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Multiple objective programming problems with the concept of weak minima are
extended to multiple objective variational problems. A number of weak. strong,
and converse duality theorems are given under a variety of generalized invexity
conditions.  « 1995 Academic Press, Inc.

1. INTRODUCTION

Duality for multiobjective variational problems has been of much interest
in the recent past. Hanson [2] introduced the notion of invexity to mathe-
matical programming. Since that time, it has been shown [3, 4, 6, 8] that
many results in variational problems previously established for convex
functions actually hold for the wider class of invex functions.

Weir and Mond [9] considered the concept of weak minima and estab-
lished duality results for multiple objective programming problems. In [9]
different scalar duality results are extended to multiple objective program-
ming problems. In this paper, we consider the concept of weak minima in
the continuous case and give a complete generalization of the results of
Weir and Mond [9] to multiple objective variational problems. Moreover,
we relax the gencralized convexity conditions to generalized invexity condi-
tions.

2. NOTATION AND PRELIMINARIES

Throughout this paper we will follow the notations of Mond er al. 6]
and Weir and Mond [9]. We consider the following multiple objective
variational primal problem:
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(P) Minimize
[, rex. i) a

subject to

x(a) = xy, x(b) = x,
g(t, x(1),x(0)) =0,
where f: [a, b] X R" X R" — R’ and g: [a, b] X R" X R" — R"™.

For the problem (P), a point x; is said to be a weak minimum if there exists
no other feasible point x for which

[} ptxoo 2oy de= 7 faxo. i) d

The following continuous versions of Theorems 2.1 and 2.2 of [9] will
be needed in the sequel:

THEOREM 1 [9].  Let (P) have a weak minimum at x = x,. Then there
exist A € RP, y € R™ such that

ATR xo(2), Xo(1)) + y(0)g.(8, xo(£), Xo(1))

= (d/dn)[ AT fule, xo), Xo(0) + y(0) gt xo(2), Xo(1))) (1)
(1) g (e, xo(1), Xo(1)) = 0; ()
(A, y)=0. (3)

THEOREM 2 [9].  Let x, be a weak minimum for (P) at which the Kuhn-
Tucker constraint qualification is satisfied. Then there exist A € R", y € R”
such that

ATf (e, xo(1), Xo(8)) + y(2) g (8, Xo(1). Xo(1))

= (@/dD[ATFu(t, xo(0), Xo(0)) + (1) 7g: (1, x0(2). Xo(0))] (4)
y(0) g(t, xo(2), %o(1)) = 0 (5)
) =0 (6)
A =0,ATe =1, %)

where e = (1, ... 1) € R”.
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3. Duauty
In relation to the primal problem (P), we consider the following dual

problem:
(D) Maximize

[ w6 @) + 0510, i 0)e)

subject to
x(a) = xq. x(b) = x, (8)
fult, u(0), 1 (0) + y(0) g (e u(0), u(1))e
= (d/dn)[ fu(r, u(0), () + y(1)"galt, u(t), 1 (1))e] 9
y=0 (10)
AEA, (11)

where A = {A € RP: A =0, ATe = 1}
We shall now establish duality theorems:
THEOREM 3 (Weak Duality). [f, for all feasible (x, u. y, A),
(a) f:’{f(t. o)+ v (. ., )eb dtis pseudoinvex; or
(b) f: {ATf(, ., ) + (DT, ., )} dt is pseudoinvex, then f: flt. x(1),
x(0) dt f: {f(t, (o), u(n))y + y(0)'g(t, u(r), u(r))e} dr.

Proof. (a). Let x be feasible for (P) and («, y, A) feasible for (D). From
(9). we have

[ 100, )i, w0, 6(0) + 90 R0, (D) i (1))}
= f ’ (e (/A0 falt, u(0). (D)) + v(£)galt. (o), i(0))e] d.

Suppose contrary to the result, i.e.,

[ i 60, %) + 90 g0, (0, 2@}

< f: {filt, u(@®), u(0)) + y()"g(t, u(r), i)} dr,  Vi=1,2...,p.

