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 Design Analysis of SMPM Motors Using Space Fourier 

Transform 

 

2.1 Introduction 

A detailed literature survey on the design analysis of PM machines has been 

discussed in Chapter 1. This chapter deals with the merits and demerits of the methods 

present for the analysis of the SMPM machines and introduces the proposed method for 

analysis of SMPM machines as discussed in Section 2.2 and Section 2.3 respectively. 

The governing field equations involved and assumptions made have been discussed. 

Section 2.4 discusses the implementation of proposed method to AFPM motor. 

Calculation of the back-EMF for the SMPM motors from proposed method has been 

discussed in Section 2.5. The model for the calculation of cogging torque has been 

explained in section 2.6. Finally the chapter has been concluded in Section 2.7. 

 

2.2 Selection of Method for Analysis for SMPM Machines 

The numerical methods-FEM & BEM are powerful modern techniques and have 

been in trend adopted by industries and academia. However, these methods are 

normally not considered suitable for the initial design and optimization of electrical 

machines due to large computational time [Amrhein et al., 2007]. Alternatively 

analytical lumped parameter methods like d-q-0 model and MEC                 

[Abbaszadeh et al., 2013, Virtic et al., 2009] can be used for performance calculation of 

PM motors with certain tolerance. The necessity of modeling PM machine; and 

respective merits and demerits of the various methods presented has already been 

highlighted in Section 1.3. Analytical methods provide an insight into the effect of 

different design parameters and related performance of electrical machines and play a 
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significant role in calculating torque, back-EMF waveform prediction, cogging torque, 

etc., [Rahideh et al., 2012a]. Though Fourier series is a widely used approach for the 

analysis of PM machines and provides accurate information of field distribution in the 

PM motors but its computational time is expected to be higher for higher speeds owing 

to the significant terms at higher order of space harmonics. Table 2.1 gives a 

comparison of the analytical methods on their capability to compute the different 

parameters. 

The application of Fourier Transform for the design analysis of PM machines is 

entirely new. The method has been in use for the performance calculation of electrical 

machines since 1962. Some important contributions to the theory are summarized 

chronologically as: 

i. In 1962, Fourier Transform was first introduced for determining performance of 

MHD generator [Fanucci et al., 1962]. 

ii. In 1963, Sudan modified the analysis of an induction MHD generator using finite 

length of conducting sheet with infinite length of stator iron [Sudan et al., 1963].  

iii. In 1972, Yamamura described the Fourier Transform in detail for application in 

linear induction motors. The author discussed the effect of entry and exit end effects 

on the performance of LIM using both two-dimensional and three-dimensional 

analysis. Magnetic vector potentials (MVP) is used to predict fields and 

performance of the single sided and double sided LIM [Yamamura et al., 1972].  

iv. The method by Yamamura has been extended in 1973 for study of end-effect 

double-sided short stator type [Iwamoto et al., 1973]. 

v. The effect of finite iron length and discrete windings on the performance of LIM 

has been studied using Fourier Transform technique [Dukowicz, 1977]. 
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vi. Later in 1978, spatial Fourier transform .i.e., Parseval’s method was used for 

predicting effect of transverse edge-effects in LIM [Freeman et al., 1978].  

vii. In 1979, a quasi 3-dimensional mathematical modeling of LIM using Fourier 

Transform has been presented [Lee, 1979].  

viii. In 2000, Fourier transform theory has been developed for the analysis of drag plate 

single sided LIM considering the saturation and skin effects in the back iron 

[Srivastava et al., 2000]. 

ix. The Fourier Transform has also been used to compute the effect of DC dynamic 

braking in LIM [Pai, 2007].  

x. The performance of eddy-current brake using the same theory is reported 

[Srivastava et al., 2009]. 

Conventional method uses general design equations of the machine for the calculation of output 

power, torque and efficiency. These methods rely on the experimental results obtained from the 

test body. Not suited for the performance prediction of new motor types and is useful for 

analyzing small changes to existing industrial designs. 

