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1. INTRODUCTION

Hanson and Mond [5] introduced two new classes of functions called
type | and type Il functions, which are not only sufficient but also are
necessary for optimality in primal and dual problems, respectively. Con-
sider the following nonlinear programming problem,

Min f(x),
subject to g(x) < 0;
f(x) and g(x) are type | objective and constraint functions, respectively,

with respect to n at x, [5], if there exists a vector function n(x), defined
for all x, x, € P = {x; g(x) < 0}, such that

f(x) = f(x0) = [Vf(xo)]tn(x,xo),
—8(x) = [Vg(xo)][n(x,xo).
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Reuda, Hanson [7] further extended type | functions to pseudo-type I
and quasi-type | functions and have obtained sufficient optimality criteria
for a nonlinear programming problem involving these functions.

Bector and Singh [1] introduced a new class of functions, called b-vex
functions. Optimality and duality results for these functions were proved
by Bector, Suneja, and Lalitha [3]. A further generalization was defined by
Bector, Suneja, and Gupta [2], called univex functions.

Let X be a nonempty open set in R”, f: X - R, n: X.X - R", ¢:
R—->R, and b: X X [0,1] - R,, b = b(x,u, ). If the function f is
differentiable then b does not depend on A [1, 2].

DeriniTiON 1.1. A differentiable function f is said to be univex at
X, € X with respect to n, ¢, and b if Vx € X we have

b(x, x0) d[ F(x) = f(x0)] = [Vf(x0)] n(x, xp).

DeriNiTION 1.2, A functional f: X — R is sublinear if F(x +y) <
F(x) + F(y) Vx,y € X and F(ax) = oF(x) Vx € X and every nonnega-
tive real number «.

Recently, Rueda, Hanson, and Singh [8] obtained optimality and duality
results for several mathematical programs by combining the concepts of
type | and univex functions.

In this article, we consider a multiple objective nonlinear programming
problem and we obtain optimality and duality results by combining the
concepts of type I, type Il, pseudo-type I, quasi-type I, quasi-pseudo-type I,
pseudo-quasi-type I, strictly pseudo-quasi-type I, and univex functions.

2. OPTIMALITY CRITERIA

Throughout this article we consider the following multiple-objective
primal problem,

(VP) Min f(x) = (fi(x), fo(x).....f,(x)), xEXCR",
subject to g(x) < 0,

when f: X — R” and g: X — R™ are differentiable functions on a set
X < R”" and minimization means obtaining efficient solution of (\V/P).

Let P:={x: x € X, g(x) < 0}. For a feasible point x* € P, we denote
by I(x*) the set,

I(x*) = {i: g;(x*) = 0}.
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A feasible solution x* for (VP) is efficient for (VP) if and only if there is
no other feasible x for (VP) such that, for some i € {1,2,..., p},

fi(x) <fi(x),
fi(x) fi(x*),  Vj#i

An efficient solution x* for (VP) is properly efficient for (VP) if there
exists a scalar M > 0 such that, for each i,

fi(x*) —fi(x)
fi(x) = f;(x*)

for some j such that f;(x) > f,(x*) whenever x is feasible for (VP) and
fi(x) < fi(x™).
Let x,y € R". By x <y,wemean x; <y, Vi; by x <y, we mean x; <y,
Viand x; <y, for at least one j, 1 <j < n; by x <y, we mean x; <y, Vi.
In this section, we obtain sufficient optimality conditions for a feasible
solution x* to be efficient or properly efficient for (VP) in the form of the
following theorems.

=M,

THEOREM 2.1.  Let x* be (VP)-feasible. Suppose that there exist v, ¢, b,
and ¢y, by, Ay >20,i=21,2,...,p, X A =1 uf >0,i €[ such that

P P
bo(x,x*)qbo[._z NF(x) = XA

ALV (e, ), (2.1)

M~

>
i=1

_bl(xlX*)d)l[ Z ,u,j"gi(x*)}; Z M?‘[Vgi(X*)]n(x,x*),

iel(x*) iel(x*)

V (VP)-feasiblex (2.2)

and
P
LA V() + X pi Vgi(x*) = 0. (2.3)
i=1 iel(x*)
Further suppose
a0 = gyla) =0, (2.4)
¢.(a) =0 = a>0, (2.5)
bo(x,x*) >0, by(x,x*) =0, (2.6)

for all feasible x. Then x* is an efficient solution for (VP).
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Proof. Suppose that x* is not an efficient solution for (VP). Then,
there exists a feasible x for (VP) and an index j such that

fi(x) <f;(x%),
fi(x) fi(x*), Vi#].

