M ultiobjective Control Problem with V-Invexity

S. K. M ishra and R. N. M ukherjee
Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi 221005, India

Submitted by Koichi Mizukami
R eceived A ugust 21, 1997

Abstract

A multiobjective control problem is considered. Duality results are obtained for Mond-Weir-type duals under V-invexity assumptions and their generalizations. (C) 1999 A cademic Press

1. INTRODUCTION

A number of duality theorems for the single-objective control problem have appeared in the literature; see [4-6, 9, 10]. In general, these references give conditions under which an extremal solution of the control problem yields a solution of the corresponding dual. M ond and H anson [7] established the converse duality theorem which gives conditions under which a solution of the dual problem yields a solution of the control problem. M ond and Smart [8] extended the results of M ond and H anson [7] for duality in control problems to invex functions. It is also shown in M ond and Smart [8] that, for invex functions, the necessary conditions for optimality in the control problem are also sufficient.

Recently, Bhatia and Kumar [1] extended the work of M ond and Hanson [7] to the content of multiobjective control problems and established duality results for Wolfe as well as M ond-W eir-type duals under ρ-invexity assumptions and their generalizations.

In this section we will obtain duality results for multiobjective control problems under V-invexity assumptions and their generalizations. The results of the present section extend the work of Bhatia and Kumar [1] to a wider class of functions.

2. NOTATION AND PRELIMINARIES

The control problem is to choose, under given conditions, a control vector $u(t)$, such that the state vector $x(t)$ is brought from some specified initial state $x(a)=\alpha$ to some specified final state $x(b)=\beta$ in such a way as to minimize a given functional. A more precise mathematical formulation is given in the following problem:
(VCP) M inimize $\left(\int_{a}^{b} f_{1}(t, x, u) d t \cdots \int_{a}^{b} f_{p}(t, x, u) d t\right)$
subject to

$$
\begin{align*}
& x(a)=\alpha, \quad x(b)=\beta, \tag{1}\\
& g(t, x, u) \leq 0, \quad t \in I, \tag{2}\\
& h(t, x, u)=x^{0}, \quad t \in I . \tag{3}
\end{align*}
$$

Here R^{n} denotes an n-dimensional euclidean space and $I=[a, b]$ is a real interval. E ach $f_{i}: 1 \times R^{n} \times R^{m} \rightarrow R$ for $i=1,2, \ldots, p, g: I \times R^{n} \times R^{m}$ $\rightarrow R^{k}$, and $h: I \times R^{n} \times R^{m} \rightarrow R^{q}$ is a continuously differentiable function.

Let $x: I \rightarrow R^{n}$ be differentiable with its derivative x^{0}, and let y : $I \rightarrow R^{m}$ be a smooth function. Denote the partial derivatives of f by f_{t}, f_{x}, and f_{y}, where

$$
f_{t}=\frac{\partial f}{\partial t}, \quad f_{x}=\left[\frac{\partial f}{\partial x^{1}}, \frac{\partial f}{\partial x^{2}}, \ldots, \frac{\partial f}{\partial x^{n}}\right], \quad f_{u}=\left[\frac{\partial f}{\partial u^{1}}, \frac{\partial f}{\partial f^{2}}, \ldots, \frac{\partial f}{\partial u^{n}}\right],
$$

where the superscripts denote the vector components.
Similarly, we have g_{t}, g_{x}, g_{u} and $h_{t}, h_{x}, h_{u} . X$ is the space of continuously differentiable state functions $x: I \rightarrow R^{n}$ such that $x(a)=\alpha$ and $x(b)=\beta$ and is equipped with the norm $\|x\|=\|x\|_{\infty}+\|D x\|_{\infty}$; and Y is the space of piecewise continuous control functions $u: I \rightarrow R^{m}$, and has the uniform norm $\|\cdot\|_{\infty}$. The differential equation (3) with initial conditions expressed as $x(t)=x(a)+\int_{a}^{b} h(s, x(s), u(s)) d s, t \in I$ may be written as $H_{x}=H(x, y)$, where $H: X \times Y \rightarrow C\left(I, R^{n}\right), C\left(I, R^{n}\right)$ being the space of continuous functions from I to R^{n} defined as $H(x, y)=h(t, x(t), u(t)$). A M ond-W eir-type dual for (VCP) is proposed and duality relationships are established under generalized V-invexity assumptions:

