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For a certain Frechet space F consisting of complex-valued C* even functions
defined on R and rapidly decreasing as |x| — =, we show that if » is any com-
plex number,

(i) The pseudo-differential operator (—x'D)" is an automorphism on F.

(i) e™", Re a > 0, is an eigenfunction of the pseudo-differential operator
(-x'Dy.

(iii) For fin X, a linear subsapce of the Hilbert space L*(R) generated by the
even-order Hermite functions (H,(x)e " ")n =0, 1,2, ...,

M-

Copta, (X7 = Y e ™7,

(—x"'DYf(x) =3,
k=0

Jj=0

where Cy; and a,_; are constants and

pH =

{V(V—l)"'(V—j+l) forj=1,v#1
forj=2,v=1.

© 1995 Academic Press, Inc.
I. INTRODUCTION

For any complex u, F, is the space of all C* complex-valued functions
f(x) defined on I = (0, =) such that

k
) = x4 12y a,x¥ + o(x%) (1.1)
=0
near the origin and is rapidly decreasing as x — o,
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We equip the space F, with the topology generated by the countable
family of separating seminorms (y% )5 ., defined by

yﬁ,k(f) —_ Slé? ‘xm(x—lD)kxqul/;’f(x)

, (1.2)

where D = d/dx [2-4; 7, 8, p. 8].

It follows from Lemma 2 of [7] that F, is a Frechet space.

This is a sequel to the paper [4] where the authors obtained a Fourier-
Basel series representation for the pseudo-differential operator (—x™'D)”
for each real v on a certain subspace F, of F. The space F consists of all C*
complex-valued functions defined on I and satisfying the same boundary
conditions as the functions in F_,;,. For f € F and any real u # —3%,

Vhilf) = sup |x" AL (0] <o, (1.3)

foreachm, k=0,1,2, ..., where A, , =D’ + x"'2* + )D [4]. Fis a

Frechet space. Its topology is generated by the countable family of separat-

ing seminorms (¥% ,),, «=0.12. .. [4; 8, p. 8]. Note that the topology assigned

to F through the seminorms ¥ ; is independent of u [4, Theorem 2. 1(iii)].
In this paper we show that for every complex v,

(i) The pseudo-differential operator (—x'D)" is a topological auto-
morphism on the space F_,,,.
(i) ForRe a >0, (—x'D)e ™’ = Qa)e ™, x & R.
(iii) Let P,,(x) = Ej":g a,_;x* be a polynomial of degree 2, then

(_xle)u[Pzn(x)()ﬂ(:Q] — z anAj(XZ — 2v*)j€—x:/2_
J=0

(iv) Let X be the linear subspace of the Hilbert space L*(R) generated
by the even-order Hermite functions H,,(x)e™"?, n = 0, 1, 2, .... We
obtain a Fourier-Hermite series representation of the pseudo-differential
operator (—x~'D)” on the linear space X.

2. PRELIMINARIES

Zemanian [7, 8] showed that the Hankel transform A,,, defined by

B AN = [ SO0 20, () e @.1)



452 O. P. SINGH

where J,(x) is a Bessel function of order u, is a self-reciprocal automor-
phism on F, for u = —3.

LEMMA 2.1 For Re u = %, h, as defined by (2.1) is an automorphism
onF.

Proof. Let f € F,. The integral (2.1) is well defined since
f~ 0(x**1"2) near the origin and Re u = —$ ensure its convergence at the
origin, and the rapid descent of f near infinity along with Weber’s formula

[t @) de = [T my/2e T = dm + D)),
0
O<Rem<Reu+1}
[6, p. 391] ensure its convergence at infinity. The rest of the proof is

similar to that of Zemanian [7, Lemma 8].

Note that f — x""# is a homeomorphism from F, onto F, since
Yo (x*7#f) = vk (f). Hence the map 4 defined by

R(N(x) = [h (" R, (D)) = [h, (3" #h,(H)(X) 2.2)

(since h, = h,')

is also a homeomorphism from F, onto F,. So we have the commuta-
tive diagram

I

-

.
R
M

>

14 v

>
h,
In view of the above commutative diagram, we have the following.

DEerFINITION.  For u € C, define the Hankel transform h, by

(A S(O1(Y) = y* ¥R, O0R(fN(y), fEH,,

where v is chosen so that Re v = —1.

Remark 1. Note that f— x#*'2fis a homeomorphism from F onto F,
{4, Theorem 2.1].

THEOREM 2.1. Ifv — u € N in Eq. (2.2), then

h :xu+l/2(_x—lD)v~plx—u—l/2. (23)
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Proof. Let the right-hand side of Eq. (2.3) be denoted by /. Then for
fe Fl‘_’

Yk (W) = i ken(S),
from (1.2), where n = v — u. Hence 4 is a continuous map. Let f,, f» in
F be such that if, = hf,. Then y% ,.,(f, = f,) = 0, foreach m, k = 0, 1,
2, .... Hence, in particular, y% ,(f; — f;) = 0.
Therefore, (d/dx)[(x'D)y""'(f, — )] = 0. Since f, — f in F, is a rapidly
decreasing function as x — =, we get (x~'D)""'(f; — f,) = 0. Repeating

the process (n — 1) times, we conclude that f; = f, in F,. Hence 4 is
injective. For n = 1 and g in F,, let

flx) = —xr*1n2 j 1 2g(4) dl,
0

then f € F, and #f = g. Using induction on n, it can be shown that &
is surjective.