These two inequalities lead to
p P
0= XX fi(x) — X AFf(x*).
i=1 i=1
From (2.4) and (2.5) it follows that
p p
bo(x, x*) | X Affi(x) = L Affi(x*)| < 0.
i=1 i=1

Therefore, by (2.1), we have

ié)\’}‘[Vfi(x*)]Tn(x, x*) < 0. (2.7)
Then, by (2.3), we have
'E%)MT[Vg,-(x*)]Tn(x,x*) > 0. (2.8)
From (2.2) and (2.8), we obtain
bl<x,x*)@[,eg*)@giu*)] <o (29)

By (2.5), (2.6), and (2.9) it follows that

Z wigi(x*) >0,

iel(x*)

which is a contradiction to the (VP) feasibility of x*, because uf > 0,
i € I. Therefore, x* is an efficient solution for (VP). |

THEOREM 2.2. Let x* be (VP)-feasible. Suppose that there exist X¥ > 0,
i=12,...,p, uf 20,i€l(x*), n, by, by, ¢y, and ¢, such that

X [VE(x9)] ' m(x, x*) 2 0

M~

i=1

P P
= bo(x,x*)o| X ATfi(x) — L ATfi(x*)[ 20, (2.10)
i=1 i=1
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and
—bl(x,x*)cm[ x M:-kgi(x*>}§o
iel(x*)
= X s [Va(x)] m(x,x*) <0, (2.11)
iel(x*)

for all (VP)-feasible x, and (2.3) of Theorem 2.1 hold. Further, suppose
az0 = ¢(a) =0, (2.12)
¢o(a) 20 = az=0, (2.13)
by(x,x*) >0, bo(x,x*) = 0, (2.14)

V feasible x. Then x* is a properly efficient solution for (VP).

Proof. Because g,(x*) =0, uf = 0,i € I(x*), L, ), mig(x*) =0,
and b, (x, x*) = 0 and (2.12) and (2.11), we have
Z,E,(X*)M, [Vg,(x*)] (x, x*) < 0, which on using (2.3) and (2.10) yields

0(x X)) F X fi(x) — Zf’zl)\’,“f,(x) > 0. By (2.13) and (2.14), we get

AT f(x) = X XF fi(x*). Therefore, by Theorem 1 of Geoffrion [4], x*
is a properly efficient solution for (VP). 1

THEOREM 2.3. Let x* be (VP)-feasible. Suppose that there exist X¥ > 0,
i=12,...,p, L X =1 u* >0,i €I(x*), m, by, by, ¢y, and ¢, such
that

;1 [Vf(x*)] n(x,x*) =0
= bo(x,X*)dJo[Z/\?fi(x)— LA fi(x*)[ >0, (2.15)
i=1 i=1
or equivalently,
bo(x,x*)qbo[‘_z Xf(x) - T Affi(x*)} <0
P
= _Z #[Vf(x*)] n(x, x*) < 0. (2.16)
and
_bl(x'x*)(nbl[ Z P«;kgi(X*)}éo
iel(x*)
= X w[Va(x)] m(x x*) 20, (2.17)

iel(x*)
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for all (VP)-feasible x, and (2.8) of Theorem 2.1 hold. Further, suppose,

a<0 = ¢y(a) =0, (2.18)
620 = ya)20, (2.19)
bo(x,x*) >0, by(x,x*) = 0. (2.20)

Then, x* is an efficient solution for (VP).

Proof. Suppose that x* is not efficient for (VP). Then, there exist a
feasible x for (VP) such that 7, A¥f,(x) — X/, AFf,(x*) < 0, which on
using (2.18), (2.20), and (2.16) yields,

p
¥ X [VE(x)] n(x, x%) <. (2.21)
i=1
Because X, ¢ ;,+ i &(x*) = 0, by (2.20), (2.19), and (2.17), we have
Y [Ve(x*)] n(x, x*) < 0. (2.22)
i€ I(x*)
Now, on adding (2.21) and (2.22), we obtain a contradiction to (2.3). Hence,

x* is an efficient solution for (VP). |

Remark 2.1. Proceeding along similar lines as in Theorem 2.2, it can be
easily seen that x* becomes properly efficient for (VP) in the preceding
theoremif A, > 0,Vi=1,2,...,p.