Table 2.1 Comparison of Analytical methods
 

Parameters MEC Conventional 

method 

dq0 model Fourier 

series 

Fourier 

Transform 

Magnetic field Yes No No Yes Yes 

Torque Yes Yes Yes Yes Yes 

Simulation time Large Less Less Dependent 

on speed 

Independent 

of speed 

Expertise level High Low Intermediate High Intermediate 

Torque Vs Speed No Yes Yes No Yes 

Current Vs Speed No Yes Yes No Yes 

Computation of 

cogging torque 

Yes No No Yes Yes 

2.3 Proposed Analytical Method for SMPM Motors 

The main objective of this thesis is to propose and study feasibility of proposed 

analytical method for design analysis of the SMPM motor. The proposed method is 

expected to be simple and less time consuming as compared to other methods of  
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analysis. SMPM motor consists of a stator with primary winding and PMs on 

surface of the rotor. In PMBL machines, the stator currents are in synchronism with the 

instantaneous rotor position, thus these machines are referred to as synchronous 

machines. In present approach, the SMPM machine is represented as a two-dimensional 

(2-D) multilayer model divided into four regions; the rotor iron, the PMs on the rotor, 

the air clearance or ‘entrefer’ between the stator iron surface and rotor iron surface and 

stator yoke. In other words, the proposed 2-D analytical model defines characteristics 

equations in x-y plane. Each region is replaced by a homogeneous layer of respective 

materials having equivalent properties. For linear 2-D model, end effects are ignored. 

The problem is therefore simplified to a 2-D case due to the motor symmetry along its 

shaft. The two sources of excitation are primary stator windings and the surface 

mounted PMs. The present method assumes that the two sources be replaced by their 

equivalent current sheets. 

 2.3.1 Representation of Primary Stator Winding 

In electromagnetic field theory, the winding currents are usually represented as 

current sheets. Though, the winding currents are discrete quantities with the conductors 

located in the slots, the current sheet is a continuous quantity. However, they are 

equivalent to each other if they produce same MMF as the fundamental component of 

their Fourier expansion. In PM machines excited by sinusoidal voltage source, the 

current is non-sinusoidal and contains mostly third or fifth order harmonics. The actual 

current flowing in one of the phase of stator windings can be given as [Yamamura et 

al.], 

 1 1i 2I exp jqωt
q

  
(2.1) 

The MMF produced by the primary winding is, 
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1 w 1N k Im 2 π
MMF exp j qωt-nkx-

π p 2n q

  
   

  
  

 

(2.2) 

The equivalent current density sheet for the above primary current is given by, 

  1 1

q

j 2J exp j qωt-nkx
n

  (2.3) 

k is given by, 

k



  

(2.4) 

Hence, 

1 w 1
1

N k Im 2
J =

π pτ
A/m 

(2.5) 

2.3.2 Representation of Permanent Magnets 

The PMs may be modeled as equivalent flux source, equivalent current sheet, 

by an MMF source or by a Magnetization vector. N. Boules in his work presented PMs 

as surface current density [Amrhein et al., 2007].The equivalent MMF produced by the 

PMs can be written as [Deng et al., 1986],  

p c mMMF =H h  (2.6) 

When modeled as a flux source as in MEC method, the value of the flux source 

depends on the reluctance and coercivity of PM and is equal to                             

[Ghalavand et al., 2010],  

c mH h
p

m

 


 
(2.7) 

With PMs of alternate polarities are present on the rotor, the magnetization vector in 

the Fourier Series as shown in Fig. 2.1 can be written as [Boroujeini et al., 2009], 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Amrhein.QT.&newsearch=true
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r

y

1,3,.... 0

4B
sin cos

nπμ 2n

n n y 



   
    

   
M  

(2.8) 

 

 

Fig. 2.1 Distribution of Magnetization of Permanent Magnets 

 

The PMs produces a constant field in the air gap as DC field winding. The DC 

excitation has been represented by equivalent sheet [Shanmugasundaram et al., 1983]. 

In the similar manner, the PMs may also be represented by equivalent current density 

and is given as, 

   2 2 2j x = J j qωt-nk xexp 
n

A/m (2.9) 

 where, 

c m

2

m

H h
J

τ
  

(2.10)
 

 

Equation (2.9) produces the same MMF as the equation (2.8) and hence the PMs can be 

represented by their equivalent current sheet.  