Then by the pseudoinvexity of f:{f(r, )+ w(0)Tg(e, . e} di, we have
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[, e x U w0, D) + 90 gl w(0), t(0))e]
+ (dnldt)(t, x, w)[ £ (¢, u(t), i(0)) + y(1) g, u(®), 1i(6))e] dt < 0.

Now, by integration by parts, we have

[! nx il fule, we). 5 0) + y(0) (e, u(2), (0))e]

i-b

+ [ falt, u(), i (0) + y(6) galt. u(t), d(0)) n(z, x, u)]

I=a

— [ Cran] fule. w(e). i (0)) + y(0) galt, w(®). 0 (e, x(0). () e < 0.
(e, x, x) = 0, we get

J7 e 0 e, w(0), 80 + Y081, w(0). i (0))e]
- j ' (d/dn)[ fu(t, w(e). i(6)) + y(0) galt, u(t), 1i(0))] (e, x(1), u(2)) di < 0.

Again by (9) we have

[2 gt e ) fule, (@), 60) + 30" gult. w0, i(1))e]

= [ e x Il w0, () + Y0 gt (D). 1i(0)) €] = 0 < 0,

which is a contradiction. Thus,
[ px @ @) de o [ 4. i) + v g u0).1i(0))e} di.

The proof of part (b) proceeds in a fashion similar to that of the proof of
part (a). i

THEOREM 4 (Strong Duality). Let x, be a weak minimum for (P) at
which the Kuhn—Tucker constraint qualification is satisfied. Then there exists
(v. A) such that (xy, v, A) is feasible for (D) and the objective values of (P)
and (D) are equal. 1f, also,

(a) f: {f(r, .. ) + ¥(0)'g(1, ., )e} dt is pseudoinvex; or
(b) f: {ATf(r, ) + y(0)Tg(t. ., )} dtis pseudoinvex,

then (x,. y. A) is a weak minimum for (D).
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Proof. Since x, is a weak minimum for (P) at which the Kuhn-Tucker
constraint qualification is satisfied, then by Theorem 2.2 of [9], there exist
y=0.A=0,A’e = 1 such that

AT felt, x0(1), xo(1)) + y(1) gt xo(1), £0(1))
= (d/dO[ATfi(r xo(). £o(0) + y() T gi(t xo(0), Xo(0))].

and y(1)"g(1, xo(t). (1)) = 0. Thus (xy, y, A) is feasible for (D) and clearly
the objective values of (P) and (D) are equal.

If (xy. ¥, A) is not a weak maximum for (D) then there exists feasible
(e, y*. A*), for (D) such that

[" 1.2 0) + v+ g @ @)y de > [ 1A 2o, 50(1)
+ y* (D) g(t, x,(1). xo())} dt, Vi=1.2,..p.

(a) Since ff: {f(e, .. ) + y(Og(e. ., De} dt is pseudoinvex,

[T e xo Uil w0, @4 0) + y2 @) g w0, i*(0)]
+ (d/dt) n(t, xo. ) fo(t w0, a*(0)) + y*(0) g6, u*(0), ¥ (@)} dr < 0
Vi=1,2,..p.

Thus,

f h (1t x0s ) NFO TR (1), 6#(1)) + y¥(0) gult. u(t), i*(1))]
+ (d/dr) n(t, xo, W[ A*TF (e, w0, 0%(1) +
+ yE() g (1 12 (0), ¥ (D))} dr < 0,

contradicting the feasibility of (u*, y*, A*). Thus (xy, v, A) is a weak maximum
for (D). 1
The proof of part (b) is similar to that of part (a).

