On the Pseudo-Differential Operator $(-x^{-1}D)^{\nu}$

O. P. SINGH

Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi-221 005. India

Submitted by Bruce C. Berndt

Received September 8, 1993

For a certain Frechet space F consisting of complex-valued C^x even functions defined on R and rapidly decreasing as $|x| \to \infty$, we show that if ν is any complex number,

- (i) The pseudo-differential operator $(-x^{-1}D)^{\nu}$ is an automorphism on F.
- (ii) $e^{-\alpha x}$, Re $\alpha > 0$, is an eigenfunction of the pseudo-differential operator $(-x^{-1}D)^p$.
- (iii) For f in X, a linear subsapce of the Hilbert space $L^2(\mathbf{R})$ generated by the even-order Hermite functions $(H_{2n}(x)e^{-x^2/2})n = 0, 1, 2, ...,$

$$(-x^{-1}D)^{\nu}f(x) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} C_{2k}a_{n-j}(x^2 - 2\nu^*)^{j}e^{-x^2/2},$$

where C_{2k} and a_{n-j} are constants and

$$\nu^{*j} = \begin{cases} \nu(\nu - 1) \cdots (\nu - j + 1) & \text{for } j \ge 1, \nu \ne 1 \\ 0 & \text{for } j \ge 2, \nu = 1. \end{cases}$$

© 1995 Academic Press, Inc.

1. Introduction

For any complex μ , F_{μ} is the space of all C^{∞} complex-valued functions f(x) defined on $I = (0, \infty)$ such that

$$f(x) = x^{\mu + 1/2} \sum_{i=0}^{k} a_i x^{2i} + o(x^{2k})$$
 (1.1)

near the origin and is rapidly decreasing as $x \to \infty$.

We equip the space F_{μ} with the topology generated by the countable family of separating seminorms $(\gamma_{m,k}^{\mu})_{m,k=0}^{\infty}$ defined by

$$\gamma_{m,k}^{\mu}(f) = \sup_{x \in I} |x^m (x^{-1}D)^k x^{-\mu - 1/2} f(x)|, \tag{1.2}$$

where D = d/dx [2-4; 7; 8, p. 8].

It follows from Lemma 2 of [7] that F_{μ} is a Frechet space.

This is a sequel to the paper [4] where the authors obtained a Fourier-Basel series representation for the pseudo-differential operator $(-x^{-1}D)^{\nu}$ for each real ν on a certain subspace F_b of F. The space F consists of all C^{∞} complex-valued functions defined on I and satisfying the same boundary conditions as the functions in $F_{-1/2}$. For $f \in F$ and any real $\mu \neq -\frac{1}{2}$,

$$\overline{\gamma}_{m,k}^{\mu}(f) = \sup_{x \in I} |x^m \Delta_{\mu,x}^k f(x)| < \infty, \tag{1.3}$$

for each m, k = 0, 1, 2, ..., where $\Delta_{\mu,x} = D^2 + x^{-1}(2^{\mu} + 1)D$ [4]. F is a Frechet space. Its topology is generated by the countable family of separating seminorms $(\bar{\gamma}_{m,k}^{\mu})_{m,k=0,1,2,...}$ [4; 8, p. 8]. Note that the topology assigned to F through the seminorms $\bar{\gamma}_{m,k}^{\mu}$ is independent of μ [4, Theorem 2.1(iii)]. In this paper we show that for every complex ν ,

- (i) The pseudo-differential operator $(-x^{-1}D)^{\nu}$ is a topological automorphism on the space $F_{-1/2}$.
 - (ii) For Re $\alpha > 0$, $(-x^{-1}D)^{\nu}e^{-\alpha x^2} = (2\alpha)^{\nu}e^{-\alpha x^2}$, $x \in R$.
 - (iii) Let $P_{2n}(x) = \sum_{j=0}^{n} a_{n-j} x^{2j}$ be a polynomial of degree 2n, then

$$(-x^{-1}D)^{\nu}[P_{2n}(x)e^{-x^2/2}] = \sum_{j=0}^{n} a_{n-j}(x^2 - 2^{\nu *})^{j}e^{-x^2/2}.$$

(iv) Let X be the linear subspace of the Hilbert space $L^2(R)$ generated by the even-order Hermite functions $H_{2n}(x)e^{-x^2/2}$, n=0,1,2,... We obtain a Fourier-Hermite series representation of the pseudo-differential operator $(-x^{-1}D)^{\nu}$ on the linear space X.