The general assumptions made for the proposed analysis are: 
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2.3.3 Assumptions 

a. For isotropic model, the stator iron is assumed to have infinite permeability, thus 

neglecting magnetic saturation of the core.  

b. The current flows only in z-direction.  

c. The stator is laminated, thus the eddy currents in stator are ignored.  

d. The electromagnetic properties of all materials are linear, isotropic and temperature 

invariant. 

e. The two current sheets are present over a length of x=0 to x=L, where L=peripheral 

length of motor bore for solution in real space.  

f. The flux density vector has only radial and tangential component, thus magnetic 

vector potential has only z-component. 

g.  The slotting effect has been taken into account using Carter’s coefficient. 

h.  For anisotropic model, the stator is assumed to have multiple layers and stator yoke 

is assumed to have infinite permeability. While the proposed model takes care of 

saturation in the stator core which is valid for machine with lesser entrefer. 

i. The presence of slots and their effect on average air clearance is taken into account 

using Carter’s coefficient. Slotting in the stator reduces flux per pole in the air gap 

and thereby reduces average torque of the motor. The effective air gap or ‘entrefer’ 

corrected by Carter’s coefficient as, 

 1e cg g k g     (2.11)
 

where Carter’s coefficient kc is given by [Zhu et al., 1993a], 

t

c

t

k
g



 



 

 

(2.12)
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m

r

h
g g


  

 

 

(2.13) 

2

10 0 04
tan ln 1

2 2 2

w w w

g g g






 
    

      
         

(2.14) 

Fig. 2.2 shows a typical outer rotor 12-slot 2-pole SMPM motor. The proposed 

analysis has been reported for cases without stator slotting .i.e., isotropic model and 

with the effect of slotting .i.e., anisotropic model.  The permeability of stator yoke has 

been assumed to be infinity whereas the relative permeability of PMs is assumed close 

to unity. Rare-earth PMs have linear second quadrant characteristics with recoil 

permeability nearly equal to air gap permeability μo so that they can stand severe 

demagnetization and magnetization cycles due to high armature reaction fields         

[Deng et al., 1986]. The proposed analytical model of the SMPM motors has been 

shown in Fig. 2.3 while the simplified linear model of the SMPM motor is shown in 

Fig 2.4 (a) and (b). The problem is simplified to two-dimensional case due to symmetry 

along motor shaft. Initially, the regions are considered to be isotropic, however the 

slotting effect is included in an anisotropic model. The layer representing the magnets 

is assumed to have average conductivity and average permeability and slotted stator 

structure is replaced by a smooth core as in Fig. 2.5 (a) and (b). Current sheets 

substituting the primary windings and layer of permanent magnets are present on the 

surface of stator core and PM layer respectively. These are assumed to be 

infinitesimally thin. The rotor permanent magnets will be aligned with the crust of 

stator rotating magnetic field, giving maximum normal force or no tangential force 

when space angle is φ=0° or φ=180°. The primary coils of stator are switched ON and 

OFF in synchronism with the rotor instantaneous position. The PM rotor follows the 

rotating magnetic field created by the stator winding currents. The magnetic rotor under 
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steady state conditions runs at exact synchronous speed. It has been shown in equation 

(2.24) that when rotor peripheral speed is equal to synchronous speed v=vs=2τf, the 

displacement angle is φ=90°, or in other words the spatial phase difference between 

two current sheets is φ=±j0.5kτ. 

The magnetic field H around a small path enclosing the two current sheets j1(x) and 

j2(x) located along x is, 

1 2

H
g j +j

x





 

 

(2.15) 

In the air gap, 

oB=μ H  (2.16) 

therefore,  

 o

1 2

μ
= j +j

gx





B
 

 

(2.17) 

The line integral of electromotive force induced can be written as, 

2e B B
v

x t x

  
 

  
 

(2.18) 

Since the secondary sheet is assumed to have no leakage inductance, the EMF induced 

in secondary will be considered as resistance drop, 

2 2se j  (2.19) 

From equation (2.16), (2.17) and (2.18),  

2

1

2

0

1

s s

jg B v b b

x t xx  

  
  

  
 

(2.20) 

The steady state solution of equation (2.20) is given by, 

0 exps sB B j v t x
 


 

  
    

  
 

 

(2.21) 

where, 
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 

1

2 2

0

1
o

s

s

J
B

g
v v



 



   
    

   

 

 

(2.22) 

and 

 
1tan s

o s

g

v v




 

 


 
 

(2.23) 

thus, when 
sv v  φ= ±90° (2.24) 

The variation of torque at different displacement angles has been shown in Fig 2.6. It 

can be depicted that the maximum torque occurs at 90
°
. Here ‘’ sign indicates the 

direction of rotation. 

