Multiobjective Control Problem with V-Invexity

S. K. Mishra and R. N. Mukherjee

Department of Applied Mathematics, Institute of Technology, Banaras Hindu University,

Varanasi 221005. India

Submitted by Koichi Mizukami

Received August 21, 1997

A multiobjective control problem is considered. Duality results are obtained for Mond–Weir-type duals under V-invexity assumptions and their generalizations. © 1999 Academic Press

1. INTRODUCTION

A number of duality theorems for the single-objective control problem have appeared in the literature; see [4–6, 9, 10]. In general, these references give conditions under which an extremal solution of the control problem yields a solution of the corresponding dual. Mond and Hanson [7] established the converse duality theorem which gives conditions under which a solution of the dual problem yields a solution of the control problem. Mond and Smart [8] extended the results of Mond and Hanson [7] for duality in control problems to invex functions. It is also shown in Mond and Smart [8] that, for invex functions, the necessary conditions for optimality in the control problem are also sufficient.

Recently, Bhatia and Kumar [1] extended the work of Mond and Hanson [7] to the content of multiobjective control problems and established duality results for Wolfe as well as Mond–Weir-type duals under ρ -invexity assumptions and their generalizations.

In this section we will obtain duality results for multiobjective control problems under V-invexity assumptions and their generalizations. The results of the present section extend the work of Bhatia and Kumar [1] to a wider class of functions

2. NOTATION AND PRELIMINARIES

The control problem is to choose, under given conditions, a control vector u(t), such that the state vector x(t) is brought from some specified initial state $x(a) = \alpha$ to some specified final state $x(b) = \beta$ in such a way as to minimize a given functional. A more precise mathematical formulation is given in the following problem:

(VCP) Minimize
$$\left(\int_a^b f_1(t, x, u) dt \cdots \int_a^b f_p(t, x, u) dt \right)$$

subject to

$$x(a) = \alpha, \qquad x(b) = \beta,$$
 (1)

$$g(t, x, u) \le 0, \qquad t \in I, \tag{2}$$

$$h(t, x, u) = x^0, \qquad t \in I. \tag{3}$$

Here R^n denotes an n-dimensional euclidean space and I = [a, b] is a real interval. Each f_i : $1 \times R^n \times R^m \to R$ for i = 1, 2, ..., p, g: $I \times R^n \times R^m \to R^k$, and h: $I \times R^n \times R^m \to R^q$ is a continuously differentiable function.

Let $x: I \to R^n$ be differentiable with its derivative x^0 , and let $y: I \to R^m$ be a smooth function. Denote the partial derivatives of f by f_t , f_x , and f_y , where

$$f_t = \frac{\partial f}{\partial t}, \quad f_x = \left[\frac{\partial f}{\partial x^1}, \frac{\partial f}{\partial x^2}, \dots, \frac{\partial f}{\partial x^n}\right], \quad f_u = \left[\frac{\partial f}{\partial u^1}, \frac{\partial f}{\partial f^2}, \dots, \frac{\partial f}{\partial u^n}\right],$$

where the superscripts denote the vector components.

Similarly, we have g_t, g_x, g_u and h_t, h_x, h_u . X is the space of continuously differentiable state functions x: $I \to R^n$ such that $x(a) = \alpha$ and $x(b) = \beta$ and is equipped with the norm $\|x\| = \|x\|_{\infty} + \|Dx\|_{\infty}$; and Y is the space of piecewise continuous control functions u: $I \to R^m$, and has the uniform norm $\|\cdot\|_{\infty}$. The differential equation (3) with initial conditions expressed as $x(t) = x(a) + \int_a^b h(s, x(s), u(s)) \, ds, \, t \in I$ may be written as $H_x = H(x, y)$, where H: $X \times Y \to C(I, R^n)$, $C(I, R^n)$ being the space of continuous functions from I to R^n defined as H(x, y) = h(t, x(t), u(t)). A Mond-Weir-type dual for (VCP) is proposed and duality relationships are established under generalized V-invexity assumptions:

The Mond-Weir-type vector control dual:

(MVCD)