The M ond-W eir-type vector control dual:
(M VCD)

$$
\operatorname{Maximize}\left(\int_{a}^{b} f_{1}(t, y, v) d t \cdots \int_{a}^{b} f_{p}(t, y, v) d t\right)
$$

subject to

$$
\begin{align*}
& x(a)=\alpha, \quad x(b)=\beta, \tag{4}\\
& \sum_{f=1}^{p} \tau_{i} f_{i y}(t, y, v)+\sum_{j=1}^{k} \lambda_{j}(t) g_{j y}(t, y, v) \\
& +\sum_{r=1}^{q} \mu_{r}(t) h_{r y}(t, y, v)+u^{0}(t)=0, \quad t \in I, \tag{5}\\
& \sum_{i=1}^{p} \tau_{i} f_{i v}(t, y, v)+\sum_{j=1}^{k} \lambda_{j}(t) g_{j v}(t, y, v) \\
& \quad+\sum_{r=1}^{q} \mu_{r}(t) h_{r v}(t, y, v)=0, \quad t \in I, \tag{6}\\
& \int_{a}^{b} \sum_{r=1}^{q} \mu_{r}(t)\left[h(t, y, v)-x^{0}(t)\right] d t \geq 0, \quad t \in I, \tag{7}\\
& \int_{a}^{b} \sum_{j=1}^{k} \lambda_{j}(t) g_{j}(t, y, v) d t \geq 0, \quad t \in I, \tag{8}\\
& \lambda(t) \geq 0, \quad t \in I, \tag{9}\\
& \tau_{i} \geq 0, \quad i=1,2, \ldots, p, \quad \sum_{i=1}^{p} \tau_{i}=1 . \tag{10}
\end{align*}
$$

Optimization in (VCP) and (MVCD) means obtaining efficient solutions for the corresponding programs.

Let $F_{i}=\int_{a}^{b} f_{i}(t, x, u) d t$ be Frechet differentiable. Let there exist functions $\eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \in R^{p}$ with $\eta=0$ at t if $x(t)=\bar{x}(t)$, and $\xi\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \in R^{m}$.

Definition 1. A vector function $F=\left(F_{1}, \ldots, F_{p}\right)$ is said to be V-invex in X, X^{\prime}, and u on $[a, b]$ with respect to η, ξ, and α_{i} if there exist differentiable vector functions $\eta \in R^{p}$ and ξ in R^{m} and $\alpha_{i} \in R_{+} \backslash\{0\}$ such
that, for each $x, \bar{x} \in X_{0}$ and $u, \bar{u} \in Y$ and for $i=1,2, \ldots, p$,

$$
\begin{aligned}
F_{i}(x)-F_{i}(\bar{x}) \supseteq \int_{a}^{b}\{ & \alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& \times \eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \\
& +\frac{d}{d t} \eta_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \\
& \times f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& +\alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) h_{u}\left(t, \bar{x}, \bar{x}^{i}, \bar{u}\right) \\
& \left.\times \xi\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t .
\end{aligned}
$$

Definition 2. The vector function $F=\left(F_{1}, \ldots, F_{p}\right)$ is said to be V -pseudo-invex in x, x^{\prime}, and u on $[a, b]$ with respect to η, ξ, and β if there exist η, ξ as above and $\beta_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \in R_{+} \backslash\{0\}$ such that, for each $x, \bar{x} \in X$ and $u, u \in Y$ and for $i=1,2, \ldots, p$,

$$
\begin{aligned}
& \int_{a}^{b} \sum_{i=1}^{p}\left\{\eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)\right. \\
& +\frac{d}{d t} \eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)+f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& \left.\times \xi\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t \geq 0 \\
& \Rightarrow \quad \int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}\left(t, x, x^{\prime}, u\right) d t \\
& \geq \int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) d t
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
& \int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}\left(t, x, x^{\prime}, u\right) d t \\
& \quad<\int_{a}^{b} \sum_{i=1}^{p} \beta_{i}(t, x, \bar{x}, \bar{u}) f_{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \int_{a}^{b} \sum_{i=1}^{p}\{ & \eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& +\frac{d}{d t} \eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& \left.+f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \xi\left(t, x, \bar{x}, x, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t<0 .
\end{aligned}
$$