2. Preliminaries

Zemanian [7, 8] showed that the Hankel transform h_{μ} , defined by

$$h_{\mu}(f(x))(y) = \int_{0}^{\infty} f(x)(xy)^{1/2} J_{\mu}(xy) \ dx \tag{2.1}$$

where $J_{\mu}(x)$ is a Bessel function of order μ , is a self-reciprocal automorphism on F_{μ} for $\mu \geq -\frac{1}{2}$.

LEMMA 2.1 For Re $\mu \ge \frac{1}{2}$, h_{μ} as defined by (2.1) is an automorphism on F.

Proof. Let $f \in F_{\mu}$. The integral (2.1) is well defined since $f \sim 0(x^{\mu+1/2})$ near the origin and Re $\mu \ge -\frac{1}{2}$ ensure its convergence at the origin, and the rapid descent of f near infinity along with Weber's formula

$$\int_0^\infty t^{-\mu-1+m} J_\mu(t) dt = \left[\Gamma(\frac{1}{2} m) / [2^{\mu-m+1} \Gamma(\mu - \frac{1}{2} m + 1)) \right],$$

$$0 < \text{Re } m < \text{Re } \mu + \frac{1}{2}$$

[6, p. 391] ensure its convergence at infinity. The rest of the proof is similar to that of Zemanian [7, Lemma 8].

Note that $f \to x^{\nu-\mu}$ is a homeomorphism from F_{μ} onto F_{ν} since $\gamma^{\nu}_{m,k}(x^{\nu-\mu}f) = \gamma^{\mu}_{m,k}(f)$. Hence the map h defined by

$$h(f)(x) = [h_{\nu}^{-1}(y^{\nu-\mu}h_{\mu}(f)](x) = [h_{\nu}(y^{\nu-\mu}h_{\mu}(f)](x)$$
(since $h_{\nu} = h_{\mu}^{-1}$) (2.2)

is also a homeomorphism from F_{μ} onto F_{ν} . So we have the commutative diagram

$$x^{\nu-\mu} \downarrow \begin{matrix} h_{\mu} \\ F_{\mu} & \longrightarrow F_{\mu} \\ \downarrow & \downarrow h \\ F_{\nu} & \longrightarrow F_{\nu} \\ h_{\nu} \end{matrix} h .$$

In view of the above commutative diagram, we have the following.

DEFINITION. For $\mu \in C$, define the Hankel transform h_{μ} by

$$[h_{\mu}f(x)](y) = y^{\mu-\nu}[h_{\nu}0h(f(x))](y), \quad f \in H_{\mu},$$

where ν is chosen so that Re $\nu \geq -\frac{1}{2}$.

Remark 1. Note that $f \to x^{\mu+1/2} f$ is a homeomorphism from F onto F_{μ} [4, Theorem 2.1].

THEOREM 2.1. If $\nu - \mu \in N$ in Eq. (2.2), then

$$h = x^{\nu+1/2}(-x^{-1}D)^{\nu-\mu}x^{-\mu-1/2}.$$
 (2.3)

Proof. Let the right-hand side of Eq. (2.3) be denoted by \overline{h} . Then for $f \in F_{\mu}$,

$$\gamma_{m,k}^{\nu}(\overline{h}f)=\gamma_{m,k+n}^{\mu}(f),$$

from (1.2), where $n = \nu - \mu$. Hence \overline{h} is a continuous map. Let f_1 , f_2 in F be such that $\overline{h}f_1 = \overline{h}f_2$. Then $\gamma_{m,k+n}^{\mu}(f_1 - f_2) = 0$, for each $m, k = 0, 1, 2, \ldots$ Hence, in particular, $\gamma_{m,n}^{\mu}(f_1 - f_2) = 0$.

