LIST OF FIGURES

Figure 2.1	FCC's indoor and outdoor emission masks	74
Figure 2.2	(a) Monopole above a conducting ground plane, (b) the equivalent source in free space	75
Figure 2.3	Monopole antenna structures with double feed	77
Figure 2.4	Monopole antenna structures with Defective microstrip structure(DMS)	77
Figure 2.5	Monopole antenna with (a) Trident-shaped strip and a tapered impedance transformer, (b) Stepped impedance transformer, (c) Tapered feedline, and (d) Staircase subtractive stripline loaded with slot	77
Figure 2.6	(a) Geometry of the proposed UWB antenna with EBG. (b) Unit cells of EBG. (c) Equivalent circuit of the EBG	79
Figure 2.7	(a) Bandgap for the mushroom-type EBG in terms of W,(b) Effect of the coupling gap on the width of the bandgap	79
Figure 2.8	The unit cell shapes (a) Antenna with EBG array, (b) conventional shape and (c) new EBG shape	80
Figure 2.9	Monopole antenna designed using Genetic Algorithm (GA)	84
Figure 2.10	Monopole antenna analyzed using FDTD	84
Figure 2.11	Monopole antenna with conductor backed plane	85
Figure 2.12	Monopole antenna with defected ground structures	87
Figure 2.13	Transmission line model for (a) U-shaped slot with MEMS up, (b) U shaped slot with MEMS down, (c) inverted L stubs with MEMS up, (d) inverted L stubs with MEMS down	89
Figure 2.14	Monopole antenna with slot loaded patch	89
Figure 2.15	Monopole antenna with parasitic patch	90
Figure 2.16	Effect of feed gap on monopole performance	91
Figure 2.17	 (a) Schematic diagram of the coupled lines. (b) Circuit layout for extracting the lumped equivalent circuit model in (c). (c) Lumped equivalent circuit model of the coupled-line section. (d) Equivalent circuit model of the proposed antenna 	92

Figure 2.18	Electric fields and surface current distributions on the (a) vertically and (b) horizontally arranged folded-strip resonators	92
Figure 2.19	(a) Inductive coupling scheme and its equivalent circuit model,(b) Novel equivalent circuit model for the folded-strip resonator	92
Figure 2.20	(a) Exacting structure of the proposed resonator. (b) One-port lump equivalent circuit network of the proposed resonator. (c) Two-port lump equivalent circuit network of the proposed resonator. (d) Simplified equivalent circuit model of the proposed antenna	93
Figure 2.21	Geometry of the proposed multi band-notch antenna (a) Patch antenna loaded with slots, (b) The equivalent circuit model for the proposed multi-band notch antenna	93
Figure 2.22	(a) Geometry of the proposed UWB elliptical monopole antenna: front view, back view, and side view. (b) Equivalent circuit of the proposed UWB antenna	93
Figure 2.23	Monopole antenna with split resonators	94
Figure 2.24	Appollian gasket geometries	97
Figure 2.25	Minkowski antenna geometries	98
Figure 2.26	Sierpinski carpet antenna geometries	99
Figure 2.27	Sierpinski gasket for zeroth, first, second iterations	100
Figure 2.28	Antenna structures based on Sierpinski gasket geometry	100
Figure 2.29	Nested triangle fractal antenna structure	101
Figure 2.30	Hilbert-curves with increasing iteration order number n: (a) First order, (b) second order, and (c) third order	102
Figure 2.31	Circular fractal antenna geometries	103
Figure 2.32	Descartes circle theorem based antenna geometries	104
Figure 2.33	Initiator and generator of the Giusepe Peano fractal Geometry	105
Figure 2.34	Giusepe Peano based antenna structures	105
Figure 2.35	Generation of Koch curve upto second iteration	106
Figure 2.36	Koch curve based antenna structures	106

