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1. INTRODUCTION

A number of duality theorems for the single-objective control problem
have appeared in the literature; see [4-6, 9, 10]. In general, these refer-
ences give conditions under which an extremal solution of the control
problem yields a solution of the corresponding dual. Mond and Hanson [7]
established the converse duality theorem which gives conditions under
which a solution of the dual problem yields a solution of the control
problem. Mond and Smart [8] extended the results of Mond and Hanson
[7] for duality in control problems to invex functions. It is also shown in
Mond and Smart [8] that, for invex functions, the necessary conditions for
optimality in the control problem are also sufficient.

Recently, Bhatia and Kumar [1] extended the work of Mond and
Hanson [7] to the content of multiobjective control problems and estab-
lished duality results for Wolfe as well as Mond-Weir-type duals under
p-invexity assumptions and their generalizations.

In this section we will obtain duality results for multiobjective control
problems under V-invexity assumptions and their generalizations. The
results of the present section extend the work of Bhatia and Kumar [1] to a
wider class of functions.
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2. NOTATION AND PRELIMINARIES

The control problem is to choose, under given conditions, a control
vector u(t), such that the state vector x(¢) is brought from some specified
initial state x(a) = « to some specified final state x(b) = B in such a way
as to minimize a given functional. A more precise mathematical formula-
tion is given in the following problem:

(VCP) Minimize (/bfl(t,x,u) dt - [f(t,x,u) dt)

subject to
x(a) = «a, x(b) = B, (1)
g(t,x,u) <0, tel, (2)
h(t,x,u) =x° tel (3)

Here R" denotes an n-dimensional euclidean space and I = [a, b] is a real
interval. Each f;: 1 X R"XR™ >R fori=12,...,p, g: I XR" X R"
— R, and h: I X R" X R™ — RY is a continuously differentiable func-
tion.

Let x: I > R" be differentiable with its derivative x° and let y:
I — R™ be a smooth function. Denote the partial derivatives of f by f,, f.,
and f,, where

f,

af af o af} _[&f if - of

oot T [axt ax? ax” aut’ af? " ou”

where the superscripts denote the vector components.

Similarly, we have g,,g., g, and h, h  h, X is the space of continu-
ously differentiable state functions x: I — R” such that x(a) = a and
x(b) = B and is equipped with the norm ||x|| = ||xll. + [|Dxll.; and Y is
the space of piecewise continuous control functions u: I — R™, and has
the uniform norm || -|l... The differential equation (3) with initial condi-
tions expressed as x(¢) = x(a) + [’h(s, x(s), u(s)) ds, t € I may be written
as H = H(x,y), where H: X XY — C(I, R"), C(I, R") being the space
of continuous functions from I to R" defined as H(x, y) = h(t, x(¢), u()).
A Mond-Weir-type dual for (VCP) is proposed and duality relationships
are established under generalized V-invexity assumptions:
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The Mond-Weir-type vector control dual:
(MVCD)
Maximize (fbfl(t,y, v)dt - fbfp(t, y,0) dt)
subject to
x(a) =a,  x(b) =B,
J4 k
b Tifiy(t’ylv) + ) ’\j(t)gjy(thvU)
f=1 j=1
q
+ 2w (O, (t,y,0) +u’(t) =0, tel,
r=1

)4 k
L mifi(ty o) + 2 A1) gt y,v)
i=1 j=1

q
+ X w()h,(t,yv) =0, €],
r=1

=

w(O)[h(t,y,v) —x°(t)]de =0, tel,

/;b

r

1
[" T n(0g(ty vydiz0,  cel,

j=1

AMt) =0, tel,

7>0, i=1,2...p,

T, =1

p
=1

1

(4)

(5)

(6)

(7)

(8)
(9)
(10)

Optimization in (VCP) and (MVCD) means obtaining efficient solutions

for the corresponding programs.

Let F, = [°f(t, x,u) dt be Frechet differentiable. Let there exist func-
tions n(t, x,x,x',x',u,u) € R? with n=0 at ¢ if x(¢) =x(¢), and

&t x,x,x', X' u,u) € R™.