Therefore, $(d/dx)[(x^{-1}D)^{n-1}(f_1 - f_2)] = 0$. Since $f_1 - f_2$ in F_{μ} is a rapidly decreasing function as $x \to \infty$, we get $(x^{-1}D)^{n-1}(f_1 - f_2) = 0$. Repeating the process (n-1) times, we conclude that $f_1 = f_2$ in F_{μ} . Hence \overline{h} is injective. For n=1 and g in F_{ν} , let

$$f(x) = -x^{\mu+1/2} \int_0^x t^{-\nu+1/2} g(t) dt,$$

then $f \in F_{\mu}$ and $\overline{h}f = g$. Using induction on n, it can be shown that \overline{h} is surjective.

That \overline{h} is a homeomorphism follows from the open mapping theorem [5, p. 172].

For $f \in F_u$,

$$\overline{h}[h_{\mu}(f(x))(y)] = y^{\nu+1/2}(-y^{-1}(d/dy))^n y^{-\mu-1/2} \int_0^\infty f(x)(xy)^{1/2} J_{\mu}(xy) \ dx.$$

Differentiating under the integral sign, we get

$$=y^{\nu+1/2}\int_0^\infty f(x)x^{\nu+n+1/2}(xy)^{-\nu}J_\nu(xy)\ dx$$

(since $(xy)^{-\nu}J_{\nu}(xy)$ is a C^{∞} bounded function on $0 < xy < \infty$, differentiation under the integral sign is valid) and

$$= \int_0^\infty x^n f(x) (xy)^{1/2} J_{\nu}(xy) \ dx = h_{\nu}(x^n f(x))(y)$$
$$= h[h_{\nu}(f(x))(y)],$$

thus proving the theorem.

From Eqs. (2.2) and (2.3), we get

$$(-x^{-1}D)^n = x^{-\nu - 1/2}h_{\nu}y^nh_{\mu}x^{\mu + 1/2}, \qquad n = \nu - \mu. \tag{2.4}$$

It is easily seen that the operator $(-x^{-1}D)^n$ is an automorphism on the Frechet space $F_{-1/2}$. Note that the spaces F and $F_{-1/2}$ are homeomorphic under the identify map. Henceforth we will drop the suffix $_{-1/2}$ from $F_{-1/2}$ and write it as F. Writing $\mu = 0$ in (2.4), we obtain the following useful representation for the operator $(-x^{-1}D)^n$:

$$(-x^{-1}D)^n = x^{-n-1/2}h_n y^n h_0 x^{1/2}.$$
 (2.5)

3. THE MAIN RESULT

The equation (2.5) motivates us to propose the following.

DEFINITION. For $\nu \in C$, define the pseudo-differential operator $(-x^{-1}D)^{\nu}$ by

$$(-x^{-1}D)^{\nu}f(x) = x^{-\nu - 1/2}h_{\nu}y^{\nu}h_{0}x^{1/2}f(x), \qquad f \in F.$$
(3.1)

Then $(-x^{-1}D)^{\nu}$ is clearly an automorphism on F for each complex ν .

From (3.1), we get

$$(-x^{-1}D)^{\nu}f(x) = x^{-\nu-1/2} \int_0^{\infty} dy (xy)^{1/2} J_{\nu}(xy) y^{\nu} \int_0^{\infty} dx \, x^{1/2} f(x) (xy)^{1/2} J_0(xy). \tag{3.2}$$

Remark 2. In view of the above definition (3.1) of $(-x^{-1}D)^{\nu}$, Theorem 2.1 is valid with $\nu - \mu \in C$.

