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The concept of invexity has allowed the convexity requirements in a variety of
mathematical programming problems to be weakened. We extend a number of
Kuhn-Tucker type sufficient optimality criteria for a class of continuous nondiffer-
entiable minmax fractional programming problems that involves several ratios in
the objective with a nondifferentiable term in the numerators. As an application
of these optimality results, various Mond-Weir type duality results are proved
under a variety of generalized invexity assumptions, These results extend many
well-known duality results and also give a dynamic generalization of those of finite
dimensional nonlinear programming problems recently explored. © 1995 Academic

Press, Inc.

1. INTRODUCTION

Duality for a class of nondifferentiable mathematical programming was
studied first by Mond [8]; subsequently Chandra et al. [3] weakened the
convexity requirements for duality by giving a Mond—Weir type dual and
assuming that the objective function is pseudo-convex. Further, Mond and
Smart [11] established duality results for a class of nondifferentiable pro-
gramming problems with invexity assumptions in the single objective case,
which extends an earlier work of Chandra et al. [2].

Recently, Mond et al. [10] established duality results for nondifferentiable
multiobjective programs with convexity assumptions. Mukherjee and
Mishra [12} weakened the convexity requirements and extended the work
of {10] for the case of multiobjective variational problems.

Crouzeix et al. [7] obtained duality results for generalized minmax frac-
tional programming involving several ratios in the objective. Bector et al.
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{1] used a parametric approach to establish duality theorems for minmax
fractional programming problems under convexity assumptions, which ex-
tends some part of an earlier work of Crouzeix et al. [6].

The purpose of this paper is to establish sufficient optimality criteria and
duality theorems for nondifferentiable minmax fractional programming
problems with a variety of invexity assumptions. This work extends the
work of Bector et al. {1] to the nondifferentiable case along with relaxation
of the convexity requirements also.

2. PREREQUISITES AND MAIN PROBLEM

Let I = [a, b] be a real interval, ¢: 7 X R” X R" — R be a continuously
differentiable function, and g: / X R* X R” — R™ be a continuously differ-
entiable function. In order to consider @(¢, x, &}, where x: I — R” is differen-
tiable with derivative x, denote the partial derivatives of ¢ by ¢,,

b = [od/ox!, ..., d/dx?], ;. = [odplax!, .., ad/axP).

The partial derivatives of other functions used will be written similarly.
Denote by X the space of piecewise smooth functions x: I — R" with the
norm ||x|| = ||x|l. + {Dx}., where the differentiation operator is given by
u=Dxx=a-+t f; u(s) ds, where a is a value given at the boundary, thus
giving D = d/dr except at discontinuities. Let

Jixd = |7 (e x(2), x(1)) dt

be Fréchet differentiable. For notational simplicity we shall write, as and
when necessary, x(f) and x(¢) as x and x, respectively, and so on.

We now give some definitions from [9] that we shall use in the sequel.
At a point u € X we define a functional J to be:

(i) Invex with respect to 7 if there exists a differentiable vector func-
tion n(¢, x, u) with n{¢, x, x) = 0 such that for all x € X

Jx - T = [ {n(t,x, ) folt, i) + (% (e, x, u)) fitt,u, u)} d,

or strict invex if strict inequality holds.

(ii) Pseudoinvex (PIX) with respect to nif there exists a differentiable
vector function 7(t, x, u) with n(¢, x, x) = 0 such that for x € X
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[ {n(t, X, 1) fult,u, it) + (-;-’; (., u)) filt.u, u)} dr = 0= J[x] = J[u]

or equivalently,

J[x] < J[u] = j ” {n(:, X u) fult, u, ) + (dit n, x, u)) Flt,u, a)} dt < 0.

(iii) Strictly Pseudoinvex (SP1X) with respect to 7 if there exists a
differentiable vector function %(t, x, u) with 5(z, x, x} = 0 such that for all
xe X

j ” {17([, X u) folty u, i) + (3"; e, x, u)) £t u, u)} dt = 0= J[x] > J[u]

or equivalently,

Jx}=Ju]= K {'r)(t, x,uw) fo(t u, i) + (g; 7, x, u))f,-c(t, u, it)} dr < Q.