Maximize
$$\left(\int_a^b f_1(t, y, v) dt \cdots \int_a^b f_p(t, y, v) dt \right)$$

subject to

$$x(a) = \alpha, \qquad x(b) = \beta, \tag{4}$$

$$\sum_{f=1}^{p} \tau_{i} f_{iy}(t, y, v) + \sum_{j=1}^{k} \lambda_{j}(t) g_{jy}(t, y, v)$$

$$+\sum_{r=1}^{q} \mu_r(t) h_{ry}(t, y, v) + u^0(t) = 0, \qquad t \in I,$$
 (5)

$$\sum_{i=1}^{p} \tau_i f_{iv}(t, y, v) + \sum_{j=1}^{k} \lambda_j(t) g_{jv}(t, y, v)$$

$$+\sum_{r=1}^{q} \mu_r(t) h_{rv}(t, y, v) = 0, \qquad t \in I,$$
 (6)

$$\int_{a}^{b} \sum_{r=1}^{q} \mu_{r}(t) \left[h(t, y, v) - x^{0}(t) \right] dt \ge 0, \qquad t \in I, \tag{7}$$

$$\int_{a}^{b} \sum_{j=1}^{k} \lambda_{j}(t) g_{j}(t, y, v) dt \ge 0, \qquad t \in I,$$
(8)

$$\lambda(t) \ge 0, \qquad t \in I, \tag{9}$$

$$\tau_i \ge 0, \qquad i = 1, 2, \dots, p, \qquad \sum_{i=1}^p \tau_i = 1.$$
(10)

Optimization in (VCP) and (MVCD) means obtaining efficient solutions for the corresponding programs.

Let $F_i = \int_a^{\bar{b}} f_i(t, x, u) dt$ be Frechet differentiable. Let there exist functions $\eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \in R^p$ with $\eta = 0$ at t if $x(t) = \bar{x}(t)$, and $\xi(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \in R^m$.

DEFINITION 1. A vector function $F = (F_1, \dots, F_p)$ is said to be V-invex in X, X', and u on [a, b] with respect to η , ξ , and α_i if there exist differentiable vector functions $\eta \in R^p$ and ξ in R^m and $\alpha_i \in R_+ \setminus \{0\}$ such

that, for each $x, \bar{x} \in X_0$ and $u, \bar{u} \in Y$ and for i = 1, 2, ..., p,

$$F_{i}(x) - F_{i}(\bar{x}) \supseteq \int_{a}^{b} \left\{ \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \right.$$

$$\times \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u})$$

$$+ \frac{d}{dt} \eta_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u})$$

$$\times f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u})$$

$$+ \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) h_{u}(t, \bar{x}, \bar{x}^{i}, \bar{u})$$

$$\times \xi(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \right\} dt.$$

DEFINITION 2. The vector function $F = (F_1, \ldots, F_p)$ is said to be V-pseudo-invex in x, x', and u on [a, b] with respect to η , ξ , and β if there exist η , ξ as above and $\beta_i(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \in R_+ \setminus \{0\}$ such that, for each $x, \bar{x} \in X$ and $u, u \in Y$ and for $i = 1, 2, \ldots, p$,

$$\int_{a}^{b} \sum_{i=1}^{p} \left\{ \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) + \frac{d}{dt} \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) + f_{u}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \right. \\
\left. \times \xi(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \right\} dt \ge 0$$

$$\Rightarrow \int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}(t, x, x', u) dt$$

$$\ge \int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}(t, \bar{x}, \bar{x}', \bar{u}) dt$$

or, equivalently,

$$\int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}(t, x, x', u) dt$$

$$< \int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}(t, \bar{x}, \bar{x}', \bar{u}) dt$$

$$\Rightarrow \int_{a}^{b} \sum_{i=1}^{p} \left\{ \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \right.$$

$$\left. + \frac{d}{dt} \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \right.$$

$$\left. + f_{u}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \xi(t, x, \bar{x}, x, \bar{x}', u, \bar{u}) \right\} dt < 0.$$

DEFINITION 3. The vector function $F = (F_1, \ldots, F_p)$ is said to be V-quasi-invex in x, x', and u on [a,b] with respect to η , ξ , and γ if there exist η , ξ as above and the vector $\gamma_i \in R_+ \setminus \{0\}$ such that, for each $x, \bar{x} \in X$, $u, \bar{u} \in Y$,

$$\begin{split} \int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{i}(t, x, x', u) \, dt \\ & \leq \int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{i}(t, \bar{x}, \bar{x}', \bar{u}) \, dt \\ & \Rightarrow \int_{a}^{b} \sum_{i=1}^{p} \left\{ \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \, dt \right. \\ & + \frac{d}{dt} \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \\ & + f_{u}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \xi(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \right\} dt \leq \mathbf{0}, \end{split}$$

or, equivalently,

$$\int_{a}^{b} \sum_{i=1}^{p} \left\{ \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) dt + \frac{d}{dt} \eta(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) + f_{u}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \xi(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \right\} dt > 0$$

$$\Rightarrow \int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{i}(t, x, x', u) dt$$

$$> \int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{i}(t, \bar{x}, \bar{x}', \bar{u}) dt.$$