For distributions ψ in F', define $(-x^{-1}D)^{\nu}$ by

$$\langle (-x^{-1}D)^{\nu}\psi, f\rangle = \langle \psi, (-x^{-1}D)^{\nu}f\rangle, \qquad f \in F.$$

THEOREM 3.1. The pseudo-differential operator $(-x^{-1}D)^{\nu}$ is an automorphism on the space F and hence on its dual F' for each complex ν .

Remark 3. Since f in F satisfies the boundary condition (1.1) near the origin and is rapidly decreasing as $x \to \infty$, we can extend f from $(0, \infty)$ to R by defining f(x) = f(-x) for $-\infty < x < 0$ and $f(0) = a_0$, where a_0 is the constant term in (1.1). With this extension, the space F (now containing C^{∞} complex-valued functions defined on \mathbb{R} and satisfying (1.1) near the origin and rapidly decreasing as $|x| \to \infty$) becomes a linear subspace of the Hilbert space $L^2(\mathbb{R})$. Also, for $f \in F$,

$$(-x^{-1}D)^{\nu}f(x) = (x^{-\nu}h_{\nu-1/2}y^{\nu}h_{-1/2})f(x)$$

(obtained by taking $\mu = -\frac{1}{2}$ and replacing $\nu + \frac{1}{2}$ by ν in (2.4))

$$= \frac{1}{2} \int_0^\infty dy \, y^{\nu+1/2} (xy)^{-\nu+1/2} J_{\nu-1/2}(xy) \int_{\mathbb{R}^n} dx \, f(x) (xy)^{1/2} J_{-1/2}(xy), \quad (3.3)$$

since $z^{\nu}J_{-\nu}(z)$ is an even entire function for $\nu \in C$. Thus we see that $(-x^{-1}D)^{\nu}f(x)$ is valid for $x \in \mathbf{R}$ and that the pseudo-differential operator $(-x^{-1}D)^{\nu}$ is an automorphism on extended F.

Example 1. The function $e^{-x^2} \in F$ $(x \in \mathbb{R})$. Hence $(-x^{-1}D)^{\nu}e^{-x^2} = x^{-\nu-1/2}h_{\nu}y^{\nu}h_0(x^{1/2}e^{-x^2})$, from (3.1).

Using the well-known result

$$h_{\nu}(x^{\nu+1/2}e^{-\alpha x^2}) = [y^{\nu+1/2}/(2\alpha)^{\nu+1}] \exp(-y^2/4\alpha), \quad \text{Re } \alpha > 0, \text{ Re } \nu > -1$$
(3.4)

[1, Eq. (10) on p. 29], we obtain $(-x^{-1}D)^{\nu}e^{-x^2} = 2^{\nu}e^{-x^2}$, for Re $\nu > -1$. Similarly, it can be shown that for Re $\alpha > 0$,

$$(-x^{-1}D)^{\nu}e^{-\alpha x^2} = (2\alpha)^{\nu}e^{-\alpha x^2}$$
 for Re $\nu > -1$.

For Re $\nu \le -1$, without loss of generality we may write $\nu = \nu_1 + \nu_2$ such that Re ν_1 , Re $\nu_2 > -1$. Then, using the commutativity of the diagram

$$F_{o} \stackrel{h_{o}}{\longleftrightarrow} F_{o}$$

$$x^{\nu_{1}} \stackrel{\downarrow}{\downarrow} h_{\nu_{1}} \stackrel{\downarrow}{\downarrow} x^{\nu_{1}+1/2} (-x^{-1}D)^{\nu_{1}} x^{-1/2} \qquad (= h)$$

$$F_{\nu_{1}} \stackrel{\downarrow}{\longleftrightarrow} F_{\nu_{1}} \stackrel{\downarrow}{\longleftrightarrow} x^{\nu+1/2} (-x^{-1}D)^{\nu_{2}} x^{-\nu_{1}-1/2} \qquad (= h),$$

$$F_{\nu} \stackrel{\downarrow}{\longleftrightarrow} F_{\nu} \stackrel{\downarrow}{\longleftrightarrow} F_{\nu}$$

it can be proved that $(-x^{-1}D)^{\nu} = (-x^{-1}D)^{\nu_1}o(-x^{-1}D)^{\nu_2}$. Hence,

$$(-x^{-1}D)^{\nu}e^{-\alpha x^2} = (2\alpha)^{\nu}e^{-\alpha x^2}, \text{Re } \alpha > 0, \nu \in C.$$
 (3.5)

Thus we have proved the following.