(iv) Quasi-invex (QIX) with respect to 7 if there exists a differen-
tiable vector function (¢, x, u) with n(t, x, x) = 0 such that

f: {n(t,x, u) fo(t,u, i) + (dit 7, x, u)) fe(t, u, L't)} dt > 0= J[x] = J{u]
or equivalently,

Tx <= [ {n(t, X u) fi(t,u, i) + (% nt.x, u)) flt,u, a)} dr =<0,

This QIX is equivalent to QIX of Mond and Husain (9], which can be seen
from [1]. In the above definitions, d7/dt is the vector whose ith component
is (d/d0)7/(t, x, u). Here if f is independent of ¢ and (¢, x, 1) = (x — w),
definitions (i)-(iv) reduce to convexity, pseudoconvexity, strict pseudocon-
vexity, and quasiconvexity.

We now consider the following generalized continuous nondifferentiable
minmax fractional programming problem:
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Primal Problem

(P)
" LFix, %) + (7B X)) dt
v* = min max y — —
x l=i=p J hi(t, x, x) dt
subject to
x(a) = a, x(b) =g (1)
gt x,x) =<0, telj=1,2,...m, @)

where f: ke, x, x)dt > 0,i = 1,2, ..., p, and x € C, is the set of feasible
solutions of (P). The notation Cp will have a similar meaning for the
problem (D). Each B;, i = 1, ..., p, is an n X n positive semi-definite
(symmetric) matrix.

In view of [1] we consider the following continuous nondifferentiable
minmax parametric programming problem in v:

(P,)
min max j " £t x,5) + (TB)X)? - vkt x, 1) dt 3)
subject to
x(@)=a, x(b)=8 (4)
gi(t, x,x) =0, telj=1,2,..m (5)

and in the spirit of {1] state the following lemma:

LemMma 1. If (P) has an optimal solution x* with optimal value of the
(P)-objective equal to v*, then F(u*) = 0 and conversely, if F(v*) = 0, then
(P) and (P,«) have the same optimal solution set.

In subsequent analysis we will require the generalized Schwarz inequal-
ity [8]

x"Bw = (x"TBix)"*(w'Bw)'?,  x,xE€R,i=1,2,..,p.

The following proposition is the analogue of Proposition 3 of [8] in our
setting:
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ProrosiTiON 1. If x* € X is an optimal solution of the primal problem
(P), then there exist multiples y™ € R.,i = 1,2, ..., p, and piecewise smooth
IR j=1,2,..,m w* I — R: with (, ) not all zero, such that

ﬁ: YOLF(e, x*, x%) + Bi(f)w* — v*hi(1, x*, x*)] + E 28I, x*, x*)
i=1

j=1
P {i YILFLe %, 5%) — oA (e e 5] + X 2 gl x)}
i=1 =

where
Zi*gj(t, x*, x*)y =0, telj=1,2,...m

w*TB,(tw* <1, i=1,2,...p
x*TB(nw* = (x*TB(t)x*(1))'"?, i=1,2,..p.

3. OPTIMALITY CONDITIONS

To derive the optimality conditions and duality we shail make use of
(P,). Using (3)~(5) we get the following continuous programming problem,
which is equivalent to (P,) for a given v € R.

(EP,) Minimize g (6)

subject to
x(@=a  x(b)=p (7)
f” (it x, %) + (7B x)2 ~ vhi(t,x, ) dt = q,  i=1,..p (8)

gitx,x)=0, telj=1,..m (9

We now state Lemma 2 of [1]:

LemMma 2 [1].  x* is (P)-optimal with the corresponding optimal value of
the (P)-objective equal to v* if and only if (x*, v*, g*) is (EP,)-optimal with
the corresponding value of the (EP,)-objective equal to zero, that is, q = 0.

Clarke [4, 5] has given necessary conditions for a simple problem subject
to a differential inequality for the form g(z, (1), (1)) = 0 in terms of
generalized subdifferential aq(z, £(¢), {(¢)). In fact, the results of (10)-(16)
of the following theorem are obtained by putting the problem (EP,) into
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Clarke’s form. Also, in such a process one would need a representation
for the subdifferential. The proof of the necessary part as depicted in
Theorem 1, below, applies a known Fritz John theorem for constrained
minimization in abstract spaces. In that approach also questions of represen-
tation of subdifferential arise.