Definition 3. The vector function $F=\left(F_{1}, \ldots, F_{p}\right)$ is said to be V -quasi-invex in x, x^{\prime}, and u on $[a, b]$ with respect to η, ξ, and γ if there exist η, ξ as above and the vector $\gamma_{i} \in R_{+} \backslash\{0\}$ such that, for each $x, \bar{x} \in X$, $u, \bar{u} \in Y$,

$$
\begin{aligned}
& \int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{i}\left(t, x, x^{\prime}, u\right) d t \\
& \leq \int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) d t \\
& \Rightarrow \quad \int_{a}^{b} \sum_{i=1}^{p}\left\{\eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) d t\right. \\
& \quad+\frac{d}{d t} \eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& \left.\quad+f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \xi\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t \leq 0,
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
& \int_{a}^{b} \sum_{i=1}^{p}\left\{\eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) d t\right. \\
& \quad+\frac{d}{d t} \eta\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& \left.\quad+f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \xi\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t>0 \\
& \Rightarrow \quad \int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{i}\left(t, x, x^{\prime}, u\right) d t \\
& \quad>\int_{a}^{b} \sum_{i=1}^{p} \gamma_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) d t .
\end{aligned}
$$

Remark 1. V-invexity is defined here for functionals instead of functions, unlike the definition given in Section 1 of Chapter 1 in M ishra [6] as well as in Mukherjee and Mishra [9]. This has been done so that the V-invexity of a functional F is necessary and sufficient for its critical points to be global minima, which coincides with the original concept of a V-invex function being one for which critical points are also global minima (Craven and Glover [3]). We thus have the following characterization result.
Lemma 1. $\quad F(x)=\int_{a}^{b} f\left(t, x, x^{\prime}, u\right) d t$ is V-invex iff every critical point of F is a global minimum.
Note 1. ($\bar{x}, \bar{u})$ is a critical point of F if $f_{x}^{i}\left(t, x, x^{\prime}, u\right)=(d / d t)$, $f_{x^{\prime}}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)$ and $f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)=0$ almost everywhere in $[a, b]$. If $x(a)$ and $x(b)$ are free, the transversality conditions $h_{x^{\prime}}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)=0$ at a and b are included.

Proof of Lemma 1. (\Rightarrow) A ssume that there exist functions η, ξ, and α such that F is V-invex with respect to η, ξ, and α on $[a, b]$.

Let (\bar{x}, \bar{u}) be a critical point of F. Then

$$
\begin{aligned}
& F_{i}(x)-F_{i}(\bar{x}) \geq \int_{a}^{b}\left\{\alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)\right. \\
& +\frac{d}{d t} \eta_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \\
& \times f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& +\alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& \left.\times \xi_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t, \\
& =\int_{a}^{b}\left\{\alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)\right. \\
& +\eta_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \\
& \times \alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) \frac{d}{d t} f_{x^{\prime}}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& +\alpha_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
& \times \xi_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) d t \\
& \left.\left.+\eta_{i}\left(t, x, \bar{x}, x^{\prime}, \bar{x}^{\prime}, u, \bar{u}\right) f_{x^{\prime}}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) u\right)\right\} \\
& =0 \quad \text { (by integration by parts) } \quad \forall i=1,2, \ldots, p
\end{aligned}
$$

as (\bar{x}, \bar{u}) is a critical point of either fixed boundary conditions, which imply that $\eta=0$ at a and b, or free boundary conditions, which imply conditions, which imply that $f_{x}^{i}=0$ at a and b. Therefore, (\bar{x}, \bar{u}) is a global minimum of f.