2.3.4 Governing Field Equations 

Maxwell’s field equations are used to derive the governing partial differential 

equations. The basic equations involved are, 

. =ρD  (2.25) 

. 0 B  (2.26) 

x H J  (2.27) 

The general governing field Maxwell’s equations for PMBLAC motor having 

conducting material on rotor is, 

 2

0 t υμ × + +   A J M J J  
(2.28)

 

 
where, J is the source current density of current carrying conductors of primary 

replaced by linear current density Jp, Jt is transformer eddy current density in moving 

conducting media, Jv is speed induced current density in moving conducting media and 

M  is the MMF due to magnets replaced by linear current density Js. 
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Fig 2.2 A Typical 12-slot Surface Mounted PM motor (windings not shown for clarity)  

 
(a) 

 
(b) 

Fig. 2.3 Linear Model of PM motor (a) with slots and PMs (b) slots neglected  
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(a) 

 
(b) 

Fig. 2.4 Simplified Linear Model of the Surface Mounted PM Machine (a) Isotropic  

(b) Anisotropic 
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(a) 

 
(b) 

Fig 2.5  Typical layer models of PMBL motor- (a) Isotropic model- stator winding is 

replaced by linear current density jP (x) and PM layer are represented by linear current 

density jS (x) (b) Anisotropic layer model of PMBL motor taking slots and slot 

openings into account. (Current sheets are assumed to be infinitesimally thin) 
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For PMs, 

0 r 0=μ μ +μB H M  (2.29) 

For regions other than PMs, 

0 r=μ μB H  (2.30) 

0x =μ x B M  (2.31) 

Magnetic vector potential can be defined as,  

= xB A  (2.32) 

  2x = x x = .     B A A A  (2.33) 

Coulomb Gauge,                                 

. 0 B  (2.34) 

2x  B A  
(2.35) 

 2

o r f=  μ μ x  A J M  
(2.36) 

 The governing field equations for conducting moving media having finite conductivity,
 

2

l jωμ σ vμ σ l

l l l l l
x

 
    

 

A
A A  

(2.37)
 

Magnetic Vector Potential (MVP) has z-component only and is denoted as A or Az. The 

Fourier transform of MVP Az (x, y) is  A ξ,yz
 and is given by, 

    -jξx

zA ξ,y A x,y e dx





   

 

(2.38)
 

    
Fourier Transform is applied for the solution of Maxwell’s equations for analysis 

of PM motors and the magnetic vector potential (MVP) of each layer is calculated 

separately utilizing the above boundary conditions. Since, the model has two 
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conducting layers presenting primary windings and PM layer, the Fourier transform of 

the two current sheets can be written as, 

 
 

 
1 1

1

1

jr k +ξ L J
ξ = j e 1

r ξ+kr

 
 

 
J  

(2.39)
 

 
 

 

±j0.5kτ

2 2

2

2

j k +ξ L e J
ξ = j e 1

n ξ+kn

 
 

 
J  

(2.40)
 

 
In order to establish the theory of Fourier transform applicable to PMBLAC motor, it 

is initially assumed that,  

1 2

π
k =k =k=

τ
 

(2.41) 

2.3.5 Boundary Conditions 

1.All field components are zero at z = ±∞. 

2.For interface between limiting boundary and homogeneous layer, Neumann type 

boundary conditions applied are, 

   
x x

H ξ =H ξ
l l-1  

(2.42)
 

3. For interface between homogeneous layers (conducting and non-conducting layers), 

continuous boundary conditions are applied as,  

     
x x

H ξ H ξ ξ
l l-1

  J  
(2.43) 

   
 l

A A

y y

l l-1   
   

 
J

 

(2.44)
 

Here, J(ξ) is the Fourier transform of current sheet present at the interface. 

4.Magnetic vector potential : At the interface between two layers, 
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   -1A ξ -A ξ =0l l  
(2.45)

 

In air gap or ‘entrefer’,   

2 0 A  (2.46) 

and coulomb gauge is defined as, 

. 0 A  (2.47) 

For permanent magnets as per Poisson’s equation, 

2

0μ x   A M  (2.48) 

Assumed solutions of PMBLAC motor are given by following set of equations for 

isotropic model, 

At 0
th

 layer, 

    ξy

o nA ξ =A ξ e  (2.49) 

 

and at other regions of layer model, 

    χy χy

1 n nA ξ,y =B ξ e +C e  (2.50) 

     
n n2

γy γy
ξA ξ,y =D e +E eξ


 

(2.51) 