Tueorem 1 (Necessary optimality condition). Let x* be an optimal
solution of (P) with the optimal value of (P)-objective equal to v*. Let the
normality condition [11] hold. Then there exist g* € R, y* € R?, and z*:
I — R™ piecewise smooth such that (x*, y*, v¥, w*, z*) satisfies

S VO FL X%, %) + BOwH(r) — v*hi(t, x, 9] + S 27gn %, £%)
i=1 =1

(10
=D {i YOLFi, X%, 3%) — v*h(n x*, 5%)] + ) 278, x*,ff*)}

i=1 J=1

f:y"'[f"(t, x*, %) + Bi(w*(t) — v*h'(t, x*, x*)] dt = 0 (1
Vi=1,2,..,p
gt x*, %*) = 0, telj=1,2,..m (12)
[ LR 3%, %) + BiOWw*(t) — v*hi(e, x*, i)} di < 0 03
Vi=1,2,..,p

git, x*, x*) <0, teLVYi=12..m (14)
w*TB(Hw* < 1, telLlVi=1,.,p (15)
>y = (16)
g*=0 oY)

VFER, yreERP, *ER™  y* zx=0, rel (18)

Proof. Since x* is (P)-optimal with the corresponding optimal value of
the (P)-objective equal to v*, therefore, by Lemma 2, (x*, v*, ¢*) is (EP,)-
optimal with the corresponding optimal value of the (EP,)-objective equal
to zero. The theorem now follows by applying the Kuhn—Tueker condition
and Proposition 1 at (x*, v*, g*) to (EP,). |

THEOREM 2 (Sufficient optimality conditions). Let (x*, v*, y*, w*, z¥)
satisfy (10)—(18) and at x* let
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o(x) = 5:1 v j ” [£i(t, x, %) + -7 By(t)w — v*hi(t, x, %)] dt be PIX
and
2 [[2rgi x5y dibe QX foralix <P,
=
Then x* is (P)-optimal with the corresponding optimal value v*.
Proof. From (14), x* is (P)-feasible and by (13) and (14), x* € “P,..

From (9), x* € “EP,. (i.e., x* € “P) we have

[[Sgernas['yrgerina
433 aiq
Zofb .
Then quasi-invexity of >, f 27°g!(t, x, x) dt gives
=1

[ {nu, x2S, g%, 1%) + (Dlt,x,x%)T

j=1
X [2 2gh(e, x*, x*)]} dr=0.
j=1

Therefore

b L . S s )
[7 e x, 007 [Z 4 g’x(t,x*,x*)] de + (e, x, x*)T 3, 2 gh(t 3%, )iz
a ]:‘

j=1
- jb n(t, x,x*)"D [E g, x*,x*)] dt<0,
a [=]
by integration by parts.

That is,

[ ez, 00y7 {i 2" ()it x*, &%) — D [i z"‘(t)gz;a,x*,x*)]} dr <0,
j=t j=1
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the integrand term is zero since WL x, x*) =0att=gand b Now, from
(10), we have

[t x, x){ﬁ YA + Bow() ~ orhie, 2%, 1%)]
-D [ﬁ VLFue %, 5%) — wahis x*,fc*)}]} di
= - f b 7, x, x¥)7 {]5; 2l e, x%, i%)
-D [,i] gl ¥, x*)]} dr=0.
Then
J. { (e, x, x%)7 5"; VLM% 5%) + Bilw — vhi (1, %, i)
+ (D, x, x49)7 {ﬁ YLF 4t %) = vy, v, sc*)]}} di=0.

using integration by parts with integrated term zero. By pseudoinvexity of
8(x) we now have

>y [ e + 780w - e, %)) dt
-1 “
W fb . '
= 5: ¥ f Filtx*, %) + T B(yw — UXRI(t, x*, *)] d.
=1 “

Using (18), (8), and (16) on the LHS and (11) and (17) on the RHS in the
above inequality, we get

q=0=g* x € CEP,,

and using this with Lemma 2, we have the result. 1

THEOREM 3 (Sufficient optimality conditions). Let (x*, Y*, v*, 2*) satisfy
(10)-(18) and at x* ler
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6:(x) = 3 Y"1t %, %) ~ v*hi(e,x, %)) de be QIX
i=1
and
Zorb . .
Gx) =3 f 2"gH(t,x, i) dt be SPIX  forallx € CEP,..
=171

Then x* is optimal to (P) with the corresponding optimal objective value to v*,

Proof. From (13), (14), x* € “EP,. and from (14), x* € “P. Now for
any x € EP,. (and hence x € “P), we have as in Theorem 2,