We now consider the following dual problem in relation to the primal
problem (P):
(D1) Maximize
[! et uto). iey) ar

subject to
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x(a) = xo, x(b) = xy; (12)

ATRAL (D), i(0) + y(0) gt u(1), (D))
= (d/dD[ANfi (1, 1(0). i) + y () galt, u(). u(e)]: (13)

y(0) gl u(r), u(1) = 0; (14)
y=0; (15)
AEA. (16)

TreoOREM 5 (Weak Duality). If, for all feasible (x, u, y, A),
(a) f:f(t, ., .) dt is pseudoinvex and ff y(1)'g(t, ., .) dtis quasi-invex; or

(b) f: Af(t, ., ) dt is a pseudoinvex and f:) y()'g(t, ., ) dt is quasi-
invex; or

(c) f: f(t, ., ) dt is quasi-invex and f:: y(O)'g(t, ., ) drt is strictly
pseudoinvex; or

(d) f: (¢, ., .) dt is quasi-invex and _fz () g(t, ., ) dt is strictly pseu-
doinvex,

then, [ f(t. x(1). x(0)) dt € [* f(1, u(r), u(r)) dr.

Proof. (a) Let x be feasible for (P) and (u, y, A) be feasible for (D1).

Supposef filt, x(n), 2(0)) dt <j filt, u(r), u()y dt. ¥ i = 1,2, ..., p. By
pseudoinvexity off £t x(6), ¥(1) de. ¥ i = 1,2, ... p, we have

[7 nte, ) Fue, ey, ) + (/) e, ) Filt, ), ()} i < 0
Vi=12..p,

and ' A = (0, we have

j ” {n(t, x, [N Fu(t, w(2), 6 (0))] + (d/dde) nt, x. W) [ATFu(t, u(t), (1))} dr < 0.
. (17)

Smce f y(0)'g(t, x(2), x(1)) — fb y(£)Tg(t, u(r), u()) = 0, the quasi-invexity
f v(t) g(t, ., .) dt implies that

[ An(t 6 307 (e, (o). i)
+ ((d/dt) n(t, x, w)) y(0) g, ult), ()} dt = 0. (18)

Combining (17) and (18) gives
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[ 0t x . A F(e 10, ) + y(0) gl (@), ()]} i

" 4ardny e, x )OSt w0 (1)
+ () gt u(r), u(e))} dr < 0.

By integration by parts, we have

[ e AT e ). @) + (1) g0, u0), i (1)) d

t=b

+ it x A [t ul), u(n) + y(O gt u(n), ()]

=

= [ Ante. e ) @/ DTN file, w(e) ()
+ y(0) gu(t, u(), u(1))]} dr < 0.

From (13) and n(t, x, u) = 0, we have

[ e, IOl 10, 5 0) + 9(0) gt (0. (1)) e
- J” 1t X ) AT Rt w(r), (1)) + y(0) Fult, w(t), @(0)] di = 0 <0,

which is a contradiction. Thus,
b b ,
j F(t,x(6), (0)) dt £ j F(e,ulo), i(0)) dr.

(b) The proof of part (b) is similar to the proof of part (a).
(c) Since f:fis quasi-invex

f " [t x )L K (0). 84(0) + () (e, 2, w)) Fie, wH(0). G¥(0))] de = 0,
Vi=1,2, .. p.

Since A = 0, we have

j ” (n(t, x, WA Fult, w*(6), (1))} d
+ f " ((d/ds) e, X, )N TF (1w (0), % (1))} dit = 0,

S R (0 xal0), 50(0) di = [} yHO)7g(e w0, %) dr and [} y*()”
g(t. ., .) dt is strictly pseudoinvex, we have
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[ e 30, 09y O gt 104 0). 4 (0))
+ ((drdry n(1, xo, w®)) y*(0) g, (1), (1))} dr < 0.

[ e, e YK Ll 050, 64 (0)) + y* (O gl (0 6%(0)]

+ ((d/dr) n(t, x, N[O, 15 (0), i*(1))
+ 2(0) g, (6 (0, wF ()]} de < 0,

Now, integration by parts and Eq. (9) give a contradiction as in part (a).
(d) Proof of part (d) is very similar to the proof of part (¢). |

