). Since the second and third partial
derivatives of G have to be simultaneously zero at the
consolute point, we have a double root in x but a simple
root in T (Mathews 1998). The NR procedure needs to be
modified for such cases, as given below.

Consider a function, f(x,T), which has a double root at
Xg in X and a simple root at Ty in T. Further, consider a
Taylor expansion of f(x,T) and f,(x,T) around x and T.

f (%0, To) = F(XT) + (X - X) F (X T) +5 (X - x)?
fc (X T) + (X - X)(To - T) Frr (X T) +(To - T) f7 (X, T),
4
f (X0, To) = (X T)+(Xo- X) Fre (X, T)+(Tp-T) for (X, T).
()
Note that only the first order deviations in x and T are
considered in (5). All the derivatives present in (5) and

lower ones are retained in (4). Solving (5) for (To—T)
after setting the left hand side to zero, we have

f -x)f
(Tp- ) =- 700" X e ©®)
XT

Substituting (6) in (4) and simplifying, we obtain

fxxfxT(XO' X)2+2fxxfT(Xo' X)‘ 2(ﬁ:xT - f><fT):0-
(7)
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This is a quadratic in (X, —X) and can be easily solved
to yield the Newton step for x.

Aty £y (B F) 2+ 20 g (f 7 - ffp)
f. f '

XX ' XT

(X%~ X)=
(8)

For positive (negative) values of f,fr, the positive
(negative) sign should be selected for the discriminant.
Substituting (8) in (6) then yields an expression for (Tp —
T). For very small departures from the correct solution,
f fr can be taken out as a common factor from the dis-
criminant in (8), the remainder can be expanded using
binomial theorem and retaining only the leading term in
the same to obtain

(X0 - X) =(ffyr - Ffr)(fcfr). 9)

Note that the above method can be utilized to find the
consolute point in which f(x, T) = Gy and fy(X, T) = Gy
The NR iterations are carried out using these corrections
till a suitable convergence criterion (e.g. the magnitudes
of G, and Gy, are less than, say, 0°001) is met.

4. Estimation of energy parameters from miscibility
gap data

Consolute point data consist of the critical temperature,
T., composition, x. and the curvature of the miscibility
gap boundary at the consolute point, which is related
to (d°T/dX)(r, xy = Tex. This Ty is in fact equal to (1/3)
[(T'GIIX)/(1°S1%®)] [see Lupis (1983) for details]. These
quantities have been obtained for bce disordered structure
in the tetrahedron approximation by using the modified
Newton—Raphson method presented in the previous section
for an initia choice of energy parameters, e, =—250 J mol ™,
e =2e/3ande;=¢e,=0. These are T, = 305825 K, X, =
0% and T,, =—397°209 K. This choice of & = 2¢,/3 makes
the total contribution of first and second neighbour pairs
to the enthalpy of bcc structure comparable to that from
first neighbours in fcc structure. By varying the ratios,
es/e; and ey/ey, in the range from 052 to — 02 in steps of
0+, the consolute point data mentioned above have been
obtained and given in table 1.

By fitting suitable polynomial functions of es/e; and
e4/e; to the tabulated data for T, X and Ty, the following
relations have been obtained.

xP= 0.5+0-394714(e, /) ¥/ 5+ 0-536611(e, /6 ) ¥/ ° (e, /e),
(10)

T = g[- 1:2233- 525314(e;/ ) - 0.763127(g, / €;)
- 4-46246(e; /€)% (e4/€))] (11)

TObS = ¢[1-58884+30-9369(e; / €,)? - 1.73767(e,/e,)
+83.8545(e; /)2 (&, /,)] - (12)

Division of (11) with (12) eliminates the individual e,
term and gives the following equation in ey/e; and ej/e;.

(525314T.% +30-9369T ) (e, / €,) + (0-763127T 2
- L73767T7%) (e, / &) + (4-46246T,0° +83-8545T ™)
(e5/€)%(e, /&) +1-2233T +1.58884T.>* = 0.

(13)

By substituting e,/e; =0 in (10) and solving for es/ey,
we get an approximate value for ey/e;. These can be used
as initial values for simultaneously solving (10) and (13)
for es/e; and ey/e; using two-dimensional Newton—Raph-
son method. Substitution of these in (11) or (12) gives ey,
from which e; and e, can be found.

The energy parameters thus found can be used for ob-
taining the corresponding consolute point data for com-
parison with the observed data in order to test the validity
of this procedure. Results of a couple of such tests are
summarized in table 2. Comparison of observed and cal-
culated data reveals that the differences in calculated and
observed data are well within tolerable limits and the
topology of the phase diagram can be reproduced very

Table 1. Consolute point data for disordered bcc structure in
the tetrahedron approximation.

esle ese Te (K) Xc T (K)
02 02 406479 0%685289 — 799685
02 04 380245 0%668601 — 725385
02 00  355%89 0°650946 — 675977
02 —04 333092 0633034 — 650412
02 —02 312643 0%615662 — 6465647
01 02 364967 063705 — 4945972
04 04 341036 0615201 — 478%627
04 00 320087 0695764 — 485075
01 —04 3001497 0679158 — 508214
04 —0®2 282755 0665332 — 54661
00 02 345903 0% — 279681
00 04 325147 0% — 341866
00 00 305825 0% — 3975209
00 —-04 287715 06 — 4515824
00 —02 271472 06 — 5115098

-04 02 364067 0’36295 — 494972

-04 04 341036 0384799 — 478%627

-04 00 3200870 0404236 — 485075

-04 —04 300497 0420842 — 508214

-0 —0®2  282%55 0434668 — 54661

-02 02 406479 0814711 — 799685

-0% 04 380245 0331399 — 725385

-0% 00  355%89 05349054 — 675977

-02 —04 333092 0°366966 — 650412

-0% —02 312643 0384338 — 6465647
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Table2. Comparison of observed and calculated data for bee structure.