Assume that every critical point is a global minimum. If (\bar{x}, \bar{u}) is a critical point, put $\eta=\xi=0$. If (\bar{x}, \bar{u}) is not a critical point, then, if $f_{x}^{i} \neq(d / d t) f_{x^{\prime}}^{i}$ at (\bar{x}, \bar{u}), put

$$
\eta_{i}=\frac{f^{i}\left(t, x, x^{\prime}, u\right)-f^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)}{2\left[f_{x}^{i}-(d / d t) f_{x}^{i}\right]^{T}\left[f_{x}^{i}-(d / d t) f_{x^{\prime}}^{i}\right]}\left[f_{x}^{i}-\left(\frac{d}{d t}\right) f_{x^{\prime}}^{i}\right],
$$

$\alpha=1$, or, if $f_{x}^{i}=(d / d t) f_{x^{\prime}}^{i}$, put $\eta=0$; and, if $h_{u} \neq 0$, put

$$
\xi_{i}=\frac{f^{i}\left(t, x, x^{\prime}, u\right)-f^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)}{2 f_{u}^{i T} f_{u}^{i}} f_{u}^{i}
$$

and $\alpha_{i}=1$, or, if $f_{u}^{i}=0$, put $\xi=0$. Then F is V-invex on a, b with respect to η, ξ, and α.
Chandra, Craven, and H usain [2] gave the F ritz-J ohn necessary optimality conditions for the existence of an extremal solution for the single objective control problem (CP):

$$
\begin{equation*}
\int_{a}^{b} f(t, x, u) d t \tag{CP}
\end{equation*}
$$

subject to

$$
x=h(t, x, u), \quad g(t, x, u) \leq 0 .
$$

M ond and Hanson [7] pointed out that if the primal solution for (VCP) is normal, then Fritz-J ohn conditions reduce to Kuhn-Tucker conditions.
Lemma 2 (Kuhn-Tucker Necessary Optimality Conditions). If (\bar{x}, \bar{u}) $\in X \times Y$ solves ($V C P$), if the Frechet derivative $\left[D-F_{x}^{i}\left(x^{0}, u^{0}\right)\right]$ is surjective, and if the optimal solutions $\left(x^{0}, y^{0}\right)$ is normal, then there exist piecewise smooth $\tau^{0}: I \rightarrow R^{p}, \lambda^{0}: I \rightarrow R$, and $\mu: I \rightarrow R^{k}$, satisfying the following, for all $t \in[a, b]:$

$$
\begin{gather*}
\sum_{r=1}^{m} \mu_{r}^{0} h_{x}^{r}\left(t, x^{0}, u^{0}\right)+\mu_{r}^{0}(t)=0 \tag{11}\\
\sum_{i=1}^{p} \tau_{i}^{0} f_{u}^{i}\left(t, x^{0}, u^{0}\right)+\sum_{j=1}^{k} \lambda_{j}^{0} g_{u}^{j}\left(t, x^{0}, u^{0}\right)+\sum_{r=1}^{m} \mu_{r}^{0} h_{u}^{r}\left(t, x^{0}, u^{0}\right)=0 \tag{12}\\
\sum_{j=1}^{k} \lambda_{j}^{0} g\left(t, x^{0}, u^{0}\right)=0 \tag{13}\\
\tau^{0}>0, \quad \lambda^{0} \geq 0, \quad \sum_{i=1}^{p} \tau_{i}^{0}=1 \tag{14}
\end{gather*}
$$

We shall now prove that (VCP) and (MVCD) are a dual pair subject to generalized V-invexity conditions on the objective and constraint functions.