THEOREM 6 (Strong Duality). Let x4 be a weak minimum for (P) at

which the Kuhn-Tucker constraint qualification is satisfied. Then there exists

(¥, A) such that (x4, v, A) is feasible for (D1) and the objective values of (P)
and (D1) are equal. If, also,

b o by . .
(a) f” f(t,.,.)dtis pseudoinvex and f“ v(r)Y'g(t, .. .) dtis quasi-invex:; or
b . . . h T . .
(b) fu (0f(, ., ) dt is pseudoinvex and f” v(t)'g(t, .. ) dt is quasi-
invex; or
h . .. ] . ., .
(c) f,. f, .. ) dt is quasi-invex and f“ v(t)'glt, ., ) dt is strictly
pseudoinvex; or
h T . .. h r . .
(d) [ AM)f( ., ) deis quasi-invex and [ y(1)"g(t, ., .) is strictly pseu-
doinvex;

then (xy, v, A) is @ weak maximum for (D1).

Proof.  Since x;; is a weak minimum for (P) at which the Kuhn-Tucker
constraint qualification is satisfied, then by Theorem 2, there exist y = 0,
A =0, A'e = 1 such that

NTFE xul0), £(8)) + 308, 2. 50 50(0)
= (d/dD[ATfilt, xo(1). xo(1)) + y(0) ge(t, x0(0), Xo(2))]

and

(1) g(t, xo(1), xo(1)) = 0.

Thus (x,, y, A) is feasible for (D1) and clearly the objective values of (P)
and (D1) are equal.

If (xq, y, A) is not a weak maximum for (D1) there exists a feasible (1*,
y*, A*) for (D1) such that
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h . b . .

f filt, w* (), u* (1)) de > f fit, xo(t). xo(0)) dt, foralli =1,2,..,p.
(a) Since f: f(t, ., ) dtis pseudoinvex

R RV ON )
+ ((d/dt) 9, x°, 1)) fi(t, w¥(0), a*(1))} dr <0,

foralli= 1,2, .. p. Since A* = 0,

[t A Ol w4 (0). %)
+ ((d/dey n(t, x°, W DAF@)T Lo, w(0), i)} dr < 0. (19)

Note that
[y gtexo. oy de = [ 3+ gl ko). o)
and since f: y#(t)7g(1, .. .} dt is quasi-invex, we have

[" e ) y# (07 gl (1), 1(0)
+ ((d/de) (e, x°, 1)) y* () T g (4, 1*(0), u* ()} dt < 0. (20)

Combining (19) and (20), we get

[} e, YAl 0¥ (0 17 (0) + 320l (1), ()]

+ ((d/dey (e, X 1) X fult (), 0%(0) + y*(0)"
+ v galt, uk (), us(0) [} dr <0,

which contradicts the feasibility of (u*, y*, A*).
(b) The proof of part (b) follows the lines of the proof of part (a).

(c) Since f: f(t. ., ) dt is quasi-invex, we have

[T, ) fufes (. ()
+ ((d/de) n(t, x°, u®)) fi(e, w (1), a* (1) de = 0,

foralli = 1,2, .., p. Since A = 0, we have
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K I, x°, W) (D)1, (1), u*(1))
(/) (e, DA Falt, (0, (O dE = 0. (21)

Since fh y¥(0) g(t, xo(1), i*(1)) dr < fh yE(O) g(e, w*(r), u*(r)) dt = 0,

f y¥Tg(t, xo(t), Xo(t)) dt = 0, f y¥(O gt wx(0), u*(t)) dr = 0, and
f v*(t) g(t, ., ) dt is strictly pseudomvex we have

J ” [t X0, 05) Y5 () Tt 1 (1), %(1))
+ (d/de) n(t, xo, w®) y*(O) g a(t 0¥ (1), u* (1))} dr < 0.) (22)

Now combining (21) and (22), we have

[ 0t ) O il w0, 84(0) + yH0) g, 105 (0), # ()]
(/e (e, w0, )N Falt. (0, (e e < 0

Now, integration by parts and Eq. (9) give a contradiction, as in part (a).
(d) The proof of part (d) follows the lines of the proof of part (c). |

In a similar manner, we now state the continuous form of a general
dual for the multiple objective variational optimization problem. We shall

consider the case, similar to that of [9], where the primal problem has
equality as well as inequality constraints. Consider the problem:

(PE) minimize
j ' £, x(0), (1)) dt

subject to

x(a) = x, x(b) — xi
gt x(0). x(1)) =0;
At x(),x(6) = 0;

where i I X R" X R" — R\, gt [ X R" X R —» R" h: X R" X R" —» R/
are all differentiable.

