Synthesis and Antitumour activity of some aryl semicarbazones

S.N.Pandeya^a*, P.Yogeeswari^a, E.A.Sausville^b, A.B.Mauger^b and V.L.Narayanan^b. a. Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi-221005, (INDIA). b. Division of CancerTreatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, (USA)

Summary

Various 4-substituted phenyl semicarbazone derivatives were synthesized and evaluated *in vitro* by NCI in the 3-cell line, one dose primary anticancer assay. Three compounds showed significant activity against breast MCF7 cell line and were further evaluated for potential anticancer activity in an *in vitro* human disease-oriented tumour cell line screening panel that consisted of 60 human tumour cell lines arranged in nine subpanels, representing diverse histologies. Leukemia, colon, ovarian and breast cancer cell lines were relatively more sensitive to these compounds than the other cell lines. The 4-carboxy substituted p-nitrobenzylidene phenyl semicarbazone (1c) emerged as the most active compound with average GI_{50} value (the molar drug concentration required for the 50% growth inhibition) of 28.6 μ M. This compound showed greater activity than methotrexate against NCI-H226(Lung), BT-549 and T-47D(Breast) cancer cell lines.

Keywords: Aryl semicarbazones, Antitumour, Methotrexate.

1. Introduction

Semicarbazones are of considerable interest due to the many bioactivities, which they possess and the medicinal potential of toluyl semicarbazide was first recorded by Cotti¹. Since then the semicarbazones have revealed a broad spectrum of therapeutic activity especially as anticonvulsants^{2.4}, tuberculostatics⁵, sodium channel blockers⁶ etc. A number of antineoplastic agents derived from thiosemicarbazones have been developed^{7.3}, but so far not many semicarbazones have been studied. Dimmock et al.⁹ reported the antileukemic activity of thiosemicarbazone and semicarbazone derivatives and the semicarbazones were found to be less toxic. Alkyl and cycloalkylnitroso semicarbazones have displayed excellent activity against leukemia L5222 in rats¹⁰. Attachment of the semicarbazone group to a substituted partially hydrogenated naphthopyran and fluorene rings resulted with antileukemic activity in mice¹¹ and against various tumours in different experimental animals¹². Some 4-[[4-chloro-5-methyl-2(methylthio)phenyl]sulfonyl]-1-aryl semicarbazides exhibited weak or moderate activity against some human tumour cell lines and 4-chlorophenyl substituted compounds showed relatively high activity¹³. Several alkylamino substituted semicarbazones have proved active on CNS and breast cancer cell lines at 10⁻⁴M concentration¹⁴. The present study was aimed to explore the antitumoral activity of some 4-substituted phenyl semicarbazones. This paper reports the synthesis and *in vitro* anticancer drug screening of these new compounds utilizing a panel of 60 diverse human tumour cell lines. Sensitive cell lines show GI₅₀ (molar drug concentration required to cause 50% growth inhibition) values <10⁻⁸M and insensitive cell lines show $>10^{-4}$ M.

2. Investigation and Results

The 4-substituted phenyl semicarbazones were prepared starting from 4-substituted anilines as depicted in the Scheme. All compounds were evaluated *in vitro* by NCI in the 3-cell line panel consisting of MCF7 (Breast), NCI-H460 (Lung) and SF-268 (CNS) at 11x10⁻⁴M concentration and reported in Table 1.

	Growth percentages					
Compounds	(Lung)	(Breast)	(CNS)			
	NCI-H460	MCF7	SF-268			
1a	110	48	93			
1b	118	72	115			
1c	12	11	32			
2a	82	28	43			
2b	86	22	55			
2c	117	95	111			
2d	115	101	111			
2e	85	71	93			
2f	118	80	112			
2g	130	95	114			
2h	131	91	107			
21	95	79	76			
2j	98	79	76			

 Table 1. Primary anticancer evaluation of the semicarbazone derivatives in 3-cell lines at 11x10⁻⁴M concentration

Three compounds 1c, 2b and 2c were further evaluated in the *in vitro* human disease-oriented tumour cell line screening panel developed at the NCI. The GI_{50} values against each cell line are presented in Table 2.