Remark 1. V-invexity is defined here for functionals instead of functions, unlike the definition given in Section 1 of Chapter 1 in Mishra [6] as well as in Mukherjee and Mishra [9]. This has been done so that the V-invexity of a functional F is necessary and sufficient for its critical points to be global minima, which coincides with the original concept of a V-invex function being one for which critical points are also global minima (Craven and Glover [3]). We thus have the following characterization result.

LEMMA 1. $F(x) = \int_a^b f(t, x, x', u) dt$ is V-invex iff every critical point of F is a global minimum.

Note 1. (\bar{x}, \bar{u}) is a critical point of F if $f_x^i(t, x, x', u) = (d/dt)$, $f_{x'}^i(t, \bar{x}, \bar{x}', \bar{u})$ and $f_u^i(t, \bar{x}, \bar{x}', \bar{u}) = 0$ almost everywhere in [a, b]. If x(a) and x(b) are free, the transversality conditions $h_{x'}(t, \bar{x}, \bar{x}', \bar{u}) = 0$ at a and b are included.

Proof of Lemma 1. (\Rightarrow) Assume that there exist functions η , ξ , and α such that F is V-invex with respect to η , ξ , and α on [a, b].

Let (\bar{x}, \bar{u}) be a critical point of F. Then

$$F_{i}(x) - F_{i}(\bar{x}) \geq \int_{a}^{b} \left\{ \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) \right.$$

$$+ \frac{d}{dt} \eta_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u})$$

$$\times f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u})$$

$$+ \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{u}^{i}(t, \bar{x}, \bar{x}', \bar{u})$$

$$\times \xi_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) dt,$$

$$= \int_{a}^{b} \left\{ \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) + \eta_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \right.$$

$$+ \eta_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) \frac{d}{dt} f_{x'}^{i}(t, \bar{x}, \bar{x}', \bar{u})$$

$$+ \alpha_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{u}^{i}(t, \bar{x}, \bar{x}', \bar{u})$$

$$\times \xi_{i}(t, x, \bar{x}, x', \bar{x}', u, \bar{u}) f_{x'}^{i}(t, \bar{x}, \bar{x}', \bar{u}) u) \right\}$$

$$= 0 \qquad \text{(by integration by parts)} \qquad \forall i = 1, 2, ..., p$$

as (\bar{x}, \bar{u}) is a critical point of either fixed boundary conditions, which imply that $\eta = 0$ at a and b, or free boundary conditions, which imply conditions, which imply that $f_x^i = 0$ at a and b. Therefore, (\bar{x}, \bar{u}) is a global minimum of f.

Assume that every critical point is a global minimum. If (\bar{x}, \bar{u}) is a critical point, put $\eta = \xi = 0$. If (\bar{x}, \bar{u}) is not a critical point, then, if $f_x^i \neq (d/dt)f_{x'}^i$ at (\bar{x}, \bar{u}) , put

$$\eta_i = \frac{f^i(t,x,x',u) - f^i(t,\bar{x},\bar{x}',\bar{u})}{2\big[f^i_x - (d/dt)f^i_x\big]^T\big[f^i_x - (d/dt)f^i_{x'}\big]} \bigg[f^i_x - \bigg(\frac{d}{dt}\bigg)f^i_{x'}\bigg],$$

 $\alpha = 1$, or, if $f_x^i = (d/dt)f_{x'}^i$, put $\eta = 0$; and, if $h_u \neq 0$, put

$$\xi_{i} = \frac{f^{i}(t, x, x', u) - f^{i}(t, \bar{x}, \bar{x}', \bar{u})}{2f_{u}^{iT}f_{u}^{i}}f_{u}^{i}$$

and $\alpha_i = 1$, or, if $f_u^i = 0$, put $\xi = 0$. Then F is V-invex on a, b with respect to η , ξ , and α .