DRU L (BRI DI (BB fb 27"gi(t, x, X) dt
j=1 j=1 =174
5 b g i .
=> f 2gi(t, x*, x*) dt < 0.
=174
Using strict-pseudoinvexity of G(x) at x*, we get
”m ”m
[7 e, x, x0T S, 2k, 0%, 1%) + (Dt x, x0T Y, 27 gl X%, x*)} dr<0.
e j=1 ' i=1

Therefore
b L LN
f,, (e, x, x*)7 E;Z’gi(I,X*,fc*) dt + vv(t,x,X*)’Z1 2 gk (e, %, 1)z
j= =

— ]b 7(t, x, x*)TD [E Zj'gf{(t, x*, x*)] dt <0,
a [=1
by integration by parts.

That is,

J'b (e, x,X*)T{E Zj'gi(t- x*,x*)— D [2 Zj'gi(t, x*, x*)]} dt< 0
a =1 =1

the integrand term is zero since n(t, x, x*) = 0 att = g and b.
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Now, from (10), we have
b . P . ; .
J 7, x, x*)T{i yoLfe(e, x*, %) + Bi(Ow* — v*hi(e, x*, x*)]
4 i=1
-D [ﬁ: YELFle X%, 5%) — v (e, x*,i*)]]} dr
-1
== [" mie. x*)T{E 2"gL(t,x%, 5%)
a ]‘;l
-D [Z g, x*,fc*)]} dt > 0.
j=1
Then
b I ) ; .
f {n(l, X, x*)Ti YLl x*, %) + Bi(t)w* — v*h. (¢, x*, x*)]
a ):1
+ (Dt x, x*))T {i YELFL(E x*, &%) — v*RL(L, x*, i*)]}} dt > 0,
i=1

using integration by parts with integrated term zero. Using quasi-invexity
of 6(x) we now have

o(x*) = 6(x), Vx € X.

Hence the result. §

4. Duaurty
In this section, we present two different duals to (EP,) and establish

various duality theorems relating to them.
(D-1) Maximize

Jj g [yt u, @) + " Bi()w — vh'(e, u, i)} dt + Jjg 2/gi(t, u, i) dt
(19)

subject to
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@) =a, u(b)=8

S Vit ) + BeYw() = whidt, i)} + 3 2 gt )
in =1
= D[i Y{fi(t, u, i) — vhi(t, u, i)}
j=1

+ > zigh(t,u, u)]

=1

wiB(w=1, =12, ..p

iﬂ=1

i=1

vER, yeRe, z€R™, v,2=0, tel.

(D-2) Maximize
b o ) - .
L i Y{fi(t, u, i) + u"B()w — vhi(t, u, i)} dt

subject to

u(a) = a, u(b)=p8

S Vit w, &) + Boyw — vkt u, i)} + S, 29t u, i)
-1 1

= D[i y{filt, u, i) — vhi(t,u, i)} + i 2gh(tu, a)]
i=1 j=1

j”zfgf(t,u,u)dtzo, i=1,2,..m
wiB{Hw=1, Vi=1,2,...ptel

i

y'=1

i=1

vER, ye R, ZER™, y,2=0, tel.

We now prove duality theorems relating (EP,) and (D-1).

201

(20)

21)
@2)
(23)

24

(25)

(26)

@7
(28)
29

(30)

(31)
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THEOREM 4 (Weak Duality). Let
b o . , .
f i Y{fi(t u, i) +- 7 B()w(t) — vhi(t,u, i)} di
4 =1
and
fb > Zigh(t u, i) dt
a =1
be invex with respect to n(t, x, u). Then the infimum of (EP,) is greater than
or equal to the supremum of (D-1).
Proof. Let x be feasible for (EP,) and (u, y, w) be feasible for
(D-1). Now

f " S VP %, %) + XTB()X(1) — ohi(t,x, 5} de
4i=1
- J: i y{fi(t,u, i) + u"B(t)w — vhi(t, u, i)} dt
- jb i 2igi(tu, i) di
a ]=1
b L .
= f {(n(f, x,u))’ [f}, Yt u, i) + B{O)w(t) — vhi(t, u, a)}
+ i 2gl(t, u, 1'4)]
j=1
+(Dn(1, x, u))T[Z Y it u, i) — vhi(t,u, i)}
+ i Zigh(t,u, )} dt
=1
+ [ [i VIXTB(1)x — XTB (0w} — S, 2/gi(t, x, x)] p
4 Li=1 s
(by invexity assumptions),