THEOREM 2.4. Let x* be (VP)-feasible. Suppose that there exist, X¥ > 0,
i=12,...,p, P X =1, u¥ >0,i€l(x*), by, by, ¢y, ¢d,, and m such
that (2.3) of Theorem 2.1 holds, and if I(x*) # ¢ and

P p
bo(x, x*) dbo| 1 Affi(x) — L Afi(x*)| <0
i=1 i=1

XE[VE(x*)] " n(x, x*) <0, (2.23)

|
M~

1

i
and

Y e[ Vei(x*)] m(x, x*) 20

iel(x*)

= —bl(x,X*)‘Jbl[ P wigi(x*)

iel(x*)

>0, (2.24)




MULTIPLE-OBJECTIVE OPTIMIZATION 137

for all feasible x. Further suppose,

a<0 = ¢a) =0, (2.25)
¢(a) <0 = a>0, (2.26)
bo(x,x*) >0,  by(x,x*)=0. (2.27)

Then x* is an efficient solution for (VP).
Proof. The proof is similar to the proof of Theorem 2.3 |

Remark 2.2. Proceeding along similar lines as in Theorem 2.2, it can be
easily seen that x* becomes properly efficient for (VP) in the previous
theorem if A >0,Vi=1,2,...,p

3. DUALITY
In this section we consider the Mond-Weir type dual and generalize
duality results of Rueda, Hanson, and Singh [8] as well as Kaul, Suneja,
and Srivastavva [6] under weaker univexity assumptions.

Consider the following Mond-Weir type dual of (VP),

(VD) Max f(u),

subject to Z X VE(u) + Z Vg (u) = (3.1)
i=1
Z wg;(u) =0, (3.2)
Mjgo, i=1.2,....m, (3.3)
A =0, i=12,...,p,

i A =1, (3.4)

i=1

where e = (1,1,...,1) € R”.

Assuming (f;, g) to type I, semistrictly type | pseudo-quasi-type | etc. for
the same 7, Kaul, Suneja, and Srivastava [6] established various duality
results for (VP) and (VD). We shall generalize various duality results for
(VP) and (VD) by combining univex and type | and its generalizations,
these generalizing results of Rueda, Hanson, and Singh [8] and as a
byproduct the results of Kaul, Suneja, and Srivastava [6].
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THEOREM 3.1 (Weak Duality). Let x be feasible for (VP) and let the
triplet (u, A, ) be feasible for (VD). Let fori = 1,2,...,p, A; >0, w =0,
i=L12,...,m, m, by, by, ¢y, ¢, such that

bo(x, 1) o [2 (x) - Zmu)}g LAV @] n(xw), (39

and
P
—by(x,u)d, leng, ”)} Z M,[ng(”)] n(x,u), (3.6)
= j=1
at u over P;
Further suppose,
a0 = ¢y(a) =0, (3.7)
¢(a) =0 = a>0, (3.8)
bo(x,u) >0, by(x,u) = 0. (3.9)

Then f(x) & f(w).
Proof. The proof is similar to the proof of Theorem 2.1 |

THEOREM 3.2 (Weak Duality). Let x be feasible for (VP) and let the
triplet (u, A, w) be feasible for (VD). Let either (a) or (b) Hold:

@ fori=212,...,p, ;>0,andj=12,...,m, w; = 0 and there
exist m, by, by, ¢q, and ¢, such that

Mn

M[VA@)] n(x,u) = 0

i=1

P P
= by(x, ”)¢o[ LAfi(x) - X )\ifi(u)} >0, (3.10)
i=1 i=1
(or equivalently,

<0

bo<x,u>¢o[zA (x) - zmu)

i=1

= Y A[VA(w)] n(x,u)<0),

i=1
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and
—by(x,u) ¢, Z M8 ”)l <0
= ¥ [ Vg(w)] n(xu) <0, (3.11)
j=1
at u over p;
Further, suppose
a<0 = ¢y(a) <0, (3.12)
420 = $(a)20, (3.3)
bo(x,u) >0, bi(x,u) = 0. (3.14)