DeriniTioN 1. A vector function F = (Fy,..., F,) is said to be V-invex
in X, X', and u on [a, b] with respect to n, &, and «; if there exist
differentiable vector functions n € R” and ¢ in R™ and «; € R,\{0} such
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that, for each x,x € X, and u,u € Yandfori =1,2,..., p,

F(x) — F(X) Q/b{ai(t,x,)'c,x’,)'c’,u,ﬁ)f)f(t,)'c,)'c’,ﬁ)

a
Xn(t,x, %, x', %" ,u,u)
d
+ En,-(t,x,)E,x’,J'c’,u,ﬁ)ai(t,x,)'c,x’,)'c’,u,u)
Xfi(t, %, %', 0)

+a;(t,x, %, x', X" u,u)h,(t,x,x' u)

Xf(t,x,)'c,x’,)'c',u,ﬁ)} dt.

DerINITION 2. The vector function F = (Fy,..., F,) is said to be V-
pseudo-invex in x, x’, and u on [a, b] with respect to 1, &, and B if there
exist , £ as above and B;(¢, x, X, x’, X', u, ) € R, \{0} such that, for each
x,x€Xandu,ueYandfori=12...,p,

b L A
> {n(t,x,)'c,x',fc',u,a)f;(t,x,)'c’,a)
a =1

d

(o B ® o @) FI(G R LR+ fi( L E )

><§(t,x,)'c,x’,)'c’,u,ﬁ)}dt20
bP
= ["X B(t.x. 5@ fi(,x, X', u) dr
a =1

P
= /b Y Bt x, %, @) f;(t, %, X'\ °)dt
a j=1
or, equivalently,

b L o )
f Y Bi(t,x, %, u)fi(t, x, x" u)dt

aj=1

< fb i Bi(t,x, %, 1) f,(1, %, %', i) dt

aj=1
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» & .
S R O TG
aj-1

+ En(l,x,)'c,x’,i’,u,ﬁ)f)f(t,)'c,)'c’,ﬁ)

(1 R, ",a)f(r,x,x,x,xeu,a)} d < 0.

DeriNITION 3. The vector function F = (F, ,...,Fp) is said to be V-
quasi-invex in x, x’, and u on [a, b] with respect to n, &, and vy if there
exist , ¢ as above and the vector y; € R, \{0} such that, for each x, x € X,
u,ucy,

fb Yoyt x, X, x" % u, ) fi(t, x, x',u) dt

a =1
b P
< "X wtox Fox R W) £, F F T d
=1

aj

~

- sz{n(z,x,x,x',x',u,ﬁ)f;(t,x,xzﬁ)dt

aj=1

+En(f,x,i,x’,i’,u,ﬁ)fj(t,)'c,)'c’,ﬁ)

+fJ(t,i,i’,ﬁ)§(t,x,5c,x’,)‘c’,u,ﬁ)} dt <0,

or, equivalently,

P
fb ) {n(t,x,)'c,x’,)'c',u,ﬁ)f;(t,)'c,)'c’,ﬁ) dt
a =1

d .
+E”fl(l‘,x,)?,x',)?',u,ﬁ)f;(t,)'c,)'c’,ﬁ)

+fo(1,56,56’,ﬁ)§(t,x,5c,x’,5c’,u,ﬁ)} dt>0

P
= fb Yoyt x, X, x' % u,u)fi(t, x, x',u) dt

a =1
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Remark 1. V-invexity is defined here for functionals instead of func-
tions, unlike the definition given in Section 1 of Chapter 1 in Mishra [6] as
well as in Mukherjee and Mishra [9]. This has been done so that the
V-invexity of a functional F is necessary and sufficient for its critical points
to be global minima, which coincides with the original concept of a I-invex
function being one for which critical points are also global minima (Craven
and Glover [3]). We thus have the following characterization result.

LEMMA 1. F(x) = [Pf(t, x, x', w) dt is V-invex iff every critical point of F
is a global minimum.