LetM={1.2, ...mi, L={1,2, 1L, 1I,CM a=01,.,vwithl, N
Iy=0,a# B, and Uy l,=MandJ, C L,a =0, ... vwithJ, N J; =
&, o # B, and Uiy J, = L.

Note that any particular /, or J, may be empty. Thus if M has v, disjoint
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subsets and L has », disjoint subsets, v = Max[v, 1,]. So, if »; > »,, then
J.. ¢ > 1z is empty.
In relation to (PE) consider the problem:

(DE) maximize

[Pt ). @) + 3, vigy( u®), ite))e

J€ly

+ 3 it u(), ulr))e} dt

JES,
subject to
x(a) = Xp, X(b) = X

ATt u(@), (1) + y(0) g (t, u(t), (1)) + () Th, (¢, u(2), (1))
= (d/dn[A(1) fa(t, u(r), a () + y()Tga(t, u(t), (1))
+ 2(0)Tha(t, w(n), u(n))].
2 Vgt w(0), #(0) + X Zhi(tu(0), @(1) =0, a=12,..,»
v =0, “
AEA.

The following weak and strong duality theorems are stated without proof.
They may be established in a manner very similar to that of Theorems 3,
4,5, and 6.

THEOREM 7 (Weak Duality). [If, for all feasible (x, u, y, z, A),

(a) f,, {f(t,..) + Zier, yi(0gi(t. ., Je” Zjes zi(Dh()e} dt is pseudocon-
vex and f {Zier, yi(08it, . ) + Zjes (Ot )y dt, e = 1,2, . v s
quasi-invex; or

o [ {/\(f)rf(f- o)+ ey, yi(0git ) + Zjeg g (R, )} dr is
pseudoinvex and f ier, vi(g(t, .. ) + 2,€J (At . ) dha = 1,2,
<. U, IS quasi-invex; or

() Iy# MandlJy# L, f {f(fb D)t Ensl(, yi(0gi(t. . e + Zjey,
2 (DA, . )e} dt is quasi-invex andf {E,EI vilOgt, .. ) + €Jag,(t)h (1,
Lotde o= 1,2, ., v, is strictly pseudomvex or

(d) Iy # Mand J, # L. f {/\(f)Tf(f )+ Ziey, vigit, . )+
Zes,zi(DR(L, .. )} dt is quasi-invex and f {Z,el yi(Dgilt, .. ) + E
(DA L )y d o = 1,2, ., v, is strictly pseudomver

then
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j ' £ x(0), £(1) dt & f ' (). () + 3 vi0gir (o). i(0))e

i€l,

+ 3 (ke u(e), u(6)} dt.

j€y

TueorReM 8 (Strong Duality).  Let X, be a weak minimum for (PE) at
which the Kuhn—Tucker constraint qualification is satisfied. Then there exist
(v. 2. A) such that (x,, ¥, z, A) is feasible for (DE) and the objective values
of (PE) and (DE) are equal. If also the assumption (a), (b), (c) or (d) of
Theorem 7 is satisfied, then (xo, ¥, 2, A) is a weak maximum for (DE).

4. CoNvERSE DUALITY

THEOREM 9.  Let (xq. yo. Ao) be a weak maximum of (D1). Assume the
n X n Hessian matrix

AT Ty + VT,\'\‘ /\T 9y + V’ Xx
< futy'ge foo +) g) 23)

A 7ff.\’ + ,v rgl.\ /\' 'I:f.\,\' + _,V Tgx,\’

is positive or negative and the vectors f(t, x(1), xo(t)) + (d/dr) f(t, xo(1).
xA0). i = 1, ... k, are linearly independent. If for all feasible (x, u. y, A)
(a) f: f(t,.,.)dtis pseudoinvex and f: y()'g(t,.,.) dtis quasi-invex; or
(b) fz O*f(t, ., .) dt is pseudoinvex and f: y(H'g(t, ., ) dt is quasi-
invex; or
(c) f: f(. .. .) dt is quasi-invex and f: y(O) g, ., ) dt is strictly
pseudoinvex; or
(d) f: (O7f(t. ...) dtis quasi-invex and ff:v(t) Te(t,., ) dtis strictly pseu-
doinvex,

then x, is a weak minimum for (P).