Chandra, Craven, and Husain [2] gave the Fritz-John necessary optimality conditions for the existence of an extremal solution for the single objective control problem (CP):

(CP)
$$\int_{a}^{b} f(t, x, u) dt$$

subject to

$$x=h\big(t,x,u\big),\qquad g\big(t,x,u\big)\leq 0.$$

Mond and Hanson [7] pointed out that if the primal solution for (VCP) is normal, then Fritz-John conditions reduce to Kuhn-Tucker conditions.

LEMMA 2 (Kuhn–Tucker Necessary Optimality Conditions). If $(\bar{x}, \bar{u}) \in X \times Y$ solves (VCP), if the Frechet derivative $[D - F_x^i(x^0, u^0)]$ is surjective, and if the optimal solutions (x^0, y^0) is normal, then there exist piecewise smooth $\tau^0 \colon I \to R^p$, $\lambda^0 \colon I \to R$, and $\mu \colon I \to R^k$, satisfying the following, for all $t \in [a, b]$:

$$\sum_{r=1}^{m} \mu_r^0 h_x^r(t, x^0, u^0) + \mu_r^0(t) = 0,$$
 (11)

$$\sum_{i=1}^{p} \tau_{i}^{0} f_{u}^{i}(t, x^{0}, u^{0}) + \sum_{j=1}^{k} \lambda_{j}^{0} g_{u}^{j}(t, x^{0}, u^{0}) + \sum_{r=1}^{m} \mu_{r}^{0} h_{u}^{r}(t, x^{0}, u^{0}) = 0, \quad (12)$$

$$\sum_{j=1}^{k} \lambda_{j}^{0} g(t, x^{0}, u^{0}) = 0,$$
 (13)

$$\tau^0 > 0, \qquad \lambda^0 \ge 0, \qquad \sum_{i=1}^p \tau_i^0 = 1.$$
(14)

We shall now prove that (VCP) and (MVCD) are a dual pair subject to generalized *V*-invexity conditions on the objective and constraint functions.

3. DUALITY THEOREMS

THEOREM 1 (Weak Duality). Assume that, for all feasible (x, u) for (VCP) and all feasible $(y, v, \tau, \lambda, \mu)$ for (MVCD), if

(i)
$$\left(\int_a^b \tau_1 f_1(\cdot,\cdot,\cdot) dt, \dots, \int_a^b \tau_p f_p(\cdot,\cdot,\cdot) dt\right)$$

and

(ii)
$$\left(\int_a^b \lambda_1 g_1(\cdot,\cdot,\cdot) dt, \ldots, \int_a^b \lambda_m g_m(\cdot,\cdot,\cdot) dt\right)$$

are V-quasi-invex and

(iii)
$$\left(\int_a^b \mu_1(h_1(\cdot,\cdot,\cdot)-x)\,dt,\ldots,\int_a^b \mu_k(h_k(\cdot,\cdot,\cdot)-x)\,dt\right)$$

are strictly V-quasi-invex with respect to the same η , ξ , then the following cannot hold:

$$\int_{a}^{b} f_{i}(t, x, u) dt \le \int_{a}^{b} f_{i}(t, y, v) dt, \quad \forall i \in \{1, \dots, p\}$$
 (15)

and

$$\int_{a}^{b} f_{i_0}(t, x, u) dt < \int_{a}^{b} f_{i_0}(t, y, v) dt \quad \text{for some } i_0 \in \{1, 2, \dots, p\}.$$
 (16)

 ${\it Proof.}$ Suppose contrary to the result that (15) and (16) hold. Then (i) yields

$$\int_{a}^{b} \left\{ \sum \eta_{i}(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \tau_{i} f_{y}(t, y, y, v) + f_{v}^{i}(t, y, y', v) \xi_{i}(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \right\} dt < 0.$$
(17)

From the feasibility conditions,

$$\int_a^b \lambda_j g_j(t, x, x', u) dt \le \int_a^b \lambda_i g_j(t, x, x', u) dt$$

for each $j=1,2,\ldots,m$. Since $\beta_j(t,x,x',\bar{x},\bar{x}',u,\bar{u})\geq 0, \forall j=1,2,\ldots,m$, we have

$$\int_{a}^{b} \sum \beta_{j}(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \lambda_{j} g_{j}(t, x, x', u) dt$$

$$\leq \int_{a}^{b} \sum \beta_{j}(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \lambda_{j} g_{j}(t, x, x', u) dt.$$