= " (nte.x, u))T[i YTt . ie) + Bi(t)w = ohit,u, i)}

+ 3, 2/gh(tu, ii)] dt
i
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+ (n(t, x, u))T[g y{fi(t, u, ) — vhi(t, u, i)}

t=b

n
+ > 2lgh(tu, i)
=1

t=a

- [ (e x, u))TD[g VUL i) ~ vR(t,w, @)}

+ > zigh(t,u, u)] dt

j=1
b ) . oo .
+ J [i Y{(xTB(1)x)"2 — xTB(t)w} — >, 2/g/(t, x,x)] dt
a |5 st
(by integration by parts)

- [i VAGTBOX) ~ XTBLO)wh — 3 27, x,i)] "
a part

i=1

by (21) and since at ¢ = a and b, x = u gives n(f, x, u) = 0,
b R

= f i Yi(xTB(t)x — x"B(t)w}dt, by (5),(23),(24)
=1

= [! S YHTBAOR) AW B W)~ TB{Ow) dr, by (22)

=0, by (23) and Schwarz
inequality.

Therefore, inf(EP,) = sup(D-1), by (8) and (23). 1|
THEOREM 5 (Weak Duality). Let

f: i} Yfit u i) + T By(t)w — vk'(t,u, i)} dt

be pseudoinvex and f i > gl u, i) de
a j:l

be quasi-invex with respect to the same n(t, x, u). Then the inf(EP,) is greater
than or equal to the supremum of (D-1).
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Proof. Let x be feasible for (EP,) and (u, y, w) be feasible for (D-1).
Then (5), (9), (13), and (14) imply

Ib > 2igh(t, x, k) dt < J'b > 2igi(t,u, i) dt.
2 -1 4
Thus, quasi-invexity of
b .
j > 2gi(t, -, ) dt gives
a I:]

/! {(nu, x, u))f[i 2Igh(t, ) + (D(t, x, )

j=1
- > zigi(t,u, u)} dr=0.
j=t

Therefore

t=b

Ib (n(t, x, u))Tl:i 2igl(tu, u)] dt + (n(t, x, u))Ti Zigl(t, u, )
a j=1 j=1

=a
- jb (n(t,x,u)™ D [2 2gi(tu, L't)] dt=0, byintegration by parts.
a ]:l
That is,
[} (ne.x, u))T{E gt u i) - D[E gt u, u>]} di<0;
a j=1 j=1

the integrated term is zero since 7(t, x, u) = 0 at t = a and t = b. Now,
from (27) we have

[* (ne.x, )){i VLFUt ) + B(tyw — obit, u, u)]
- D[ﬁ: Y[ filt, u, i0) — vhi(t, u, u)]]} dt
-~ Lt dgeun -of S vaiui |

Therefore,
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b - o . . .
[ mx.w) {i Y il u, i) + Bi()w — vhi (4, 4,0)]
a i=1

- D[g y{fL(t u, i) — vhi (1, u, u)}]} dr=0.

Then
[/ {(n(a x, ) T{i Y LF(t i) + By(tyw — vhi (1, a)]}
+ (Dn(t, x, u)) T{g VI fL (e, u, i) — vhi(t, u, u)]}} dr =0,
using integration by parts, with integrated term zero. Pseudoinvexity of
Jo S T Bl — o e
gives
[ gyi[ (1 x %) + xT B(tyw — vhi(r,x, ¥)) dt
= [ gyi[ Filt,w, i) + u? B(tyw — vhi(t, u, )] dt.

But,

x7 Bi()w = (x7 B,(t)x)'* (wT B,(t)w)'?,  fori=1,...,p,
by the Schwarz inequality
= (xTBi(1)x)'?, by (29).

Therefore, inf(EP,) = sup (D-2) by (8). 1

THEOREM 6 (Strong Duality). Let x* be an optimal solution of (EPy)
with the normal condition satisfied at x*. If the objective and constraint
functionals satisfy the invexity conditions of Theorem 1, or if the invexity
conditions of Theorem 2 are satisfied then there exist y* and w* such that
(x* y* w*) is optimal for (D-1) or for (D-2), respectively. In either case,
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the objective value of the dual is equal to that of the primal with each of the
objective values equal to zero.

