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In this paper, a generalized ratio invexity concept has been applied for single 
objective fractional programming problems. A concept which has been invoked 
seems to be more general than the one used earlier by Khan and Hanson in such 
contexts. Further, duality results for fractional programs have also been obtained. 
0 1999 Academic Press 

Key Words: mathematical programming; ratio invexity; duality. 

1. INTRODUCTION 

Recently Khan and Hanson (Ref. [ l l ] )  have used the ratio invexity 
concept to characterize optimality and duality results in fractional pro- 
gramming. This concept seems to be new and it introduces a modified kind 
of characterization in sufficient optimality conditions. Slightly away from 
this but introducing invexity conditions with indices p and 8, Suneja and 
Lalitha (Ref. [ 151) have also characterized multiobjective fractional pro- 
gramming problem for duality results. In the ensuing paragraph we present 
an account of the fractional programming problem as depicted in Khan 
and Hanson (Ref. [ 111). 

Consider the nonlinear fractional programming problem as follows 

f ( x )  

g(x> 
(FP) minimize - 

subject to h( x) I 0, x EX, (1) 

where X ,  is a subset of R"; let f and g be real-valued functions defined 
on X,; and let h be an m-dimensional vector valued function also defined 
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on X,. We let A = {x E X,, h(x)  I 01 be the set of all feasible solutions. 
We assume that f ( x )  I 0 for all x E A and g(x) > 0 for all x E A ,  and 
the functions f ,  g, and h satisfy 

with h: X ,  X X ,  + R". 
These are called invex functions, first introduced by Hanson [7]. He 

presented sufficient optimality conditions and a weak duality theorem for 
the generalized convex programming problem 

(P)  minimize f (  x) 

subject to h( x) 0, x E X .  

The problem (P) is characterized as an invex problem, as was quoted in 
Craven (Ref. [2]). The problem (FP) as introduced above is said to be a 
convex-concave problem if f is convex, g is concave, and h is convex. It is 
then transformed into an invex problem if all the functions, f ,  g, and h,  
are taken as invex functions. Most of the references like Israel and Mond 
[l], Reiland [13], and Khan [lo] have discussed invex problems and their 
generalizations for the multiobjective case. The paper of Khan and Han- 
son [ll] in this respect could be thought of as a beginning of some 
investigation for invex fractional programming problems. The earlier pa- 
pers of Craven [2], Weir [16], and Singh and Hanson [14] gave some partial 
references for the same subject. In [9], Jeyakumar and Mond have defined 
generalized invex functions called B-invex functions. The same concept has 
also been applied to treat fractional programming problems. 

The paper is organized as follows. In Sect. 2 we will give some notations 
and preliminary definitions. In Sect. 3 we will state and prove necessary 
and sufficient optimality results. Finally, in Sect. 4 we will obtain duality 
results in the newer context. 

2. PRELIMINARIES AND DEFINITIONS 

The following definitions, which will be useful later in the sequel to our 
discussion, are given below. 

DEFINITION 2.1 (Ref. [8]). Let f be a numerical function defined on an 
open set X c R" and let f be differentiable at  X E X .  Let p be a real 
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number and 7, 8: X X X + R" be two functions. The function f is said to 
be 

(a) p-invex at X with respect to 7, 8 if for each x E X, such that 

(b) p-pseudoinvex at X with respect 7, 8 if for each x E X, such that 

T / ( x , X ) " f ( X )  + pll8(x,X)ll2 2 0 * f ( x )  2 f ( f ) .  

(c) p-strictly pseudoinvex at  X with respect 7, 8 if for each x EX, 
x # X, such that 

(d) p-quasiinvex at X with respect to 7, 8 if for each x EX,  such 
that 

Remark 2.1. If f is p-invex at  each X E X  with respect to 7, 8 then it 
is p-invex on X with respect to 7, 8. The definition for other functions is 
similar. 

A function f is said to be strongly invex if p > 0, invex if p = 0, and 
weakly invex if p < 0, which clearly shows that a strongly invex function is 
invex and hence an invex function is in turn weakly invex. Finally, every 
p-invex function is both p-pseudoinvex and p-quasiinvex. 