Then (ii) yields

$$\int_{a}^{b} \sum \left\{ \eta_{j}(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \lambda_{j} g_{x}^{j}(t, x, x', u) + f_{u}^{j}(t, x, x', u) \xi_{j}(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \right\} dt \\
\leq 0.$$
(18)

Similarly, we have

$$\int_{a}^{b} \sum_{r=1}^{k} \mu_{r} [h_{r}(t, x, u) - x'] dt \le \int_{a}^{b} \sum_{r=1}^{k} \mu_{r} [h_{r}(t, y, v) - x] dt.$$

From (iii) it follows that

$$\int_{a}^{b} \sum \left\{ \eta(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \mu_{r} h_{y}(t, y, y', u) - \frac{d}{dt} \eta(t, \dots) \mu_{r} + \sum \mu_{r} h_{v}(t, y, y', v) \xi(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \right\} dt < 0.$$
(19)

By integrating $(d/dt)\eta(t, x, x', \bar{x}, \bar{x}', u, \bar{u})\mu$ from a to b by parts and applying the boundary conditions (1), we have

$$\int_{a}^{b} \frac{d}{dt} \eta(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \mu dt$$

$$= -\int_{a}^{b} \eta(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \mu^{0}(t) dt.$$
(20)

Using (20) in (19), we have

$$\int_{a}^{b} \left\{ \sum \eta(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \mu_{r} h_{y}(t, y, y', v) + \mu^{0}(t) + \sum \mu_{r} h_{v}(t, y, y', v) \xi(t, x, x', \bar{x}, \bar{x}', u, \bar{u}) \right\} dt < 0.$$
(21)

Adding (17), (18), and (21), we have

$$\int_{a}^{b} \left\{ \eta \left[\sum_{i} \tau_{i} \left(f_{y}^{i}(t, y, y', v) + \sum_{i} \lambda_{j} g_{y}^{j}(t, y, y', v) + \sum_{r=1}^{k} \mu_{r} h_{y}^{r}(t, y, y', v) \right] \right. \\
\left. + \xi \left[\sum_{i} \tau_{i} f_{v}^{i}(t, y, y', v) + \sum_{i} \lambda_{j} g_{v}^{j}(t, y, y', v) \right. \\
\left. + \sum_{r=1}^{k} \mu_{r} h_{v}^{T}(t, y, y', v) \right] \right\} dt < 0,$$

which is a contradiction to (5) and (6).

COROLLARY 1. Assume that weak duality (Theorem 1) holds between (VCP) and (MVCD). If (y, v) is feasible for (VCP) and $(y, v, \tau, \lambda, \mu)$ is feasible for (MVCD), than (y, v) is efficient for (VCP) and $(y, v, \tau, \lambda, \mu)$ is efficient for (MVCD).

Proof. Suppose (y, v) is not efficient for (VCP). Then there exists some feasible (x, u) for (VCP) such that

$$\int_{a}^{b} f_{i}(t, x, x', u) dt \leq \int_{a}^{b} f_{i}(t, y, y', v) dt, \quad \forall i \in \{1, 2, ..., p\}$$

and

$$\int_{a}^{b} f_{i_0}(t, x, x', u) dt < \int_{a}^{b} f_{i_0}(t, y, y', v) dt \quad \text{for some } i_0 \in \{1, 2, \dots, p\}.$$

This contradicts weak duality. Hence (y, v) is efficient for (VCP). Now suppose $(y, v, \tau, \lambda, \mu)$ is not efficient for (MVCD). Then there exist some $(x, u, \tau, \lambda, \mu)$ feasible for (MVCD) such that

$$\int_{a}^{b} f_{i}(t, x, x', u) dt \ge \int_{a}^{b} f_{i}(t, y, y', v) dt, \quad \forall i \in \{1, 2, ..., p\}$$

and

$$\int_{a}^{b} f_{i_0}(t, x, x', u) dt > \int_{a}^{b} f_{i_0}(t, y, y', v) dt \quad \text{for some } i_0 \in \{1, 2, \dots, p\}.$$

This contradicts weak duality. Hence $(y, v, \tau, \lambda, \mu)$ is efficient for (MVCD).