Note 1. (%,u) is a critical point of F if fi(t,x,x',u) = (d/db),
file, x,x',u) and f/(¢,x,x',u) = 0 almost everywhere in [a, b]. If x(a)
and x(b) are free, the transversality conditions 4 (¢, %, ¥’,u) = 0 at a and
b are included.

Proof of Lemma 1. (=) Assume that there exist functions 7, £, and «
such that F is V-invex with respect to n, ¢, and « on [a, b].
Let (x, u) be a critical point of F. Then

F(x) - F(%) = /ab{ai(t,x,x,x/,x',u,a)f;(z,fc,fc',ﬁ)

+a(t,x, %, x', X' u,u)fi(t, %, %', 0)

XE(, x, X, x', %" u,u)dt
+nl-(t,x,)'c,x’,)'c’,u,ﬁ)f)f,(t,)'c,)'c’,ﬁ)u)}

=0 (by integration by parts) Vi=12,...,p
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as (x, u) is a critical point of either fixed boundary conditions, which imply
that n = 0 at a and b, or free boundary conditions, which imply condi-
tions, which imply that f/ =0 at a and b. Therefore, (%, &) is a global
minimum of f.

Assume that every critical point is a global minimum. If (x,) is a
critical point, put n = ¢=0. If (¥, u) is not a critical point, then, if

fl# (d/dDf! at (x,u), put
fi(t,x,x",u) — fi(t,x,x', i) , d\ .
- i 1T ¢i i f"l_(z)fxl}’
2[fi = (dyan fi]"[ fi = (dyanfi]
a=1,orif fi=(d/d)fl, put n = 0; and, if h, # 0, put
- fi(t,x,x",u) — fi(t,x,x',u)
- ZfiT i

7

& fu
and «; =1, or, if f/ =0, put £=0. Then F is V-invex on a,b with
respect to n, &, and «.
Chandra, Craven, and Husain [2] gave the Fritz—John necessary optimal-
ity conditions for the existence of an extremal solution for the single
objective control problem (CP):

(CP) f:f(t,x,u) dt

subject to
x=h(t,x,u), g(t,x,u) <0.

Mond and Hanson [7] pointed out that if the primal solution for (VCP) is
normal, then Fritz—John conditions reduce to Kuhn—Tucker conditions.

LEMMA 2 (Kuhn-Tucker Necessary Optimality Conditions). If (x, )
€ X X Y solves (VCP), if the Frechet derivative [D — F/(x°,u®)] is surjec-
tive, and if the optimal solutions (x°, y°) is normal, then there exist piecewise
smooth 7% I - R?, \°: I > R, and w: I — R¥, satisfying the following, for
allt € [a, b]:

WO (1, 20, u0) + (1) = 0, (11)

X

\
11

p k m
Lorfu(t x%u®) + 30 Mgi(e,x%u®) + X (1, x%u) = 0, (12)
i=1 j=1 r=1

k
2 Ag(t,x% u’) =0, (13)

p
>0, A’>0, Y rl=1. (14)
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We shall now prove that (VCP) and (MVCD) are a dual pair subject to

generalized I-invexity conditions on the objective and constraint functions.

3. DUALITY THEOREMS

THEOREM 1 (Weak Duality). Assume that, for all feasible (x,u) for
(VCP) and all feasible (y,v, 7, A, u) for (MVCD), if

(i) (fanfl L [ (s )dt)
and
(i) (LbAlgl(.,~,~)dr,...,fabAmgm(~,~,~)dr)
are V-quasi-invex and
(iii)
(Lbul(hl(-,-,~) —x)dt,...,fab,uk(hk(-,-,~) —x)dt)

are strictly V-quasi-invex with respect to the same ), &, then the following
cannot hold:

/;bﬂ(t,x,u)dtsfabfi(t,y,v)dt, Vie(l,....p) (15

and
fbﬁo(t, x,u)dt < /bfio(t,y,v) dt  forsomeiy, € {1,2,...,p}. (16)

Proof. Suppose contrary to the result that (15) and (16) hold. Then (i)
yields

j{Zn,(txx X, X' u,u)mf(t,y,y,0)