THEOREM 3.2. For Re $\alpha > 0$, the functions $e^{-\alpha x^2}$ are eigenfunctions of the pseudo-differential operator $(-x^{-1}D)^{\nu}$, $\nu \in C$. Note that $e^{-x^2/2}$ is a fixed point of $(-x^{-1}D)^{\nu}$.

EXAMPLE 2. We now show that

$$(-x^{-1}D)^{\nu}(x^2e^{-x^2/2}) = (x^2 - 2\nu)e^{-x^2/2}, \qquad \nu \in C.$$
 (3.6)

The following two formulae along with (3.4) are needed to prove (3.6):

$$h_o(x^{2\mu-3/2}e^{-x^2/2}) = 2^{\mu-1}\Gamma(\mu)y^{1/2}{}_1F_1(\mu;1;-\frac{1}{2}y^2), \quad \text{Re } \mu > 0, \quad (3.7)$$

[1, Eq. (21) on p. 9] and

$$h_{\nu}(x^{\mu-1/2}e^{-\alpha x^2}) = \frac{y^{\nu+1/2}\Gamma((1/2)(\nu+\mu+1))}{2^{\nu+1}\alpha^{(1/2)(\nu+\mu+1)}\Gamma(\nu+1)} {}_{1}F_{1}\left(\frac{\nu+\mu+1}{2};\nu+1;-y^2/4\alpha\right),$$
Re $\alpha > 0$, Re $(\nu+\mu) > -1$ (3.8)

[1, Eq. (14) on p. 30].

Taking $\mu = 2$ in (3.7), we get

$$h_o(x^{5/2}e^{-x^2/2}) = 2y^{1/2} {}_1F_1(2;1;-\frac{1}{2}y^2) = 2y^{1/2}(1-\frac{1}{2}y^2)e^{-y^2/2}$$

because $_1F_1(2; 1; -\frac{1}{2}y^2) = \sum_{0}^{\infty} [(1 + r)/(r!)](-\frac{1}{2}y^2)r$ [1, p. 429]. Also,

$$h_{\nu}(y^{\nu+1/2}e^{-y^2/2}) = x^{\nu+1/2}e^{-x^2/2}, \quad \text{Re } \nu > -1,$$

and

$$h_{\nu}(y^{\nu+5/2}e^{-y^2/2}) = 2x^{\nu+1/2}(\nu+1){}_{1}F_{1}(\nu+2;\nu+1;-x^2/2), \quad \text{Re } \nu > -3/2$$

(follows from (3.4) and (3.8)).

Since ${}_{1}F_{1}(\nu + 2; \nu + 1; -x^{2}/2) = [1 - (x^{2}/(1 + \nu)]e^{-x^{2}/2}$, we see that

$$(-x^{-1}D)^{\nu}(x^2e^{-x^2/2}) = (x^2 - 2\nu)e^{-x^2/2}, \quad \text{Re } \nu > -1,$$

by putting various terms together. Again, using the fact that $(-x^{-1}D)^{\nu} = (-x^{-1}D)^{\nu_1}o(x^{-1}D)^{\nu_2}$ for $\nu = \nu_1 + \nu_2$, we extend the above result for each $\nu \in C$.

Similarly, taking $\mu=3$ in (3.7) and $\mu=\nu+5$, $\alpha=\frac{1}{2}$ in (3.8), it follows that for $\nu\in C$,

$$(-x^{-1}D)^{\nu}(x^4e^{-x^2/2}) = [x^4 - 4\nu x^2 + 4\nu(\nu - 1)]e^{-x^2/2} = (x^2 - 2^{\nu*})^2 e^{-x^2/2}.$$

where ν^* is defined by (3.11).