     ξy ξy

3 n n
ξA ξ,y =F e +I ξ e


 

(2.52) 

     χy χy

4 n n
ξA ξ,y =P e +Q ξ e



 

(2.53) 

     χy χy

5 n n
ξA ξ,y =R e +S ξ e



 

(2.54) 

where, 

For back iron, 2 2

1 1 1 1χ =ξ +jωμ σ +jξυμ σ  (2.55) 

For PMs,  2 2

2 2 2 2γ =ξ +jωμ σ +jξυμ σ  (2.56) 
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In case of anisotropic model, the slotted regions are assumed to be homogenized 

by anisotropic material properties. When a layer consists of two materials as in a slot, 

the equivalent material property takes care of the variation or change in the flux. The 

anisotropic magnetic permeability in the region of slot openings and slot is calculated 

as [Williamson, 1976], 

 0 1 s w

4x

1 s 0 w

μ μ τ +τ
μ =

μ τ +μ τ
 

(2.57)

 

1 w 0 s

4y

s w

μ τ μ τ
μ =

τ +τ


 

(2.58)

 

 0 1 c t

5x

1 c 0 t

μ μ τ +τ
μ =

μ τ +μ τ
 

(2.59)

 

1 t 0 c

5y

c t

μ τ μ τ
μ =

τ +τ


 

(2.60)

 

 

thus in slot openings, 

2 2

4 4x 4yμ = μ +μ  
(2.61) 

and in slot regions, 

2 2

5 5x 5yμ = μ +μ
 

(2.62) 

Using equations (2.40) and (2.41) and solving MVP for different regions,  

 
     

 

1 23

n

ξ + ξ coshξ a b
ξ

μ
A =

ξ.K ξ

  
J J

 

 

(2.63) 

MVP at the air gap where current sheet is present for isotropic model is derived as, 
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   
 

 
3

3 1

r

W ξ,aμ
A ξ,a = ξ

ξ K ξ
 J  

 

(2.64) 

MVP at the interface where primary current sheet is present for anisotropic model is 

derived as, 

   
 

 

5

5 1

r

ξ,aμ
A ξ,a = ξ

χ ξ

G

H
 J  

(2.65) 

Using inverse transformation of magnetic vector potential, 

 
  
 

 

 

-j ξ+k L

jξx3
3 1

e 1 W ξ,aμ
A x,y =j J e

2π ξ+k K ξr

dx







  

(2.66) 

 
  
 

 

 

-j ξ+k L

jξx5
5 1

r

e 1 G ξ,aμ
A x,y =j J e

2π ξ+k H ξ
dx







  

(2.67) 

The calculation of 
 W ξ,a

, 
 K ξ

, 
 G ξ,a

and 
 H ξ

are given in Appendix A. 

2.3.6 Magnetic Field and Torque Calculation 

Since, magnetic vector potential (MVP) of the proposed analytical model is 2-D in x-y 

plane has only z-component, therefore  

               z
x

y






A
B    z

y
x


 



A
B                                    

(2.68) 

The y-component of the magnetic flux density is more important as it produces torque 

in combined action with the primary current J1. Now, the flux density at the air gap can 

be calculated as, 

 
 3

3y

ξ,y
ξ,y

x


 



A
B  

 

(2.69) 
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   3y 3ξ,y jξ ξ,y B A  (2.70) 

Substituting value of  3 ξ,yA  from equation (2.64) in equation (2.70), 

 
 

 
jξx3

3y 1

W ξ,yμ
ξ,y = J k e

2π K ξ
B  

 

(2.71) 

Torque is developed between the primary current sheet present between the length x=0 

to x=L= 2πRo and permanent magnets and is given in closed form solution as, 

 *

o 1 3y

0

T=R p ξ

L

e dx    J B  
(2.72) 

J1
*
 is the complex conjugate of the J1. 

The Fourier transform technique uses Parseval’s theorem and Residue theorem 

for obtaining the solution in Fourier space and Real space respectively. 

A. Solution Using Residue Theorem 

Residue Theorem has been utilized in inverse transforming Fourier Transforms 

in solutions of separate variable. It is advantageous for obtaining answers of analytical 

solutions of separate variable. In Residue Theorem, poles of the integrand need to be 

calculated for linear and segmented PM machines where exit and end effects mark their 

presence while it is not essentially required in cylindrical PM machines.  