We reconsider the nonlinear fractional programming problem (FP) as 
follows 

f ( x )  

g(x> 
(FP) minimize - 

subject to h( x) I 0, x E X  c R", 

where X c R". Let f and g be real-valued functions defined on X and let 
h be an m-dimensional vector-valued function also defined on X. 

The duality results for the above (FP) will be discussed in Sect. 4. 
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3. RESULTS 

THEOREM 3.1. Let f ,  g be two numerical functions defined on some open 
setX c R" such that f ( x )  I 0 ,  g ( x )  > 0. I f f  is p-inuex with 7, 8 then fo is 

g(x) 

p-inuex with $(x,y)m and 8' = (-)'/'(l 1 - -1 f ( Y )  1/28 . 
g(x) g(x) g ( Y )  

Pro05 If f is p-invex with 7, 8 and -g is p-invex with the same 7, 8, 
then we have 

for every x, X E X .  
Next, choose 

and 

Since f ( x )  and - g ( x )  are p-invex functions with respect to q(x, ;F) and 
f ( x )  I 0, g ( x )  > 0, Eq. (4) implies that 

f ( x )  f ( ? )  
g ( x >  g ( 4  
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Hence the above inequality implies that f(., is (g'"-'qT(x, T), p)-p-invex 
g(x) g(x) 

with 8' = (-)(I 1 - fo)1/2~. 
g(x) g(x) 

This completes the proof of the theorem. 

Remark 3.1. 

I 
If f EX is a minimum for nonlinear, single-objective 

fractional programming problem (FP) and a constraint qualification (Ref. 
[ 121) is satisfied, then the following Kuhn-Tucker conditions are necessary. 

If f ,  -g are p-invex with respect to q, 8 then f is p-invex with respect 
g 

to q ' ( x ,  T ) g  and 8' such that 

and 

uoh(X) = 0 

uo 2 0. 

THEOREM 3.2. For a feasible solution T of (FP) .  Suppose the 
Kuhn-Tucker conditions (5)-(7) are satisfied at T. Let f ( x )  s 0 ,  g ( x )  > 0 ,  
where f and -g are p-inuex functions with respect to q(x, f) = q t (x ,  f)m 

g(x) 
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and 8 ’, and let h, be p,’-invex with respect to the same q( x, ? ) t f l  and 8 ’ = 

(-)(1 - fo)1/28 ( i  = 1 , 2 , .  . . , m). Also ( p + vo p ’ )  2 0 (vo p‘ standsfor 
the innerproduct of the vectors vo and p’) .  Then f is minimum for (FP) .  

s(x) 

1 

g(x) s(x) 

Pro05 

+ u o h ( x )  - v o h ( f ) .  (8) 

Since each hi is p-invex with p,! and 8’ 

we get 

Therefore, 5 is a minimum. This completes the proof. I 
In the following it is assumed that f ( X )  and -g(?)  are p-invex with q, 8 

- t .m and at  u hence fo is p-invex with respect to q(x, ?) = q(x, X )  
S(f) g(x) 

1 
8’ = (-)(1 - fo)1/28. Also, hi is pi-invex at u with qt(?, u)g(.) and 8’. 

Also ( p + vo p ‘ )  2 0 (vo p‘ stands for the inner product of the vectors vo 
and p’). In the following, we give a variant of Theorem 3.2. 

g(x) g(x) g(x) 

THEOREM 3.3. Suppose X is feasible for (FP)  and that the Kuhn-Tucker 
conditions (5)-(7) are satisfied. Let f I 0 and g > 0 ,  where f/g is p-gseudo- 
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invex functions with respect to q(x, X) = q T ( x ,  X)m and 8' and let h, be 

pi-quasiinvex with respect to the same $(x, x)m and 8', as well as 
( p + vo p ' )  2 0 ( v o  p' stands for the innerproduct of the vectors vo and p') .  
Then j? is a minimum for (FP) .  

The proof is omitted as it can be given by the previous methods 
of Ref. [15]. I 

s ( 4  

d1-1 

ProoJ 

4. DUALITY RESULTS 

In this section, we consider the pair of invex fractional programming 
problems defined on X c R". 