3. DUALITY THEOREMS

Theorem 1 (Weak Duality). Assume that, for all feasible (x, u) for ($V C P$) and all feasible (y, v, τ, λ, μ) for ($M V C D$), if

$$
\begin{equation*}
\left(\int_{a}^{b} \tau_{1} f_{1}(\cdot, \cdot, \cdot) d t, \ldots, \int_{a}^{b} \tau_{p} f_{p}(\cdot, \cdot, \cdot) d t\right) \tag{i}
\end{equation*}
$$

and
(ii) $\quad\left(\int_{a}^{b} \lambda_{1} g_{1}(\cdot, \cdot, \cdot) d t, \ldots, \int_{a}^{b} \lambda_{m} g_{m}(\cdot, \cdot, \cdot) d t\right)$
are V-quasi-invex and
(iii)

$$
\left(\int_{a}^{b} \mu_{1}\left(h_{1}(\cdot, \cdot, \cdot)-x\right) d t, \ldots, \int_{a}^{b} \mu_{k}\left(h_{k}(\cdot, \cdot, \cdot)-x\right) d t\right)
$$

are strictly V-quasi-invex with respect to the same η, ξ, then the following cannot hold:

$$
\begin{equation*}
\int_{a}^{b} f_{i}(t, x, u) d t \leq \int_{a}^{b} f_{i}(t, y, v) d t, \quad \forall i \in\{1, \ldots, p\} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} f_{i_{0}}(t, x, u) d t<\int_{a}^{b} f_{i_{0}}(t, y, v) d t \quad \text { for some } i_{0} \in\{1,2, \ldots, p\} \tag{16}
\end{equation*}
$$

Proof. Suppose contrary to the result that (15) and (16) hold. Then (i) yields

$$
\begin{align*}
& \int_{a}^{b}\left\{\sum \eta_{i}\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \tau_{i} f_{y}(t, y, y, v)\right. \\
& \left.\quad+f_{v}^{i}\left(t, y, y^{\prime}, v\right) \xi_{i}\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t<0 \tag{17}
\end{align*}
$$

From the feasibility conditions,

$$
\int_{a}^{b} \lambda_{j} g_{j}\left(t, x, x^{\prime}, u\right) d t \leq \int_{a}^{b} \lambda_{i} g_{j}\left(t, x, x^{\prime}, u\right) d t
$$

for each $j=1,2, \ldots, m$. Since $\beta_{j}\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \geq 0, \forall j=1,2, \ldots, m$, we have

$$
\begin{aligned}
& \int_{a}^{b} \sum \beta_{j}\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \lambda_{j} g_{j}\left(t, x, x^{\prime}, u\right) d t \\
& \quad \leq \int_{a}^{b} \sum \beta_{j}\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \lambda_{j} g_{j}\left(t, x, x^{\prime}, u\right) d t
\end{aligned}
$$

Then (ii) yields

$$
\begin{align*}
\int_{a}^{b} \sum\{ & \eta_{j}\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \lambda_{j} g_{x}^{j}\left(t, x, x^{\prime}, u\right) \\
& \left.+f_{u}^{j}\left(t, x, x^{\prime}, u\right) \xi_{j}\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t \\
\leq & 0 \tag{18}
\end{align*}
$$

Similarly, we have

$$
\int_{a}^{b} \sum_{r=1}^{k} \mu_{r}\left[h_{r}(t, x, u)-x^{\prime}\right] d t \leq \int_{a}^{b} \sum_{r=1}^{k} \mu_{r}\left[h_{r}(t, y, v)-x\right] d t .
$$

From (iii) it follows that

$$
\begin{align*}
& \int_{a}^{b} \sum\left\{\eta\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \mu_{r} h_{y}\left(t, y, y^{\prime}, u\right)-\frac{d}{d t} \eta(t, \ldots) \mu_{r}\right. \\
& \left.+\sum \mu_{r} h_{v}\left(t, y, y^{\prime}, v\right) \xi\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t<0 . \tag{19}
\end{align*}
$$

By integrating $(d / d t) \eta\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \mu$ from a to b by parts and applying the boundary conditions (1), we have

$$
\begin{align*}
\int_{a}^{b} \frac{d}{d t} & \eta\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \mu d t \\
& =-\int_{a}^{b} \eta\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \mu^{0}(t) d t \tag{20}
\end{align*}
$$