Figure 2.37	Illustration of the first four iterations for Pythagorean tree fractal	107
Figure 2.38	Fabricated first five iterations for Pythagorean tree fractal monopole antenna	108
Figure 2.39	Tree shaped fractal geometries	108
Figure 2.40	Various iterations of fractal Binary tree	109
Figure 2.41	3rd iterated fractal Binary tree with different branching angles	109
Figure 2.42	Different binary tree antenna geometries	109
Figure 2.43	Penta-Gasket-Khoch (PGK) antenna up to fifth iteration	110
Figure 2.44	Complementary Penta Gasket Khoch (CPGK) antenna up to fifth iteration	111
Figure 2.45	Different ReKAMP geometries (a) Triangular, (b) circular, (c) square coupled, (d) square connected	112
Figure 2.46	Square fractal antenna geometries	112
Figure 2.47	(a) Basic cantor set generation (b) Cantor geometry	114
Figure 2.48	(a) Rectangular Fractal monopole (b) Fractal triangular monopole with same vertex, (c) Fractal triangular monopole with same slope	114
Figure 2.49	Different fractal antenna geometries	115
Figure 2.50	Basic dipole antenna	118
Figure 2.51	Geometries of uniplanar dipole antenna with single feed location	120
Figure 2.52	Geometries of uniplanar dipole antenna with shorted dipole arms	122
Figure 2.53	Geometries of uniplanar dipole antenna with balun	122
Figure 2.54	Geometries of uniplanar dipole antenna with coplanar strip line	122
Figure 2.55	Geometry of uniplanar dipole antenna with tapered slot feed and parasitic element	123
Figure 2.56	Geometries of double-printed dipole antenna structures	124
Figure 3.1	Proposed fourth iterative ladder shaped fractal antenna structure	127
Figure 3.2	Intermediate steps of deriving the first iteration	129

	•
XX1	1
	•

Figure 3.3	Four iterations of the ladder shaped fractal antenna	130
Figure 3.4	Figure 3.4 Comparison of reflection coefficient characteristics of six intermediate stages of ladder shaped fractal antenna first iteration	131
Figure 3.5	Reflection coefficient versus frequency plot for four iterations of the ladder shaped fractal antenna	132
Figure 3.6	Prototype of the ladder shaped fractal antenna	134
Figure 3.7	Comparison of the simulated and measured reflection coefficient versus frequency characteristics for ladder shaped fractal antenna	134
Figure 3.8	Comparison of the simulated and measured VSWR versus frequency characteristics for ladder shaped fractal antenna	134
Figure 3.9	Real and Imaginary part of input impedance versus frequency plots for ladder shaped fractal antenna	135
Figure 3.10	Simulated surface current distribution of ladder shaped fractal antenna at its resonance frequencies	136
Figure 3.11	Radiation pattern measurement setup for ladder shaped fractal antenna	138
Figure 3.12	Simulated and measured radiation pattern of ladder shaped fractal antenna at resonance frequencies	139
Figure 3.13	Measured peak realized gain versus frequency plot for ladder shaped fractal antenna	140
Figure 3.14	Variation of simulated radiation and total efficiency for ladder shaped fractal antenna	141
Figure 3.15	Configurations of the ladder shaped fractal antenna for time domain analysis	142
Figure 3.16	Simulated time domain analysis of ladder shaped fractal antenna	142
Figure 3.17	Simulated group delay versus frequency characteristic for two configurations of the ladder shaped fractal antenna	143
Figure 3.18	Simulated magnitude of isolation for two configurations of the ladder shaped fractal antenna	144
Figure 3.19	Simulated phase of isolation for two configurations of the ladder shaped fractal antenna	145