(FP) Primal problem: 

minimize - f ( x )  

g(x> 

subject to h( x) I 0 ,  x E X c R". (11) 

The dual problem to the above primal problem is as follows: 

(FD) Dual problem: 

and 

( 12) 

( 13) 

( 14) 

subject to V- f ( X )  +Vu ,h (x )  = 0 ,  
g ( X >  

voh( j ? )  = 0 ,  

vo 2 0. 

THEOREM 4.1 (Weak duality). If x is feasible for theprimalproblem ( F P )  
and j? is feasible for (FL)) then 

f ( x )  g ( X )  
g(x> g(x>. 
-2- 

ProoJ Since x is feasible for (FP) and (X, vo) is feasible for (FD) and a 
constraint qualification [15] is satisfied at  ( X ,  vo), therefore the following 
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Kuhn-Tucker conditions hold: 

For any x E X c R" satisfying the constraint of (FP), we have 

Since fo is p-invex w.r.t. m q t ( x ,  X) at  X, using (15), we get 
g(x) s(u) 

+ uoh( f )  - uoh( X). 

Since h i ( x )  is p-invex w.r.t. f i q l " ( x ,  X) at X, we obtain 
g(x) 

2 ( P + 0 0  P ' )  

2 0, 

This completes the proof. I 
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In the following theorem, it is assumed that f ( X )  and - g ( X )  are p-invex 

at  u with respect to q(x, X), hence fo (according to Theorem 4.1) and 
g ( 2 )  

vih , lX)  are pl-invex at  u with respect to im)qiX, u). 
s(*) 

THEOREM 4.2 (Strong duality). Under the Kuhn-Tucker conditions if? is 
minimal for (FP)  then there exists 0 I u E R" such that (X, U) is maximal 
for ( F D )  and the optimal values of (FP)  and ( F D )  are equal. 

Let us suppose any ( u ,  v )  be vector, which also satisfies the 
constraints of (FD). For (X, v o )  to be maximal of (FD), we must show that 

Pro05 

From the constraint (3) we obtain 

Because h is p-invex with respect to (mql"(X, u)p ,  89, we will get 
g ( u )  

Since hi is p'-invex with respect mqt(X, u )  at u with q and 8' 
g ( 2 )  

2 ( P + 0 0  P ' )  

2 0. 

Hence (X, v o )  is maximal for (FD) and the objective values are equal in 
the two problems. This proves the theorem. I 
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THEOREM 4.3 (Converse duality). Let (2 ,  vo) be a dual muxzmal for dual 
problem (FD)  and a dual constraint qualification (Ref. 1151) holds at (Z, uo) ,  
then (Z, u o )  satisfies the Kuhn-Tucker conditions 

Proof Since (X, u o )  is a maximal for the dual problem (FD) and a dual 
constraint qualification (Ref. 1151) holds at  (X, uo) ,  then (X, u o )  satisfies the 
Kuhn-Tucker conditions 

uoh(Z) = 0 ,  (22) 

uo 2 0. (23) 

For any x E X  c R satisfying the constraints of (FP), then we must have 

Since fo is p-invex with respect to m$(x, X) at 2 and 8' = (-)(1 1 

g(x) g(x) s(*) 
f (*)  1 / 2  - -) 8, we have 
s(*) 
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Thus X is a minimum for (FP). This completes the proof of theorem. 

Remark. 
I 

As noted in the last part of the Introduction, the difficulty 
faced is to extend optimality and duality concepts in the context of 
multiobjective fractional programming problems, which has been depicted 
as follows. For example, a given multiobjective fractional programming can 
be described in the following manner 

where suitable conditions are put on the functions f i ,  g i ,  and hj (i = 

1,.  . . , p ;  j = 1,2,. . . , m). In the final analysis for optimality and duality we 
require some suitable ratio invexity coefficients to be derived for the 
functions of the type Ef= hi f i /g i  which ultimately validate the analysis as 
described in the treatment shown for the case of single objective fractional 
program. It seems that the method as adopted in the case of single 
objective fractional programming does not extend easily in the case of 
multiobjective fractional programming. Therefore, the problem remains 
very much open and requires further investigation. 
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