U sing (20) in (19), we have

$$
\begin{align*}
& \int_{a}^{b}\left\{\sum \eta\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right) \mu_{r} h_{y}\left(t, y, y^{\prime}, v\right)+\mu^{0}(t)\right. \\
& \left.\quad+\sum \mu_{r} h_{v}\left(t, y, y^{\prime}, v\right) \xi\left(t, x, x^{\prime}, \bar{x}, \bar{x}^{\prime}, u, \bar{u}\right)\right\} d t<0 . \tag{21}
\end{align*}
$$

A dding (17), (18), and (21), we have

$$
\begin{aligned}
& \int_{a}^{b}\left\{\eta \left[\sum \tau _ { i } \left(f_{y}^{i}\left(t, y, y^{\prime}, v\right)\right.\right.\right.\left.+\sum \lambda_{j} g_{y}^{j}\left(t, y, y^{\prime}, v\right)+\sum_{r=1}^{k} \mu_{r} h_{y}^{r}\left(t, y, y^{\prime}, v\right)\right] \\
&+\xi\left[\sum \tau_{i} f_{v}^{i}\left(t, y, y^{\prime}, v\right)\right.+\sum \lambda_{j} g_{v}^{j}\left(t, y, y^{\prime}, v\right) \\
&\left.\left.+\sum_{r=1}^{k} \mu_{r} h_{v}^{T}\left(t, y, y^{\prime}, v\right)\right]\right\} d t<0
\end{aligned}
$$

which is a contradiction to (5) and (6).
Corollary 1. Assume that weak duality (Theorem 1) holds between ($V C P$) and (MVCD). If (y, v) is feasible for ($(V C P)$ and $(y, v, \tau, \lambda, \mu)$ is feasible for (MVCD), than (y, v) is efficient for $(V C P)$ and $(y, v, \tau, \lambda, \mu)$ is efficient for (MVCD).

Proof. Suppose (y, v) is not efficient for (VCP). Then there exists some feasible (x, u) for (VCP) such that

$$
\int_{a}^{b} f_{i}\left(t, x, x^{\prime}, u\right) d t \leq \int_{a}^{b} f_{i}\left(t, y, y^{\prime}, v\right) d t, \quad \forall i \in\{1,2, \ldots, p\}
$$

and

$$
\int_{a}^{b} f_{i_{0}}\left(t, x, x^{\prime}, u\right) d t<\int_{a}^{b} f_{i_{0}}\left(t, y, y^{\prime}, v\right) d t \quad \text { for some } i_{0} \in\{1,2, \ldots, p\}
$$

This contradicts weak duality. Hence (y, v) is efficient for (VCP). Now suppose (y, v, τ, λ, μ) is not efficient for ($\mathrm{M} V \mathrm{CD}$). Then there exist some (x, u, τ, λ, μ) feasible for (M VCD) such that

$$
\int_{a}^{b} f_{i}\left(t, x, x^{\prime}, u\right) d t \geq \int_{a}^{b} f_{i}\left(t, y, y^{\prime}, v\right) d t, \quad \forall i \in\{1,2, \ldots, p\}
$$

and

$$
\int_{a}^{b} f_{i_{0}}\left(t, x, x^{\prime}, u\right) d t>\int_{a}^{b} f_{i_{0}}\left(t, y, y^{\prime}, v\right) d t \quad \text { for some } i_{0} \in\{1,2, \ldots, p\} .
$$

This contradicts weak duality. H ence (y, v, τ, λ, μ) is efficient for (M VCD).