(b) fori=12,..., p,A>0,andj=1,2,..., m, w; 2 0, and there
exist m, by, by, ¢q, and ¢, such that

bo(x,u) b, ; Afi(x) — 'gAifi(u) <0

= ; [Vf(u)] n(x,u) 20, (3.15)

and

i [Vgl u)] n(x,u) =0

= —b(x,u)d, >0, (3.16)

Z g (u)

(or equivalently,

—by(x,u)d;

i K;8; u)l <0

= i [Vg, u)] n(x,u)<0),

j=1

at u over P.
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Further suppose,
450 = o(a) 50, (3.07)
420 = ¢a)20, (3.18)
bo(x,u) =0, by(x,u) = 0. (3.19)

Then f(x) & f(w).

Proof. (a) If possible, let f(x) < f(u). Then, there exists an index i,
such that

filx) <fi(w),
fi(x) sfi(w),  Vi#i,

Because A, > 0,i=1,2,..., p, the foregoing inequalities yield

/\f(x) < Z)\f(u)

W M@

On using (3.12) and (3.14), from the earlier strict inequality, we have

< 0.

P p
bo(x!”)d’o[._z Afi(x) — ; A fi(u)

Using (3.10) from the previous strict inequality, we have
P
Y A[Vf(u)] m(x,u) <0, VxeP. (3.20)
i=1

Using (3.2), (3.13), and (3.14), we obtain

—by(x,u)d,

i 1;8; M)} <0

Now, by using (3.11), the foregoing inequality yields
flﬂ,-[Vg,(u)]Tn(x,u) <o, (3.21)
i=

On adding (3.20) and (3.21), we obtain

V] (0 + ZM,[Vg,(M)] n(x,u) <0,

i=1

which contradicts (3.1). Hence,

f(x) £ f(u).
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(b) If possible, let f(x) < f(u). Then, there exists an index i, such
that

fix) <fi(u),
fi(x) sfi(w),  Vi#i,

Now A; > 0, and X/ ,A; = 1, therefore, from the preceding inequalities,
we get

P P
> Afi(x) < ) A fi(u),
i=1 i=1

; Afi(x) = X A fi(u) 0.

i=1

Then by (3.17), (3.19), and the previous inequality, we have
P P

bo(x, u)¢o[ > Afi(x) — )y /\ifi(u)} <0
i=1 i=1

Using (3.15), the foregoing inequality yields

Mw

1 A[VE@)] n(x,u) < 0. (3.22)

i

Again, from (3.2), (3.18), and (3.19), we obtain

—bi(x,u)¢d,

i ;8 M)} <0
Using (3.16), we get

’le: [Vg] u)] n(x,u) <0. (3.23)
Now, on adding (3.22) and (3.23), we obtain,

; LA n(x, u) + Elu,[Vg,(u)] n(x,u) <0,

which contradicts (3.1). Hence,

f(x) £ f(u).
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THEOREM 3.3 (Strong Duality). If x* is a properly efficient solution for
(VP) at which a constraint qualification is satisfied, then there exists (X*, u*)
e R? X R™ such that (x*, X*, u*) is (VD)-feasible and the values of the
objective functions for (VP) and (VD) are equal at x* and (x*, X*, u*),
respectively. Furthermore, if for all (VP)-feasible x and (VD )-feasible (u, A, )
the hypotheses of Theorem 3.2(a) are satisfied, then (x*, X*, u*) is properly
efficient for (VD).

Proof. Because a constraint qualification is satisfied at x* then there
exist scalars A} 20, i=1,2,...,p, X Af =1, uf 20, j=1,2,....m
such that

p m
YN Vi(x*) + Lk Vg(x¥) =0, (3.24)
i=1 j=1
wig;(x*) = 0. (3.25)
j=1

Therefore (x*, A*, u*) is feasible for (VD).
Now, the proper efficiency of (x*, A*, u*) follows as in Theorem 4 of
Weir [9] by using part (a) of the weak duality Theorem 3.2. |

THEOREM 3.4. Let x* be an efficient solution for (VP) at which the
Kuhn—Tucker constraint (u, A, w) of (VD), (XF_ A, fi, Z}’;lngj) satisfies
strict inequalities (3.10) and (3.11) at u over P, then there exists (X*, u*) €
R? X R™ such that (x*, \*¥, u*) is efficient for (VD) and the objective
function values of (VP) and (VD) are equal.