Taking appropriate values of μ in (3.7), (3.8) and using them along with (3.4), $(-x^{-1}D)^{\nu}(x^{2n}e^{-x^2/2})$ can be evaluated easily for each n=0,1,2,...

We record this as

LEMMA 3.1. For $\nu \in C$ and n = 0, 1, 2, ...,

(i)
$$(-x^{-1}D)^{\nu}(x^{2n}e^{-x^2/2}) = (x^2 - 2^{\nu*})^n e^{-x^2/2}$$
. (3.9)

(ii) Let $P_{2n}(x) = \sum_{j=0}^{n} a_{n-j} x^{2j}$ be a polynomial; then

$$(-x^{-1}D)^{\nu}(P_{2n}(x)e^{-x^2/2}) = \sum_{j=0}^{n} a_{n-j}(x^2 - 2^{\nu*})^{j}e^{-x^2/2}$$
 (3.10)

where

$$\nu^{*j} = \nu(\nu - 1) \cdots (\nu - j + 1)$$
 for $j \ge 1, \nu \ne 1$;

and when v = 1.

$$\nu^{*j} = 0 \quad for j \ge 2. \tag{3.11}$$

4. The Fourier Hermite Series

DEFINITION. The polynomials defined by

$$H_o(x) = 1, H_n(x) = (-1)^n e^{x^2} D^n e^{-x^2}$$
 for $n > 0$

are called Hermite polynomials.

By using Lemma 3.1 and rearranging, we obtain for $\nu \in C$

$$(-x^{-1}D)^{\nu}[(X^{1}/x)e^{-x^{2}/2}] = (X^{1}/x)e^{-x^{2}/2},$$

$$(-x^{-1}D)^{\nu}(X^{2}e^{-x^{2}/2}) = (X^{2} - 2^{3}\nu)e^{-x^{2}/2},$$

$$(-x^{-1}D)^{\nu}((X^{3}/x)e^{-x^{2}/2}) = (X^{1}/x)(X^{2} - 2^{3}\nu)e^{-x^{2}/2},$$

$$(-x^{-1}D)^{\nu}(X^{4}e^{-x^{2}/2}) = (X^{2} - 2^{3}\nu)^{2}e^{-x^{2}/2},$$

$$(-x^{-1}D)^{\nu}((X^{5}/x)e^{-x^{2}/2}) = (X^{1}/x)(X^{2} - 2^{3}\nu)^{2}e^{-x^{2}/2},$$

$$(-x^{-1}D)^{\nu}(X^{6}e^{-x^{2}/2}) = [(X^{2} - 2^{3}\nu)^{3} - 2^{8}\nu]e^{-x^{2}/2},$$

$$(-x^{-1}D)^{\nu}(X^{7}/x)e^{-x^{2}/2}) = (X^{1}/x)[(x^{2} - 2^{3}\nu)^{3} - 2^{8}\nu]e^{-x^{2}/2},$$

$$(-x^{-1}D)^{\nu}(X^{7}/x)e^{-x^{2}/2}) = (X^{1}/x)[(x^{2} - 2^{3}\nu)^{3} - 2^{8}\nu]e^{-x^{2}/2},$$

where we have used the notations

$$X^{i} = H_{i}(x)$$
 and $X^{i} \cdot X^{j} = H_{i+1}(x)$, $i, j = 1, 2, 3, ...$

giving the lower triangular matrix representation for $(-x^{-1}D)^{\nu}H_{2n}(x)$.