<u>GI₅₀ (μM)</u>					<u>GI₅₀ (μM)</u>						
Cell line	1c	2b	2c	MTX	C	Cell line	1c	2b	2c	MTX	
1. Leukemia											
CCRF-CEM	30.6	36.2	25.9	0.029	N	414	37.4	36.8	25.5	0.032	
HL-60(TB)	37.2	27.2	46.1	0.039	S	K-MEL-2	25.0	42.0	58.7	0.087	
K-562	13.3	40.8	28.7	0.026	S	K-MEL-28	41.7	85.1	61.2	>1	
MOLT-4	22.9	37.6	39.8	0.028	S	K-MEL-5	16.2	46.3	65.5	0.087	
RPMI8226	18.7	>100	30.3	0.033	L	JACC-257	28.4	58.6	79.5	0.790	
SR	43.4	22.3	17.9	0.033	L	JACC-62	26.3	60.4	75.4	0.028	
2. Non Small Cell Lung Cancer				<u>6</u>	6. Ovarian Cancer						
A549/ATCC	35.3	>100	>100	0.033	I	GROVI	33.1	58.8	31.2	0.069	
EKVX	23.1	>100	61.0	8.700	C	OVCAR-3	4.54	41.9	30.1	0.400	
HOP-62	21.6	50.8	40.8	Х	C	WCAR-4	21.2	>100	59.9	>1	
HOP-92	16.9	94.3	65.4	>1	C	VCAR-5	40.6	>100	>100	0.980	
NCI-H226	22.2	66.0	42.8	23.0	C	OVCAR-8	28.6	45.1	37.6	0.031	
NCI-H23	23.2	80.6	41.6	0.043	S	K-OV-3	21.3	81.4	45.5	Х	
NCI-H322M	34.1	90.2	53.7	Х	7	7. Renal Cancer					
NCI-H460	26.5	68.0	>100	0.028	7	86-O	39.1	73.7	45.6	0.033	
NCI-H522	7.85	22.4	41.8	0.450	Α	498	20.2	>100	>100	1.900	
3. Colon Canco	er				A	CHN	26.6	>100	66.7	0.040	
COLO205	23.1	35.4	38.4	0.870	C	CAKI-1	28.2	94.4	44.8	Х	
HCC-2998	20.2	40.8	33.9	0.110	R	XF393	26.1	>100	>100	>1	
HCC-116	22.3	48.2	30.1	Х	S	N12C	29.9	85.4	32.7	0.031	
HCT-15	25.5	48.0	35.0	0.030	Т	°K-10	34.4	>100	>100	>1	
HT29	23.8	45.5	30.1	Х	L	JO-31	22.1	60.7	41.0	Х	
KM12	27.7	33.7	36.0	0.033	8	8. Prostate Cancer					
SW620	40.9	74.3	36.0	0.033	Р	C-3	32.0	>100	35.7	0.027	
4. CNS Cancer						OU-145	29.9	>100	72.3	0.045	
SF-268	44.0	49.0	56.6	0.052	<u>9</u>	. Breast Cano	er				
SF-295	17.4	67.8	61.6	0.036	Ν	ACF7	27.4	58.1	29.7	0.036	
SF-539	49.3	41.8	38.4	0.100	N	ICI/ADR-RE	S 27.0	68.3	33.3	0.078	
SNB-19	38.6	38.6	43.9	Х	Ν	1DA-MB231	28.6	>100	44.7	Х	
SNB-75	46.4	56.8	>100	Х	H	IS578T	45.4	60.6	46.6	>1	
U251	28.2	50.1	43.1	0.063	Ν	1DA-MB-43	5 29.0	16.4	19.0	>1	
5.Melanoma					Ν	1DA-N	30.6	22.1	19.4	0.030	
LOXIMVI	31.3	47.4	44.7	0.026	В	T-54	35.2	43.7	45.4	66.0	
MALME-3M	53.0	74.4	78.1	>1	Т	-47D	11.0	88.7	57.4	22.0	
			<u></u>								

Table 2. In vitro cytotoxicity of the compounds 1c, 2b and 2c against 60 human cancer cell lines.

The X mark indicates not tested and the values >100 indicates absence of activity.