Proof. Since x* is optimal for (EP,) therefore, by Theorem 1, there
exist y* € R?, z* € R™ such that (x*, v*, g*, y* w*) satisfies (10)-(18).
From (10), (15), and (17) we see that (x*, y* z*} € Cp.y). Also (11), (12),
(15), and (17) yield

ming =g*=0= g yi* f: LFi(e, x*, x*) + x*T B,(£)w* — v*hi(1, x, x*)]
+ 2 Z/* f: gl (t,x, x*) dt
pe
= max [ﬁl ¥ [T LFG ) + 2T Bi(e)x — vhi(t, x, 5)) dr
+ i z’ﬁ g'(t, x, x) dt].
j=1

Then, if the invexity conditions of Theorem 4 are satisfied (x*, u*, g*, y*,
w*) is optimal for (D-1) with the objective value equal to zero, by weak
duality, and if those of Theorem 5 are satisfied (x*, v*, g*, y + w*) is
optimal for (D-2) by weak duality. 1

We now give strict converse duality results for both dual problems.

THEOREM 7 (Strict Converse Duality). For

v* = min max “” [fi(t, x, %) + xT B(t)w] d:/f: hi(, x, ) dt],

P
xECp isi<p

let (x*, q*) be a normal optimal solution of (EPy.). Let (u, y, z) be
(D-1)-optimal. For all feasible solutions of (EPy+) and (D-1) let

b . . .
00) = 1 S H1I )+ T Blow — vt (e ))ds
be strictly invex and

G() = j: izfgi(t’ - ) dt
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be invex, both with respect to the same m as that in Theorem 4. Then

u = x*, Le., (u, q*) is (EP\.)-optimal with each of the objective values equal
to zero.

Proof. Suppose that u # x*. Since (x*, g*) is an optimal solution of
(EPy.) and is normal, it follows from Theorem 4 that there exist y* € R?,
¥ € R™ such that (x*, y*, z*) is an optimal solution of {D-1). Since
(u, y*, z*) is also an optimal solution of (D-1), it follows that

g*=0= f” S ViLFi i) + u Btyw — v* k(e u, 1)) dt
e =1
+ fb > 2ig/(t,u, i) dt
a ]=l
b r o . . .
=J iy' Lfi(e, x*, x*) + x*T B,(r)w* — v* hi(1, x*, X*)] dt
a4 =
+ fb > 2gI(t, x*, x*) dt.
a j:l
Now, strict invexity of 6(-) implies
[7 5y s 5%) + x¥T Bi(t)w — v (e, x%, )] de
4 =1

[0 Sy i) + uT By — v* B, )] de
I=1

> [n(z, x*, u)T{ﬁ il Fult, u, i) + Bi(t)w — v* L (1,u, u)]}

i=1

+ (D (1, x*, u))T{ﬁ‘, YIfilt u, i) = v* Bt u, it)]}] dt

i=1

and invexity of G(-) implies

fb i zfg"(t,x*,jc*)dt—f: izfgf'(t, u, i) dt

a £
= J=1

= [ (n(t, 2, u)T{i 2i* g_f;(r.u,a)}

j=1

+ (Dn(t, x*, u))" {i Z*gh(tu, it)}] dt.
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Adding these two inequalities gives

[} {f} YLF(t X%, 5%) + x*T B(t)w — v*hi(1, x*, &%) dt

i=1

v i gt x5 = 2 Y1) + T BOW
— v*h(t, u, )] — g 27g/(t, u, u)} dt
> [*[(ne, %, u))T{g YLFut w, i) + Btyw — vhi(t,u, )]
+ i 2ight u)}
+ (Dn(n.x%, u))T{g VLA i) = VRt 1, )]

+ i igh(t,u, a)}] di

j=1

= [ (ne, %, >){i YLFut i) + BAOOw = v*hi (2, u, )]

+ gl u, u)} de
A
t=b

£ 8 Ve ) — v )] (e ¥, )
i=1 _

=a

[ (e xr, w0 [i YL ) = o*hi(e,w, )}
4 i=1

+ Zigi(t,u, i;)} dt by integration by parts

J=1

=0 by (21) and n(t, x*,u) =0att=aandb.