That 4 is a homeomorphism follows from the open mapping theorem
[S, p. 172].

Forfe F,,

AL, (SN =y”*”z(—y"(d/dy))"y"‘"”f SO, (xy) dx.
0
Differentiating under the integral sign, we get
= yu+I/2 f f(x)x”*"*"'Z(X)')'".],,(xy) dx
0

(since (xy) *J, (xy) is a C* bounded function on 0 < xy < =, differentiation
under the integral sign is valid) and

- jo " RO (xy) dx = Iy (N )
= hlh,(fCNY)].

thus proving the theorem.

From Eqs. (2.2) and (2.3), we get

(=x'D)yr=x"""2h, yh, a2 n=v-—u. (2.4)
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It is easily seen that the operator (—x 'D)” is an automorphism on the
Frechet space F_,;,. Note that the spaces F and F_,,, are homeomorphic
under the identify map. Henceforth we will drop the suffix _;,, from
F_,,, and write it as F. Writing u = 0 in (2.4), we obtain the following
useful representation for the operator (—x~'D)":

(—x'Dyr=x"""2h, yrhyx'2, 2.5

3. THE MAIN RESULT

The equation (2.5) motivates us to propose the following.
DerFINITION. For v € C, define the pseudo-differential operator
(—x"'D) by
(—x7'DYf(x) = x7""2h, yhyx'*f(x), fEF. 3.1

Then (—x~'D)” is clearly an automorphism on F for each complex v.

From (3.1), we get

(=x 'DYf(x) =xv"11 j: dy(xy)'2J (xy)y* f: dx x"2f(x)(x)"2 Ty (xy).
3.2)

Remark 2. In view of the above definition (3.1) of (—x"'D)”, Theorem
2.1is valid with v — u € C.

For distributions  in F’, define (—x~'D)” by
((—x_ID)Vw’ﬂ =(d;,(—x“D)"f), fe F.

THEOREM 3.1. The pseudo-differential operator (—x~'D) is an auto-
morphism on the space F and hence on its dual F' for each complex v.

Remark 3. Since fin F satisfies the boundary condition (1.1) near the
origin and is rapidly decreasing as x — o, we can extend f from (0, <) to
R by defining f(x) = f(—x) for —= < x < 0 and f(0) = a,, where g, is the
constant term in (1.1). With this extension, the space F (now containing
C~* complex-valued functions defined on R and satisfying (1.1) near the
origin and rapidly decreasing as |x| — =) becomes a linear subspace of
the Hilbert space L*(R). Also, for f € F,

(=x7'DYf(x) = (x"hy_ 13" h_ 1 n) f(x)
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(obtained by taking u = —} and replacing v + } by v in (2.4))
= %fo dyy" " (xy) V2, (xy) fRﬁXﬂX)(xy)”ZJ_./z(xy), 3.3)

since z"J_,(z) is an even entire function for v € C. Thus we see that
(—x7'D)*f(x) is valid for x € R and that the pseudo-differential operator
(—-x~'D)" is an automorphism on extended F.

ExaMPLE 1. Theﬁ function e~ € F (x € R). Hence (—x"D)"e‘-rz =
xR0, vy hy(x'2e™), from (3.1).
Using the well-known result

h (" 2ema) = [y 12/(2a)" ' exp(—y*4a), Rea>0,Rev> -1
(3.4)

(1, Eq. (10) on p. 29], we obtain (—x 'D)*¢™ = 2*¢™~, for Re v > —1.
Similarly, it can be shown that for Re a > 0,

(—x“D)”e*"""2 = (201)”6’“‘”Z forRev > —1.

For Re v = —1, without loss of generality we may write v = v + v, such
that Re v,, Re v, > —1. Then, using the commutativity of the diagram

FebF,

X" VL h,. L xul+l/2(_x»lD)u|x—l/2 (: h)
F"](—LF"I

X" l' h,, l xu+I/Z(_x—lD):Qx*v,—]/Z (= h),
F, —F,

it can be proved that (—x 'D)* = (—x"'D)*10(—x"'D)". Hence,
(—x7'Dye~ = 2a)e™** ,Rea>0,v € C. (3.5)

Thus we have proved the following.

THEOREM 3.2. For Re a > 0, the functions e~ qgre eigenfunctions
of the pseudo-differential operator (—x"'D)", v € C. Note that e " is a
fixed point of (—x"'D)".