 $e^{-x^2/2}$. The Hermite functions $H_n(x)e^{-x^2/2}$ are the orthogonal basis for the Hilbert space $L^2(\mathbf{R})$. Let X be the linear subspace of $L^2(\mathbf{R})$, spanned by the even Hermite functions (as a Hamel basis). Then for $f \in X$,

$$f = \sum_{k=0}^{\infty} C_{2k} H_{2k}(x) e^{-x^2/2},$$

where

$$C_{2k} = [1/(2^{2k}(2k)!\pi^{1/2}] \int_{\mathbf{R}} f(x) H_{2k}(x) e^{-x^2/2} dx$$

is the Fourier-Hermite series for f in $L^2(\mathbf{R})$. So, for any $f \in X$ and $\nu \in C$,

$$(-x^{-1}D)^{\nu}f(x) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} C_{2k} a_{n-j} (x^2 - 2^{\nu *})^j e^{-x^2/2}, \quad \text{in } L^2(\mathbf{R}), \quad (4.2)$$

where a_{n-j} is given by $H_{2k}(x) = \sum_{j=0}^{k} a_{n-j} x^{2j}$. Thus (4.2) gives the Fourier-Hermite series representation for the pseudo-differential operator $(-x^{-1}D)^{\nu}$ on the linear space X.

Though some pattern seems to emerge from the formulae (4.1), it is fairly hard to predict the general formula for the lower triangular matrix representation of $(-x^{-1}D)^{\nu}H_{2n}(x)e^{-x^2/2}$. But if we define the Hermite polynomials through the generating function

$$H_n(x) = (-1)^n e^{x^2/2} D^n e^{-x^2/2}$$
 for $n > 0$ and $H_n(x) = 1$, (4.3)

we have

THEOREM 4.1. Let $H_{2n}(x)$ be the Hermite polynomial, generated by (4.3), of order 2n; then

$$(-x^{-1}D)^{\nu}(H_{2n}(x)e^{-x^2/2}) = (X^2 - 2^{\nu})^n e^{-x^2/2}$$
(4.4)

where as before $X^{i} = H_{i}(x)$, $X^{i} \cdot X^{j} = H_{i+j}(x)$, and $v_{*}^{j} = v(v+1)(v+2)$ $\cdots (\nu + j - 1)$ for each $j = 1, 2, 3, ..., \nu \neq -1$, and when $\nu = -1, \nu_*^j =$ 0 for $i \geq 2$.

Thus each of $(-x^{-1}D)^{\nu}H_{2n}(x)e^{-x^{2}/2}$ has a lower triangular matrix representation. From (4.4) we see that the Hermite function $H_{2n}(x)e^{-x^2/2}$ satisfies the recurrence relation

$$[(-x^{-1}D)^{\nu}-1]y_{2n}(x)=\sum_{m=1}^{n}((-2)^{m}/m)\prod_{j=0}^{m-1}(n-j)(\nu+j)y_{2(n-m)}(x).$$
(4.5)

ACKNOWLEDGMENT

The author thanks Professor V. V. Menon of the Department of Applied Mathematics, IT-BHU, for his suggestions.

REFERENCES

- A. ERDELYI (Ed.), "Tables of Integral Transforms," Vol. II, McGraw-Hill, New York/ Toronto/London, 1954.
- 2. O. P. Singh, On distributional finite Hankel transform, Appl. Anal. 21 (1986), 245-260.
- 3. O. P. Singh, Some remarks on the distributional Hankel transform, in "Proc. International Symposium on Generalized Functions and Their Applications," Plenum, New York, 1993.
- 4. O. P. SINGH AND J. N. PANDEY, The Fourier-Bessel series representation of the pseudo-differential operator $(-x^{-1}D)^{\nu}$, *Proc. Amer. Math. Soc.* 115, No. 4 (Aug. 1992), 969–976.
- F. TREVES, "Topological Vector Spaces, Distributions, and Kernels," Academic Press, New York, 1967.
- G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge Univ. Press, Cambridge, 1962.
- 7. A. H. ZEMANIAN, A distributional Hankel transform, Siam. J. Appl. Math. 14, No. 3 (1966), 561-576.
- 8. A. H. ZEMONIAN, "Generalized Integral Transformations," Interscience, New York, 1968.