The above integration when carried out using Residue Theorem, the poles are, 

ξ+k=0  (2.73) 

 K ξ =0  (2.74) 

Thus, from equation (2.73) is ξ=-k. In case of rotary permanent magnet motor excited 

by an alternating current, the pole ξ=-k is responsible for the generation of main torque. 

However, for the linear or segmented PM motor where entry and exit end effects are 
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dominant similar to that of linear induction motor, the poles responsible for generation 

of torque is, 

 K ξ =0  (2.75) 

The pole ξ=-k near origin on negative real axis in the complex-plane is a 

significant pole representing the pole pitch of primary stator winding. Fig. 2.7 shows 

the location of this pole in ξ-plane. Substituting ξ=-k in equation (2.64), MVP at the air 

gap for isotropic model is derived as, 

 
 

 
jkx3

3 1

W k,aμ
-k,a =j J e

2π K -kr




A

 

(2.76) 

Magnetic flux density in the air gap can be calculated combining the equations (2.70) 

and (2.76) as, 

 
 3

3y

k,a
-k,a

x

 
 



A
B  

(2.77) 

   3y 3-k,a = jξ k,a B A  
(2.78) 

Substituting value of A3z(-k,a) in the equation (2.78) from equation (2.76), 

 
 

 
jkx3

3y 1

W k,aμ
-k,a = k e

2π K -k




B J  
(2.79) 

Therefore, torque developed using Residue Theorem has been computed as, 

 

 

2

0 1 o
jkLW k,aμ J R p

T= e
2 K -k

 
  

 
 

 

(2.80) 

The torque developed for anisotropic model can be calculated in the similar way using 

equation (2.66) and (2.67). ξ=-k 
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Fig 2.6 Variation of Torque with displacement angle between two current sheets 

 

  

 

Fig. 2.7 Location of poles in the ξ-plane 
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(a) 

 
(b) 

 
(c) 

Fig. 2.8 Typical variation of torque integrands of PMBLAC motor at (a) standstill  

(b) 400 RPM (c) 800 RPM 
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When solution is obtained in real space using Residue Theorem the torque 

expression takes the form, 

     1 2 0 3 0T=T ξ= k +T ξ= ξ +T ξ= ξ    (2.81) 

For cylindrical PM machines, T2 and T3 both are zero. For segmented and linear 

PM machine 
0ξ  and 

0ξ  
are numerically computed using equation (2.75) for different 

operating conditions. However, this is beyond the scope of the present work.  

B. Solution using Parseval’s Theorem: 

Parseval’s theorem is used to facilitate numerical calculation of torque and other 

quantities which are calculated as products of physical quantities such as voltage, flux 

density and current. When Fourier transforms of the physical quantities are known, the 

motor performances can be computed directly from Fourier Transform using Parseval’s 

Theorem.  

When f1(x) and f2(x) are limited and integral in limits (  to   ), 

       * *

1 2 1 2

1
f ξ f ξ dξ f x f x

2
dx



 

 

   

 

(2.82) 

 Torque produced with the interaction of primary stator current and PMs, 

 *o

1 3y

R p
T= e ξ dξ

2





  J B  
 

(2.83) 

 *o

1 3

0

R p
e ξ dξ

4π

L

yT   J B  
(2.84) 

 

 

 

 
2o

3 1 2

0

1 cos ξ+k L W ξ,aR p
T= μ J dξ

π K ξξ+k

L

mag
 

   
 

  

 

(2.85) 
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The torque is calculated numerically using above equation. The range of  ‘’ and 

step length ‘d’ both have been obtained using trial and error method, so as to cover the 

relevant distribution of integrands in Fourier space. The numerical integration has been 

performed using MATLAB software for real values of  = -250 to +50 at a step length 

of d = 0.1081. The general distribution of torque integrand in Fourier Space at 

standstill, 400 RPM and 800 RPM for a 12-slot RFPM machine whose details are given 

in Table 3.1 has been shown in Fig. 2.8. The torque distribution is more pronounced at 

=-/  in real axis. However Residue method gives a closed form solution and uses 

more realistics assumptions, the technique is expected to be better than that of 

Parseval’s method. 

2.4  Proposed Analytical Model for AFPM Motor 

AFPM machines have intrinsic 3-D electromagnetic structure, however since   

3-D FEM is very time consuming especially for initial design analysis and optimization, 

2-D FEM and analytical methods are generally preferred for this purpose. The 

analytical calculations to determine the air gap flux density distribution is performed at 

an average radius calculated as equation (2.86). Both the methods, FEM and analytical 

method give accurate results however analytical methods using solution of MVP for 

performance analysis are faster than the FEM [Choi et al., 2011].   