Proof.  Because the Kuhn—Tucker constraint qualification is satisfied at
x* then there exist scalars A¥ > 0,i=1,2,...,p and u* >0, i € I(x*),
such that (3.24) and (3.25) hold. The scalars A¥ > 0 may be normalized
according to L2, A¥ = 1. Setting u¥ =0, i & I(x*), then gives that the
triplet (x*, X*, u*) is not efficient, then there exist a feasible (u, A, u) for
(VD) and an index i, such that

fil x*) <fi(u),
fi(x) = fi(u), Vi # ig.

On using (3.25), we obtain a contradiction to part (b) of the weak duality
Theorem 3.2 for feasible solutions x* for (VP) and (u, A, w) for (VD).
Hence, (x*, X*, u*) is efficient for (VD). |

THEOREM 3.5. Suppose that there exists a feasible x* for (VP) and
(x*, X*, u*) for (VD) such that

f(x*) =fi(u*),  Vi=1,2,...,p. (3.26)
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If X¥>0, fori=1,2,...,p and (TF_ Xif,, " 1;ngj) satisfy (3.10) and

j=

(3.11) at u* over P, then x* is properly efficient for (VP). Also if for each
feasible (u, A, ) of (VD), (XE_,Aff;, ZI 1 wig;) satisfy (3.10) and (3.11) at
u over P and suppose (3.12)—-(3.14) hold, then (x*, \*, u*) is properly
efficient for (VD).

Proof. The proof of this theorem is similar to that of Theorem 4.5 of
Kaul, Suneja, and Srivastava [6]. [

4. VECTOR LAGRANGIAN AND SADDLE POINT ANALYSIS

In this section we give as a consequence of Theorem 2.1, a Lagrange
multipliers theorem and consider saddle point of the vector Lagrangian
function.

THEOREM 4.1.  If Theorem 2.1 holds, then equivalent multiobjective pro-
gramming problem (EVP) for (VP) is given by

(EVP)  V-Minimize ( fi(x) + un'g(x),.... f,(x) + n'g(x))
subject to p;g;(x*) =0, ji=12,...,m,
,ujZO, j=1,2,...,m.

Proof. Let x* be an efficient solution of (VP), from the (KT) optimal-
ity conditions, we have

P m
Y AV(xF) + X m; Vg (x*) =0, (4.1)
i=1 j=1
and
wig(x*) =0, j=12,...,m. (4.2)
Using (4.2) in (4.1), we get
p m
L A[VA(*) + wg(x*)] + X pyVeg(x*) = 0. (4.3)
i=1 j=1

If (x*, A*, u*) is not properly efficient for (VD), then there exists a
feasible (u, A, w) of (VD) and an index i such that

fitu) = fi(u*) > M(f(w*) = fi(u)),
VM > 0 and Vj such that
fi(w®) > fi(u),
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whenever
fiw*) < fi(u).
On using (3.26), we get
fiw) = £.(x*) > M(f,(x*) = f(u)),
VM > 0 and Vj such that
[i(x*) > fi(u),
whenever

fi(x®) <fi(u).

Now

M~

A [fi(x*) = fi(w)] <0,

i=1

which contradicts the weak duality for feasible solutions x* of (VP) and
feasible solution (u, A, w) of (VD) by Theorem 3.2(a). Thus, (x*, A*, u*) is
properly efficient for (VD). Now, applying the arguments of Theorem 2.1
by replacing f, by f.() + u’G(-) yields the result. |

We now introduce the vector valued Lagrangian function and we study
its saddle point. Theorem 4.1 suggests the vector valued Lagrangian
function L(x, n) as L: X X R7” — R? given by

L(x,p) = (Ly(x, 1), Lo(x, 1), Ly(x, ),
where
Li(x,p) =fi(x) + u'g(x), i=12,...,p.