Proof.  Since (xy, Vo. Ay) is a weak maximum for (D), then by Theorem
1thereexist TE R, vE R".p € R, s € R, w € R” such that

H(t) ]ft(t, x‘,(t), X.\)(f)) + (d/&x)/\(t)’[ )\()(f)vlft((. X()(t), ,\"”(f))
+ yo(0) gt x0(0), Xo(1))] + pya(t)’ g8, x0(2). X0(1))

= (dIdO[A) it xo(e), £o(0) + (3/3)A0) TA) felt, x0(0),
Xo(t)) + yo(O) 788, xo(0), Xo(0))] + pyo(t) ge(t, xo(0), Xu(1))  (24)

gx(f, .’C()(t), X"()(t))'rl/ + pg(t, X()(f), ,h)([)) +s5s=0 (25)
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fot. xo(D). (DN v+ w=0 (26)
pya(t) (1. xo(0). (1)) = 0 (27)
sy =0 (28)
wlAy(6) =0 (29)
(r.5.p.w)>0 (30)
(r.v.s,p,w)=0. (31)

Since Ay € A, (29) gives w = 0; (26) then gives
w07 (t, xo(), xo(1)) = 0. (32)
Multiplying (25) by v, and using (27) and (28) give
1) yo(1) gt x0(8), Xa(1)) = 0. (33)

Mulitiplying (24) by ()" and using (32) and (31) give

V([)T </\({fn + y(gg\\ A({fh‘ + y(ll-f\\ )

Adfee + ¥igee  Alfe + yige

Since (23) is assumed positive or negative definite, » = (. Since v = 0,
(24} and the equality constraint (13) of (D1) give

(7 = pAaO) [ filt xo(1), Xo(0)) + (didt) fe(t, xo(2), Xo(1))] = 0.

By the linear independence of f.(r, xo(t), xo(2)) + (d/dt) fi(t, xo(2), Xo)(1)),
i=1,2, ... k. it follows that

T = p)\”.

Since Ay = 0, 7= 0 = p = 0 and then by (25), s = 0, giving ( , v, s, p,
w) = 0, contradicting (31). Thus, 7= 0 and p > 0. Since » = 0, p > 0, and
s = (), (25) gives g(1, xi(1), xo(1)) = 0 and (27) gives ¥y (1)g(t, xo(t), xo(2)) =
0. Thus x,, is feasible for (P). That x,, is a weak minimum for (P) then follows
under assumption (a), (b). (c), or (d) from weak duality, Theorem 5. |

As in [9]. a more general converse duality result may be established for
(PE) and (DE). The proof follows in a fashion similar to that of the proof
of Theorem 9.
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THEOREM 10.  Let (xy, yo, 2o, Ao) be @ weak maximum of (DE). Assume
the n X n Hessian matrix

(A(gfu + y({g,\,r + Z({h,l‘,\' /\lgf\\ + y((gn + Z({hn>
Mfee + Yige + 20 Alfii T yige + 28his

is positive or negative definite and that the set

{Filt, xo(0), Xo(0)) + (@/dD) filt, xo(0). Xo(1)), =1, .0k,
2 A(yig (e xoe), Xo(r)) + (d/di)(yigh(t, xo(t), Xo(1))}

i€l

+ > {zhhl(t, xo(1), Xo(0)) + (d/d)(zhhi(t, xo(0), w0())}

et

is linearly independent whenever I, # M or J, # L.
If the assumption (a), (b), (c), or (d) of Theorem 7 holds, then x, is a
weak minimum for (PE).