ExXAMPLE 2. We now show that

(—x 'D)(xle*) = (x = W)e ¥,  wveEC. (3.6)



456 O. P. SINGH
The following two formulae along with (3.4) are needed to prove (3.6):
h (X732 Ry = T (W) Y2 Fy (s 15 —3yD),  Rep>0, (3.7)

[1, Eq. (21) on p. 9] and

i anty _YTIPT2) 0+ et 1) vtu+l
hu(x# ”he ax)=yzv+la(l/2)lv+u+])r(v+l) 141 2 V+l —)’2/4a

Rea>0,Re (v + u)> —1 3.8)

{1, Eq. (14) on p. 30].
Taking . = 2 in (3.7), we get

h, (xw —x42) = 2y”2,F,(2; 1; -3y = 2y1/z(] _ %yz)e—yl/z

because ,F,(2; 1; =5 y2) = 2. [(1 + n/(rHI(=3% y)r [1, p. 429].
Also,

o
hy(ylr%l/"ef‘ /7) — xV+l/2()7.(' /2’ Rev > _l,
and

h(y* 5272y = 207 V2 (p + 1) Fi(w + 230 + 1; =x¥2),  Rew> —3/2
(follows from (3.4) and (3.8)). ;
Since \F,(v + 2; v + 1; —x¥2) = [1 — (x¥(1 + v)]e™*"2, we see that

(—x" "Dy (e = (x2 = 2w)e ¥,  Rewr> -1,

by putting various terms together. Again, using the fact that (—x 'D)* =
(—x 'D)Y1o(x"'D)”= for v = v, + v,, we extend the above result for each
v e C.

Similarly, taking u = 3in (3.7)and w = v + 5, @ = } in (3.8), it follows
that for v € C,

(_XAID)v(xdev.xz/Z) — [x4 _ 4VX2 + 41/(1/ _ l)](,—.rzlz — (x2 _ 21/*)2(,7.:2/2’

where v* is defined by (3.11).
Taking appropriate values of w in (3.7), (3.8) and using them along with
(3.4), (—x~'D)"(x2"¢~*"2) can be evaluated easily foreachn =0, 1, 2,
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We record this as
LEMMA 3.1. ForvE Candn=0,1,2, ...,
@) (_xAID)u(XZneAxZIZ) = (x2— 2u*)n€—x3/z' (3.9)
(i) Let P,,(x) = E;:O a,_;x¥ be a polynomial; then

(=X 'DY(Py(0e™ ) = a, (x* =2V (3.10)
i
where
M=y -1 v—j+ 1) forj=1,v#1;
and when v = 1,

v =0 forj=2. 3.1

4. THE FOURIER HERMITE SERIES

DEeFINITION. The polynomials defined by
H,(x)=1,H,(x)= (- 1)"e"zD"e"‘2 forn >0

are called Hermite polynomials.
By using Lemma 3.1 and rearranging, we obtain for v € C

(=x'DYX /x)e ™) = (X [x)e ",
(—x'DY(X2e ) = (X2 - Pr)e7,
(=x'DP((Xx)e™?) = (XV/x)(X2 = 2v)e 7,
(=xIDY(X*e ) = (X2 = 2v)e 7, 4.1)
(=x DY (X3 Ix)e ™) = (X xNX? = 23v)2e 72,
(=x7'DY(X%e ) = (X2 = 2%v) = 28p]e 7,
(=x"'DY(X71x)e ) = (X' x)[( = 2v) — Bple7,

where we have used the notations

X'=H{(x)and X'- X/ = H,_ (x), hj=1,2.3,..,

{

giving the lower triangular matrix representation for (—x 'D) H,,(x).
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e*.tzll -xi2

. The Hermite functions H,(x)e are the orthogonal basis for the
Hilbert space L*(R). Let X be the linear subspace of L*(R), spanned by
the even Hermite functions (as a Hamel basis). Then for f € X,

f= E Czksz(X)e_"zn,
k=0
where

Gy = (/222w 1) j S Hy (x)e 7 dx
R

is the Fourier-Hermite series for fin L*(R). So, forany f€ X and v € C,

x

k
(—x 'DYf(x) = 3 > Cpptly (X2 — 2% e inL2(R), (4.2)

k=0 j=0
. & %
where a,_; is given by Hy(x) = 2,y a, ;x%.
Thus (4.2) gives the Fourier-Hermite series representation for the
pseudo-differential operator (—x~'D)" on the linear space X.

Though some pattern seems to emerge from the formulae (4.1), it is
fairly hard to predict the general formula for the lower triangular matrix
representation of (—x~'D)"H,,(x)e *"*. But if we define the Hermite poly-
nomials through the generating function

H.(x)=(—1ye D" ™2  forn>0and H(x)=1, (4.3)
we have

THEOREM 4.1. Let H,,(x) be the Hermite polynomial, generated by
(4.3), of order 2n; then

(_x~ID)V(HZn(x)e—x:/Z) — (XZ _ 2v.)ne—x3/2 (44)

where as before X' = Hi(x), X'- X/ = H.,(x), and v} = v(v + D + 2)
A j- Dforeachj=1,2,3, ..,v# -1, and whenv = —1, v} =
0 forj=2. .

Thus each of (—x ' DY H,,(x)e™""* has a lower triangular matrix repre-
sentation. From (4.4) we see that the Hermite function H,,(x)e *'* satisfies
the recurrence relation

m—1

[(=x"'DY = 1y, () = 2 (=27"Im) [] (1 = D@ + ) ya ().
m=1 J=0
(4.5)
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