THEOREM 2 (Strong Duality). Let (\bar{x}, \bar{u}) be efficient for (VCP) and assume that (\bar{x}, \bar{u}) satisfy the constraint qualification of Lemma 2 for at least one $i \in \{1, 2, ..., p\}$. Then there exist $\bar{\tau} \in R^p$ and piecewise smooth $\bar{\lambda}$:

 $I \to R^m$ and $\overline{\mu}: I \to R^k$ such that $(\bar{x}, \bar{u}, \bar{\tau}, \bar{\lambda}, \bar{\mu})$ is feasible for (MVCD). If also weak duality (Theorem 1) holds between (VCP) and (MVCD), then $(\bar{x}, \bar{u}, \bar{\tau}, \bar{\lambda}, \bar{\mu})$ is efficient for (MVCD).

Proof. As (\bar{x}, \bar{u}) satisfy the constraint qualifications of Lemma 2, it follows that there exist piecewise smooth $\bar{\tau} \colon I \to R^p$, $\bar{\lambda} \colon I \to R^m$, $\bar{\mu} \colon I \to R^k$ satisfying for all $t \in I$ the following relations:

$$\begin{split} \sum_{i=1}^{p} \bar{\tau}_{i} f_{x}^{i}(t, \bar{x}, \bar{x}', \bar{u}) + \sum_{j=1}^{m} \bar{\lambda}_{j} g_{x}^{j}(t, \bar{x}, \bar{x}', \bar{u}) \\ + \sum_{r=1}^{k} \bar{\mu}_{r} h_{x}^{r}(t, \bar{x}, \bar{x}', \bar{u}) + \bar{\mu}(t) &= 0, \\ \sum_{j=1}^{p} \bar{\tau}_{i} f_{u}^{i}(t, \bar{x}, \bar{x}', \bar{u}) + \sum_{j=1}^{m} \bar{\lambda}_{j} g_{u}^{j}(t, \bar{x}, \bar{x}', \bar{u}) \\ + \sum_{r=1}^{k} \bar{\mu}_{r} h_{u}^{r}(t, \bar{x}, \bar{x}', \bar{u}) &= 0, \\ \sum_{j=1}^{m} \bar{\lambda}_{j}(t) g_{j}(t, \bar{x}, \bar{x}', \bar{u}) &= 0, \\ \bar{\lambda}(t) &\geq 0, \\ \bar{\tau}_{1} &\geq 0, \qquad \sum_{j=1}^{p} \bar{\tau}_{i} &= 1. \end{split}$$

The relations

$$\int_a^b \sum_{j=1}^m \lambda_j g_j(t, \bar{x}, \bar{x}', \bar{u}) dt = 0,$$

$$\int_{a}^{b} \sum_{r=1}^{k} \overline{\mu}_{r} \left[h_{r}(t, \bar{x}, \bar{x}', \bar{u}) - x \right] dt \ge 0$$

are obvious.

The preceding relations imply that $(\bar{x}, \bar{u}, \bar{\tau}, \bar{\lambda}, \bar{\mu})$ is feasible for (MVCD). The result now follows from Corollary 1.

REFERENCES

- D. Bhatta and P. Kumar, Multiobjective control problem with generalized invexity, J. Math. Anal. Appl. 189 (1995), 676–692.
- S. Chandra, B. D. Craven, and I. Husain, A class of non-differentiable control problems, J. Optim. Theory Appl. 56 (1988), 227–243.

- B. D. Craven and B. M. Glover, Invex functions and duality, J. Austral. Math. Soc. 24 (1985), 1–20.
- M. A. Hanson, Bounds for functional convex optimal control problems, J. Math. Anal. Appl. 8 (1964), 84–89.
- E. Kreindler, Reciprocal optimal control problems, J. Math. Anal. Appl. 14 (1966), 141–152.
- S. K. Mishra, "V-Invex Functions and Their Application to Multiobjective Programming," Ph.D. thesis. 1995.
- B. Mond and M. A. Hanson, Duality for control problems I, SIAM J. Control 6 (1968), 114–120.
- 8. B. Mond and I. Smart, Duality and sufficiency in control problems with invexity, *J. Math. Anal. Appl.* **136** (1988), 326–333.
- R. N. Mukherjee and S. K. Mishra, Sufficient optimality criteria and duality for multiobjective variational problems with V-invexity, Indian J. Pure Appl. Math. 25 (1994), 801–813.
- J. D. Pearson, Reciprocity and duality in control programming problems, *Ibid* 10 (1965), 383–408.
- R. J. Ringlee, Bounds for convex variational programming problems arising in power system scheduling and control, IEEE Trans. Automat. Control AC-10 (1965), 28-35.