+fi(t,y,y v)E(t, x, x', X, X u, ﬁ)} dt < 0. (17)

From the feasibility conditions,

b b
/;)\jgj(t,x,x’,u) dtsj;Aigj(t,x,x’,u) dt
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foreach j = 1,2,...,m.Since B¢, x, x', X, X", u,u) 20,V j=1,2,...,m,
we have

/ZB(txx X, X u,u)Agi(t, x, x' u)de
<f2[3(txx X, X u u)Ag(t, x, x' u)de.
Then (ii) yields

f Z{”ﬂ,(f x,x'\ x, X' u, u))\gx(t x,x',u)

+FICE X, ) € X, xR E )
<0. (18)

Similarly, we have

P , b &
fa ; w, [ R (t, x,u) —x'] dt < fa ; w,[h(t,y,v) —x] dt

From (iii) it follows that

a

d
be{n(t X K ) phy (Y u) = () by

+ Zprhl,(t,y,y’,u)f(t,x,x’,)'c,)'c’,u,ﬁ)} dt <0. (19)

By integrating (d/dt)n(t, x, x', X, X', u,w)u from a to b by parts and
applying the boundary conditions (1), we have

bd A =
faan(t,x,x,x,x,u,u),udt

=—/n(txx X%, u,m)pl(t) dt. (20)
Using (20) in (19), we have
[{Zw x 2 EE u,m) oy, y'0) + u0(n)

+ X mh (1, y, ' v)E(E x, X', %, ¥ u,T) pdt < 0. (21)
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Adding (17), (18), and (21), we have

k
fb{n (St y. o)+ Xagl(yy o) + X (1, y'v)

a r=1

+E| X fi(ty,yv) + X Agl(ty,y' )

k
+ Y p,,hf(t,y,y’,u)}} dt <0,

r=1
which is a contradiction to (5) and (6). |

COROLLARY 1. Assume that weak duality (Theorem 1) holds between
(VCP) and (MVCD). If (y,v) is feasible for (VCP) and (y,v, T, A, ) is
feasible for (MVCD), than (y,v) is efficient for (VCP) and (y,v, 7, A, u)
is efficient for (MVCD).

Proof. Suppose (y, v) is not efficient for (VCP). Then there exists some
feasible (x, u) for (VCP) such that

fbfi(t,x,x’,u) dt < fbf,-(t,y,y’,u) dt, Vie{l2,...,p}

and

fbfl-o(t,x,x’,u) dt < fbfio(t,y,y’,v) dt for some i, € {1,2,..., p}.

This contradicts weak duality. Hence (y,v) is efficient for (VCP). Now
suppose (y, v, 7, A, w) is not efficient for (MVCD). Then there exist some
(x,u, 7, A, ) feasible for (MVCD) such that

fbfi(t,x,x',u) dt > /bfi(t,y,y’,u) dt, Vie{l2,...,p}

and

/bfl-o(t,x,x’,u) dt > fbfio(t,y,y’,u) dt for some iy € {1,2,..., p}.

This contradicts weak duality. Hence (y, v, 7, A, ) is efficient for (MVCD).
|

THEOREM 2 (Strong Duality). Let (x,u) be efficient for (VCP) and
assume that (%, 1) satisfy the constraint qualification of Lemma 2 for at least
one i €{1,2,..., p}. Then there exist T € R? and piecewise smooth A:
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I - R™ and @: I — R* such that (%,7,7, A, ) is feasible for (MVCD). If
also weak duality (Theorem 1) holds between (VCP) and (MVCD), then
(X, 1,7, A, ) is efficient for (MVCD).

Proof. As (x,u) satisfy the constraint qualifications of Lemma 2, it
follows that there exist piecewise smooth 7: I — R”, x: I — R", W
I — RF satisfying for all ¢ € I the following relations:

m

P
YRS xR u) + Y Ngl(, X, X 1)

The relations

are obvious.
The preceding relations imply that (X, z,

7, A, w) is feasible for (MVCD).
The result now follows from Corollary 1. i
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