Figure 3.20	Performance of ladder shaped fractal antenna for three different substrate materials	146
Figure 4.1	Geometry of the beveled monopole antenna	151
Figure 4.2	Deriving stages of beveled monopole antenna	152
Figure 4.3	Comparison of reflection coefficient versus frequency plot for five deriving stages of the beveled monopole antenna structure	155
Figure 4.4	Prototype of the beveled monopole antenna	156
Figure 4.5	Comparison of simulated and measured reflection coefficient versus frequency characteristics for the beveled monopole antenna	157
Figure 4.6	Comparison of simulated and measured VSWR versus frequency characteristics for the beveled monopole antenna	157
Figure 4.7	Simulated real and imaginary parts of the input impedance for the beveled monopole antenna	158
Figure 4.8	Simulated surface current distribution of the beveled monopole antenna structure at its six resonances	159
Figure 4.9	Radiation setup of the beveled monopole antenna	161
Figure 4.10	Measured radiation patterns of the beveled monopole antenna structure at its six resonances	162
Figure 4.11	Measured co- and cross-polar radiation patterns of the beveled monopole antenna at its six resonance frequencies in both E- and H-plane	165
Figure 4.12	Measured peak realized gain of the beveled monopole antenna	165
Figure 4.13	Simulated total and radiation efficiency of the beveled monopole antenna structure	166
Figure 4.14	Configurations of the beveled monopole for time domain analysis	167
Figure 4.15	Time domain analysis of the beveled monopole antenna	167
Figure 4.16	Simulated group delay of the beveled monopole antenna structure in two configurations	168
Figure 4.17	Simulated magnitude of isolation versus frequency plot for two configurations of the beveled monopole antenna	169

Figure 4.18	Simulated variation of phase of isolation with respect to frequency for two configurations of the beveled monopole antenna	169
Figure 4.19	Comparison of reflection coefficient performance of the beveled monopole antenna with different substrate materials	170
Figure 5.1	Geometry of the crescent dipole antenna	175
Figure 5.2	Different shapes of the radiating elements in dipole antenna	176
Figure 5.3	Variation of reflection coefficient with frequency for different radiating elements	178
Figure 5.4	Prototype of the crescent dipole antenna	178
Figure 5.5	Comparison of simulated and measured reflection coefficient versus frequency characteristics for crescent dipole antenna	179
Figure 5.6	Comparison of simulated and measured VSWR versus frequency characteristics for crescent dipole antenna	179
Figure 5.7	Variation of simulated resistance and reactance of the input impedance with frequency for crescent dipole antenna	180
Figure 5.8	Simulated surface current density plots of the crescent dipole antenna at its six resonance frequencies	181
Figure 5.9	Radiation pattern measurement setup for crescent dipole antenna	182
Figure 5.10	Simulated and measured radiation patterns of the crescent dipole antenna at its six resonance frequencies	183
Figure 5.11	Measured co- and cross-polar radiation patterns of the crescent dipole antenna at its six resonance frequencies in both E- and H-planes	186
Figure 5.12	Variation of measured peak realized gain with frequency for the crescent dipole antenna	186
Figure 5.13	Variation of simulated total and radiation efficiencies with frequency for the crescent dipole antenna	187
Figure 5.14	Configurations of the crescent dipole antenna	188
Figure 5.15	Time domain analysis of the crescent dipole antenna	189
Figure 5.16	Variation of simulated group delay with frequency for the crescent dipole antenna in two configurations	189

Figure 5.17	Variation of simulated magnitude of isolation, $ S_{21} $, with frequency for the crescent dipole antenna in two configurations	190
Figure 5.18	Variation of phase of simulated isolation, S_{21} , with frequency for the crescent dipole antenna in two configurations	190
Figure 5.19	Reflection coefficient versus frequency characteristics of the crescent dipole antenna for three different substrate materials	191
Figure 5.20	Simulated reflection coefficient versus frequency characteristics of the crescent dipole antenna for different thickness of substrate, h	192
Figure 5.21	Simulated reflection coefficient versus frequency characteristics of the crescent dipole antenna for different values of major axis of elliptical slot	193
Figure 5.22	Simulated reflection coefficient versus frequency curves for different values of minor axis of elliptical slot	194
Figure 5.23	Simulated reflection coefficient versus frequency curves for variation in the elliptical slot location along x axis	194
Figure 5.24	Simulated reflection coefficient versus frequency curves for variation in the elliptical slot location along y-axis	195