Theorem 2 (Strong Duality). Let (\bar{x}, \bar{u}) be efficient for (VCP) and assume that (\bar{x}, \bar{u}) satisfy the constraint qualification of Lemma 2 for at least one $i \in\{1,2, \ldots, p\}$. Then there exist $\bar{\tau} \in R^{p}$ and piecewise smooth $\bar{\lambda}$:
$I \rightarrow R^{m}$ and $\bar{\mu}: I \rightarrow R^{k}$ such that $(\bar{x}, \bar{u}, \bar{\tau}, \bar{\lambda}, \bar{\mu})$ is feasible for (MVCD). If also weak duality (Theorem 1) holds between (VCP) and (MVCD), then ($\bar{x}, \bar{u}, \bar{\tau}, \bar{\lambda}, \bar{\mu}$) is efficient for (MVCD).

Proof. As (\bar{x}, \bar{u}) satisfy the constraint qualifications of Lemma 2, it follows that there exist piecewise smooth $\bar{\tau}: I \rightarrow R^{p}, \bar{\lambda}: I \rightarrow R^{m}, \bar{\mu}$: $I \rightarrow R^{k}$ satisfying for all $t \in I$ the following relations:

$$
\begin{gathered}
\sum_{i=1}^{p} \bar{\tau}_{i} f_{x}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)+\sum_{j=1}^{m} \bar{\lambda}_{j} g_{x}^{j}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
+\sum_{r=1}^{k} \bar{\mu}_{r} h_{x}^{r}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)+\bar{\mu}(t)=0 \\
\sum_{i=1}^{p} \bar{\tau}_{i} f_{u}^{i}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)+\sum_{j=1}^{m} \bar{\lambda}_{j} g_{u}^{j}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) \\
+\sum_{r=1}^{k} \bar{\mu}_{r} h_{u}^{r}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)=0 \\
\sum_{j=1}^{m} \bar{\lambda}_{j}(t) g_{j}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)=0 \\
\bar{\lambda}(t) \geq 0 \\
\bar{\tau}_{1} \geq 0, \quad \sum_{i=1}^{p} \bar{\tau}_{i}=1 .
\end{gathered}
$$

The relations

$$
\begin{aligned}
\int_{a}^{b} \sum_{j=1}^{m} \lambda_{j} g_{j}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right) d t & =0, \\
\int_{a}^{b} \sum_{r=1}^{k} \bar{\mu}_{r}\left[h_{r}\left(t, \bar{x}, \bar{x}^{\prime}, \bar{u}\right)-x\right] d t & \geq 0
\end{aligned}
$$

are obvious.
The preceding relations imply that ($\bar{x}, \bar{u}, \bar{\tau}, \bar{\lambda}, \bar{\mu}$) is feasible for (M VCD). The result now follows from Corollary 1.

REFERENCES

1. D. Bhatta and P. Kumar, Multiobjective control problem with generalized invexity, J. Math. Anal. Appl. 189 (1995), 676-692.
2. S. Chandra, B. D. Craven, and I. H usain, A class of non-differentiable control problems, J. Optim. Theory Appl. 56 (1988), 227-243.
3. B. D. Craven and B. M. Glover, Invex functions and duality, J. Austral. Math. Soc. 24 (1985), 1-20.
4. M. A. Hanson, Bounds for functional convex optimal control problems, J. Math. Anal. Appl. 8 (1964), 84-89.
5. E. Kreindler, Reciprocal optimal control problems, J. Math. Anal. Appl. 14 (1966), 141-152.
6. S. K. M ishra, " V-Invex Functions and Their A pplication to M ultiobjective Programming," Ph.D. thesis, 1995.
7. B. M ond and M. A. H anson, D uality for control problems I, SIAM J. Control 6 (1968), 114-120.
8. B. M ond and I. Smart, D uality and sufficiency in control problems with invexity, J. Math. Anal. Appl. 136 (1988), 326-333.
9. R. N. M ukherjee and S. K. M ishra, Sufficient optimality criteria and duality for multiobjective variational problems with V-invexity, Indian J. Pure Appl. Math. 25 (1994), 801-813.
10. J. D. Pearson, Reciprocity and duality in control programming problems, Ibid 10 (1965), 383-408.
11. R.J. Ringlee, Bounds for convex variational programming problems arising in power system scheduling and control, IEEE Trans. Automat. Control AC-10 (1965), 28-35.