In the case I, = M and L = ¢ this result simplifies slightly.

THEOREM 11.  Let (x4, yo, Ay) be a weak maximum of (D). Assume the
n X n Hessian matrix

(A({fn + y ll)g\r A({fi,r + y({ft\' )
Aifu + yige Adfue + yigus
is positive or negative definite. If the assumption (&) or (b) of Theorem 3
holds, then x, is a weak minimum of (P).

We now turn our attention to strict converse duality.

THEOREM 12.  Let xy be a weak minimum for (P) and (xy, yy, Ao) be a
weak maximum for (D1) such that

[ A xo0), o)) de = [ 27 o). w0) at

Assume that
b " . . . b -
(a) fﬂ Ao(D)7F (e, ., ) dt is strictly pseudoinvex at uy and [ yo(1)7g(t,
. .) dt is quasi-invex at i or

(b) f: A(7f (2, .. ) dr is quasi-invex ar uy and f: yo(O)7g(t, ., ) dtis
strictly pseudoinvex at uy;
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then xy = wuy; that is, wy is a weak minimum for (P).

Proof. (a) We assume x, # y. Since x4 and (uy, yo, )\0) are feasible
for (P) and (D1), respectively, f“ yo()Tg(t, xo, xo(2)) dt < f v olt) g(t, uy(r),
(1)) dt and quasi-invexity of fu yo(t)'g(t, ., .) dr implies

h P .
L {n(z, xu. ll()))’n(f)lgu”([» uo(1), (1))

+ ((dldryn(t, xo, ua))yo(t) ga (1. 1o(1), tho(1))} dt < 0. (34)

Since [ A0 (t. xo0), £(0) di = [T M@OTF( uolt), to(0)) di and [

)\()(t)7f(t .} dt is strictly pseudoinvex, we have

f " [0t X WMD) L (8 102, tio(£))

+ ((dIdryn(t, xo, u))AlD)F (1. uo(2), tio(1))} di < 0. (35)

Now combining (34) and (35), we have

[ 1100, 0. w) DDl o (1 00(0), 16(2)) + Yol (1, 200(0). ()]

+ ((d/d[)n(t. X ll()))[/\()({)Yﬁ““([, U()(t), ll(;(l))
+ yo(t) g, (¢ uo(r), tio())]} = 0.

Now the proof follows similarly to that of part (a) of the proof of Theorem 9.

THEOREM 13, Let x, be a weak minimum for (CPE) and (uy, yo. 2. Ao)
be a weak maximum for (CDE) such that

j: Ao(D) TS (2, x0(2). Xo(1)) = f: {0 Tf (1, (1), (1)) + Z Yo (1)
X git, ug(t), 1)) + Z Zn

i€ty

X (e, uy(1), o))} dt.

If

b . . R

(a) f“ {)\U(t)lf([, . ) + Z,E,y(,l(t)g,(t, . ) + Zje] Z()I([)hl‘(t. . )} dr is

strictly pseudoinvex at u, and each f: {Zier yo(Dgilt, . ) + Zjey 2o (D (1,
LY d a = 1, 2, ..., is quasi-invex at uy, or
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b o .
(d) S, M@ f )+ Zieryo (0t )+ Ziey, 2o (Ot . D} s
b
quasi-invex at u, each [ {Zc; yogilt, .. ) + Zjey, 2o (O, -, )} dt a =
1,2, ..., v, is strictly pseudoinvex at u,,

then xy = uy, that is, 1, is a weak minimum for (P).

CoROLLARY 14, Let x4 be a weak minimum for (P) and (uy, vo, Ay) be
a weak maximum for (D) such that

[ A F (130 5000 it = [0 F (100, 10}
+ yo(1) g(t, upe), (D)} dr.

If f“) {AMOTF(, ) + vo®) gl ., D)) de s sirictly pseudoinvex at . then
Xo = Uy that is, u, is a weak minimum for (P).

These strict converse duality results give continuous analogues of the
multiple objective scalar programming theorems of Weir and Mond [9].
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