Initial choice of energies Consolute point data for the

Energies calculated from

Consolute point data

(Imol™) initial choice of energies (10)—~(13) (I mol™) for the calculated energies
e, =—-250 T, =312%643 K e, = —245%98 T, =312¥47 K
e, =—500/3 Xe = 0588433 e, =— 163999 Xe = 06879574
e; =50 T = — 646564 K e; = 496889 Ty =—637831 K
e, =50 e, = 434941
e, =—250 T, = 35589 K e, =—247%11 T, = 354463 K
=-500/3 Xe = 05849054 =—165%07 Xe = 0848275
e;=50 T =— 67567 K e; = 46>805 T = —656%671 K
e=0 e, = — 7°05899

Table 3. Consolute point data for disordered fcc structure.

ejle, es/e; T (K) Xe T (K)
02 02 327975 0634889 — 43394
02 04 325%59 0%625987 — 458815
02 00 324083 0617829 — 48968
02 -04 322339 0610353 — 526,821
02 -0% 3205729 0603475 — 56923
04 02 310485 0°680431 — 325856
04 04 308656 06573463 — 359651
04 00 30747 0667457 — 398823
04 -04 3055725 0662235 — 4425574
04 -0% 304333 0657636 — 4925867
00 02 3032447 0% — 28081
00 04 302485 0% — 319,389
00 00 300003 0% — 362215
00 -04 299611 0% — 410004
00 -02 298326 0% — 4636596

-0t 02 310485 0419569 — 325856

—0x 04 308656 0426537 — 359651

—0x 00 307470 0432543 — 398823

-04 -0x 3057725 0437765 — 4425674

-04  -0%® 304333 0442364 — 4925867

—0%® 02 327975 0865111 — 43394

—-0%® 04 325%959 0874013 — 458815

—-0® 00 32483 0882171 — 48968

—-02 -0 322:339 0°389647 — 5265821

-02 -02 3205729 0396525 — 56923

well. Hence the estimated energies can serve as very good
starting values for CE-CVM optimization programs.

As in the case of bcc disordered structure, consolute
point data have been obtained for fcc disordered structure
in the tetrahedron—octahedron approximation by using
modified Newton—-Raphson method for an initial choice
of e =—250Jmol™" and g =0 (j =2 t0 9). These are T,
= 300003 K, X, = 0% and T,, =—362215K. In general,
the energies corresponding to al the submotifs contain-
ing second neighbour distances have been neglected in
the literature. Accordingly, we set e, =e,=e=€,= €=
e =0 and vary the ratios, es/e; and es/e;, in the range
from — 02 to 02 in steps of 04, and obtain the corre-
sponding consolute point data which are given in table 3.

Once again by fitting suitable polynomial functions of
es/e, and es/e; to the tabulated data for T, X. and Ty, the
following relations have been obtained for fcc structure.

X2 = 0.5+ 0-299259(e,/e;) ¥ °+ 0-212183(e5/6))*"° (e5/ey)
(14)

T = g[- 1-20361- 2:34275(e;/ ;) - 0:0526217(e5/€))
- 0501314(e;/ €)% (e5/€)] (15)

T =€,[1-44886 +13-531(e;/ ) - 179837 (e5/ ;)
+11:2606(e; /€)% (e5/€,)].

Once again, this set of equations can be solved in a
manner similar to that of the bcc case. Further, this pro-
cedure has been verified to be valid and the differences
among observed and estimated data have been well
within the permissible limits.

The empirical fits given above span the range — 02 to
+ 02 for the energy parameter ratios and cover an asy-
mmetry of the x. which is commonly observed in real
systems. While the relations found here may be valid for
small extrapolations outside the domain considered, this
procedure can be extended by considering wider ranges
of energy parameter ratios to cover greater degree of
asymmetry of the x., depending on a specific require-
ment. It may be noted that the solution of the (empirical)
polynomial equations given above involves NR iterations
in itself. Hence care should be exercised to aobtain real
and meaningful solutions for the energy parameter ratios.

It may be pointed out that the modified NR (presented
in § 3) for the case of a double root in x and a simple root
in T is applicable to the determination of two other spe-
cial points in phase diagrams: (i) critical point of an
order—disorder boundary (first order transition)—This is
given by DG(x,T)=G*—G® =0 and DG,(x,T) = G%, —
G°, =0, where one of the phases is ordered, the other
being disordered and (ii) congruent extrema in two phase
boundaries. This case is very similar to that of the critical
point in (i) except that the two phases involved need not
be structurally related to each other.

(16)
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5. Conclusions

A method has been devised to establish empirical rela-
tions among CE-CVM energy parameters and the obser-
ved consolute point data from phase diagrams. Using
these relations, good initial estimates of parameters can
be obtained. These parameters reproduce the observed
topology of the phase diagrams and can thus be used for
subseguent simultaneous optimization of thermodynamic,
structural and phase equilibria data for materials systems.
Further, a necessary modification to the classica NR
method for solving simultaneous nonlinear/transcendental
equations with a double root in one variable and a simple
root in the other has been presented. Three applications
of the modified NR method to find special points in
phase diagrams have also been pointed out.
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