That is,

[ S LFi 2%, 1) + 24T Bt)w — v*hi(t, x*, %)) de

i=1
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+ Jb > Z2igi(t, x*, x*) dt
a ]=1
b I . . ; .
- f i Yt u, i) + u” B(t)w — v*Hi(t,u, )] dt
4=

- fbi 2igi(tu, i) dt >0,
aj=1

50
[73 YLFCe ) + T Boyw — o3t %, 54)) di
i=1
+ jb > 2igh(t, x*, &%) dt
a ]:1
> [0y i 0 5%) + 0T B(w* — orhi(t 6, 50)] di
a4 =1
+ fb > i*gi(t, x*, x¥) dt.
a 1:1
This gives
P[$ 0 momw+ $ srpteaein
a4 i=1 j=1
> jb [ﬁ: T B(tyw* + 2, 2%gi(, x*,k*):l dt.
4 Li=1 j=1
But

gt x*,x*) =0, t€Lj=1,.,m

by Proposition 1, and z/g/(1, x*, x*) < 0 by (2) and (18). Therefore,

Jb i x*T B(tyw dt > Ih i x*T B(t)yw* dt.
“ 4 =1

i=1

Now, Proposition 1 also gives
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T B (Ow* = (x*T B()x*)'?,  Vi=1,..,p.
But,

x*T Bi(Hyw = (x*T B()x*)"*(w” B(t)w)'"? (by Schwarz inequality)
= (x*7 B()x*)'2, by (22).

This implies
[03 7 Boxy 2 de> 13 (T B0x)
4i=1 4 i=1

a contradiction. Therefore u = x*. |

THEOREM 8 (Strict Converse Duality). For

v* = min max
xECp 1=i=p

[f D[t x, %) + 27 B(r)w] dt]
7 Bt x, %) di '

Let (x*, g*) be a normal optimal solution of (EP,.). Let (u, v, 2) be (D-2)-
optimal. For all feasible solutions of (EP,.) and (D-2) let (‘) be SPIX and
G(-) be QIX, both with respect to the same v as that in Theorem 5. Then

= x*; i.e., (u, q*) is (EP,+)-optimal with each of the objective values equal
to zero.

Proof. Assume u # x*. By Theorem 6, there exist y* € R?, z* € R™,
w* such that (x*, y*, w*) is optimal for (D-2). Thus
b . ; . ; .
qg*=0= f i Y[ fi(t, x*, x*) + x*T B(t)w* — vh'(t, x*, x*)] dt
%=1
b . . . : .
= f i Y[t u, ) + u” B{t)w — vh'(t,u, )] dt
4 =1
and

jbi Zigt,u,u)dt =0
Hj=1

and
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b & .
j > zigh(t, x*, x*) = 0.
a ]:1
Therefore
fb > zigi(t, x*, i*) dt < fb > Zigh(t,u, i) dt.
a j=1 a ]=]
by quasi-invexity of G(-), we have
/! {(no, x*, )7 Y, 2gh(t, i)
a j=1
mn . .
+ (D, x*, u)T X D 2igh(t, u, 1'4)} dr=0.
j=1

Then, using integration by parts, and since = 0 at @ and b
f: n(t, x*, u)? [2 2igi(t,u, i) — D {é 2lgl(t, u, u)” dr=0.
This inequality along with (27) gives
[ 22wy [ﬁl YUFUt u, i) + B (0w — vhi(t, u, i)}
-D {ﬁ‘; VAUt u, &) — vkt u, u)}}] de =0,
Again, using integration by parts,
[} atexx,uy” [2 YUFL(t, u,is) + Bi(t)w — vhit,u, u)}]

+ (Dt x*,u))’ [ﬁ: y{falt u, i) — vhi(t, u, 1'4)}] dr=0.

i=1
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Strict pseudoinvexity of 6(x) gives
j ’ ﬁl VLFi(t, x*, %) + xxT B{(t)w — v*hi(t, x*, x%)] dt
> 5_‘1 YLF( 1, i) + uT Bi()w — vhi(t, u, i0)] d.
Then
f: 2 y[x*" B(tyw] dt > j: 2 yilx*" B(t)w*] dt,
since
[ ﬁ‘; YRt 3%, %) + 2T B(t)w* — vhi(t, x*, 5%)] di
- [ il VLFCt w, i) + uT Btyw — vhi(t, u, )] d.

But, by the argument used in the proof of Theorem 7, this yields a contradic-
tion. Hence u = x*. |
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