The proposed 2-D analytical method for SMPM machines can be applied to 

radial flux as well as axial flux PM machines. The mean radius of the AFPM motor is, 

0 i
ave

D -D
R =

2
 

(2.86) 

The torque can be calculated for AFPM motor using Residue Theorem and Parseval’s 

Theorem from equations (2.80) and (2.85) respectively with Ro=Rave. 
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2.5 Back-EMF 

For calculation of back-EMF, computation of no-load magnetic flux is 

necessary and is given as, 

2

2 2

g 1 2

1

Rαπ
= B R 1

2P R
o

 
 

 
 

 

(2.87) 

The Back-EMF induced in the primary stator windings can be calculated using, 

1 w sEMF=π 2N k n /po  
(2.88) 

2.6 Cogging Torque 

Cogging torque in SMPM motors arise from interactions of the PM flux and 

stator or rotor slots. It is a primary source of ripple in output torque which depends on 

the PM flux and the reluctance variation and is independent of the supply current and 

variation in current due to loads [Chun et al., 2006]. Cogging torque can also be defined 

as the change of total magnetic energy of system with reference to rotor revolution 

when no primary stator current is present. In most of the cases, the cogging torque is 

computed from the change in the magnetic co-energy in air gap and the slot as the rotor 

advances by a small angle [Ackermann et al. 1992, Bianchi et al. 2002, Breton et al. 

2000]. However, when calculating torque by this method, an important and difficult 

part is to compute the tangential component of air gap flux density. The tangential 

component may have less contribution in the air gap flux density while its rate of 

change of energy with rotor position may be large.  

Due to these difficulties, alternate method to compute cogging torque in PM 

machine has been suggested by Zhu which includes summing of the lateral magnetic 

forces along the stator tooth sides [Zhu et al., 1992]. Zhu simplified the calculation of 

cogging torque in three steps; (i) Determination of the air gap flux density considering 



Chapter 2 

 

Design Analysis of Surface Mounted Permanent Magnet Brushless Motors  Page 54 
 

slotless stator (ii) Including relative permeance factor due to presence of slots and     

(iii) Computation of the cogging torque using modified air gap flux density with 

relative permeance at different rotor positions. 

 

Fig. 2.9 Analytical Model for calculating cogging torque  

 

Conformal Mapping [Lin et al. 2012] and quasi 3-D modeling of cogging torque 

in AFPM machines [Tiegna et al. 2014] has also been reported for computation of 

cogging torque. The approach suggested by author has been extended and in present 

case, the cogging torque is calculated as the sum of torque produced in three different 

regions [Zhu et al. 1992]. The analytical model for computation of cogging torque is 

shown in Fig. 2.9. Since, cogging torque is calculated when the primary winding 

current is absent. In the proposed method, the flux is calculated at three different 

regions from 0<x<L1, L1<x<L2 and L2<x<L3 separately when J1 is zero. 

Flux Density can be calculated in the same manner as the total torque.  
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   3y 3z 3zξ,c = × jξ ξ,c  B A A  
(2.89) 

 
 

 
 3y 3 p

W k,c
B x,c =jkμ J exp jkx

K k




  

 

(2.90) 

The torque with J1 is zero, equation (2.72) becomes, 

 *

2 3y

0

T=0.5Dp ξ dx

L

e     J B  
 

(2.91) 

The summation of three torques with J1 absent in slots gives the total cogging torque 

w.r.t. rotor position.  

 

2.7 Conclusions 

In this chapter, a new analytical method has been proposed for the analysis of 

SMPM motor. The method is based on the solution of governing field equations using 

Spatial Fourier Transform. The primary winding current and PM are represented by 

their equivalent current sheets. The calculation of magnetic field and torque using 

Residue Theorem and Parseval’s Theorem has been explained in detail. The back-EMF 

and cogging torque calculation by proposed method has also been discussed. The 

application of proposed analytical method has been extended for the performance 

analysis of AFPM motors. The next chapter discusses the fabrication and operation of 

the SMPM motors developed for the validation of the proposed analytical method. 

Different configurations of the SMPM machine like radial flux and axial flux have been 

fabricated and their operational features have been highlighted. 