DeriniTioN 4.1, A point (x*, u*) € X X R} is said to be a vector
saddle point of the vector valued Lagrangian function L(x, w) if it satisfies
the following conditions,

L(x*, p) # L(x*, u*),  VueRY (4.4)
L(x*, u*) # L(x, u*), Vx € X. (4.5)

THEOREM 4.2. If (x*, u*) is a vector saddle point of L(x, w), then x* is
a properly efficient solution of (VP).
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Proof. Because (x*, u*) is a vector saddle point of L(x, w), therefore,
(4.4) implies that L,(x*, u) < L(x*, u*) for at least one i = 1,2,..., p,
Yu € R,

= fi(x*) + g (x*) < fi(x*) + ptg(x*),
for at least one i and Vu € RY,

= (p-p*)g(x*) 20, VupeRL (4.6)
Forany j=1,2,...,m, set

=t fork=1,2,....j—1,j+1,....m,

M= Hjya-
From which it follows that
g;i(x*) 0.
Repeating this process for j = 1,2,..., m, we have
g(x*) < 0.
Hence, x* is feasible for (VP). Again, because u* € R” and g(x*) <0,

we have u*’g(x*) < 0. But from (4.6), we have by setting w = 0, that
w g(x*) = 0. Thus, w*’g(x*) < 0 and u*’g(x*) = 0 yield

wTg(x*) = 0. (4.7)

Now, we assume that x* is not an efficient solution of the problem (VP).
Therefore, there exists feasible x with g(x) < 0, such that

fi(x) = fi(x*), Vi=1,2,...,p,
and

fi(x) <fi(x*), foratleastonei, €{1,2,...,p}.
These along with (4.2) and (4.7) yield

filx) + wg(x) < fi(x*) + p*Tg(x*),
Vi=1,2,...,pand Vx € X,
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and

filx) + wg(x) <fi(x*) + pg(x*)

for at least one i, € {1,2,..., p} and Vx € X.
That is

L(x,pw*) < L;(x*, u*), Vi=1,2,...,pand Vx € X,
Li(x, %) <L (x*, u*),
for at least one i, € {1,2,..., p} and Vx € X.
which is a contradiction to (4.5). Hence, x* is an efficient solution of (VP).
We now suppose that x* is not a properly efficient solution of (VP).

Therefore, there exists a feasible point x for (VP) and an index i, such
that for every positive function M > 0, we have

fi(x) = fi(x*) > M(f;(x*) = f;(x)),
for all j satisfying
fi(x) > £,(x%),
wherever
filx) <fi(x*).
This along with (4.2) and (4.7) yields

filx) + w*Tg(x) <fi(x*) + p*g(x*),
Vi=12,...,pand x € X,

ie., L(x, u*) < L(x*, u*), which is a contradiction to (4.5). Hence, x* is
a properly efficient solution of (VP).
Similarly by assuming (4.5) we can get a contradiction to (4.4). 1

THEOREM 4.3. Let x* be a properly efficient solution of (VP) and let an
x* slater type constraint qualification be satisfied. If (LI, A f;, XLy p;g))
satisfy (2.1) and (2.2) and (2.4)—(2.6) hold, then there exists u* € R such
that (x*, u*) is a vector saddle point of L(x, w).

*

Proof. Because x* is a properly efficient solution of (\VP), therefore,
x* is also an efficient solution of (VP) and because at x*, slater type
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constraint qualification is satisfied, therefore, by (KT) conditions, there
exist A > 0, A € R?, u* € RY, such that the following hold

P m
Y AVA(xF) + 2wk Ve (x*) =0, (4.8)
i=1 j=1
,u;?‘gj(x*) =0, j=12,...,m. (4.9)

Now for all i = 1,2,..., p, Vx € X, we have
Li(x, @) = Li(x*, p*) = fi(x) = fi(x*) + w*"[g(x) — g(x*)]

Z :U«*T ng(X*)}

i=1

—n(x, x*)"

\%

\%

0, (by (2.2)).
Because A, € R?, A > 0, therefore,

L(x*, u*) # Li(x, u*), Vx € X.
The other part,

Li(x* w) 2 Li(x, u*), VxeRT,

of the vector saddle point inequality follows from

L(x*, p) = L(x*, 1) = (- w) g(x*) < 0.

Hence (x*, u*) is a vector saddle point of L(x, u). |

Remark 4.1. Theorem 4.3 can be established under weaker assump-
tions used in previous sections.
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