3. Discussion

In the preliminary testing of the aryl semicarbazones against 3 human tumour cell lines (Table 1) at a single dose of 11×10^{-4} M, compound 1c of the 4-carboxyphenyl series was active against all

the 3-cell lines and two compounds of the 4-sulfamoylphenyl series (2b and 2c) were active against the breast MCF7 cell line. These three compounds were selected by NCI for further evaluation for antitumour activity in an in vitro human disease-oriented tumour cell line arranged in nine subpanels, representing diverse histologies. Leukemia, colon, ovarian and breast cancer cell lines were relatively more sensitive than were the other cell lines. The GI₅₀ values for these compounds along with the literature data of methotrexate (MTX)^{15,16} are listed in Table 2. For these compounds, no TGI (total growth inhibition) or LC₅₀ (50% cell kill) level was reached in all the cell lines (log TGI and log $LC_{50} > -4.00$, 100μ M being the highest concentration tested). This indicated that the mechanism of antitumoral activity was cytostatic rather than cytotoxic. The nitrobenzylidene derivatives (1c, 2c) showed greater activity than the hydroxybenzylidene derivative (2b) against most of the cell lines. And the p-nitrobenzylidene deivative (1c) was found to be better than the o-nitro derivative (2c). The compound 1c showed GI₅₀ values of 7.85µM, 4.54µM, 11µM and 13.3µM against NCI-H522 (Lung), OVCAR-3 (Ovarian), T-470 (Breast) and K-562 (Leukemia) cell lines respectively. Compounds 1c, 2b and 2c showed greater activity than methotrexate (MTX) against BT-54 breast cancer cell line with GI₅₀ of 35.2µM, 43.7µM, 45.4µM and 66µM respectively. The compound 1c emerged as the most promising antitumour agent with more potency than methotrexate against NCI-H226 (Lung), BT-549 and T-47D (Breast) cell lines. Hence it can be concluded that some aryl semicarbazones could also serve as prototypic molecules for future developments in the anticancer field.

4. Experimental

4.1. Synthesis of compounds

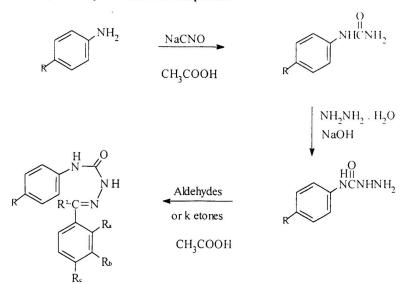

Melting points were determined in open capillary tubes on a Thomas Hoover melting point apparatus and are uncorrected. Elemental analyses were undertaken for all the compounds and were within 0.4% of the calculated values. Spectroscopic data were recorded on the following

Table 3. Ph	ysical constant	s of the	compounds
-------------	-----------------	----------	-----------

$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$									
Compound	d R	R'	Ra	R _c	Rc	Yield	2j M.P.	Mol. For.	R _f ^a
1a	СООН	H	OH	Н	Η	52	201	C15H13N3O4	0.88
1 b	СООН	Н	Cl	Н	Н	54	280	C15H12N3O3Cl	0.41
1c	СООН	Н	Н	Н	NO ₂	56	299	C15H12N4O5	0.65
2a	SO ₂ NH ₂	Н	Н	Н	Н	53	143	C14H14N4O3S	0.55
2b	SO2NH2	Н	ОН	Н	Н	66	207	C14H14N4O4S	0.65
2c	SO ₂ NH ₂	Н	NO_2	H	Н	75	163	C14H13N5O5S	0.55
2d	SO2NH2	Н	Η	OCH3	OH	76	137	C15H16N4O5S	0.58
2e	SO ₂ NH ₂	Н	Н	Η	N(Me)2	74	191	C ₁₆ H ₁₉ N ₅ O ₃ S	0.50
2f	SO ₂ NH ₂	CH3	Н	Н	Н	66	147	$C_{15}H_{16}N_4O_3S$	0.58
2g	SO ₂ NH ₂	СНз	Н	Н	ОН	64	149	C15H16N4O4S	0.57
2h	SO2NH2	CH3	Η	Η	NH2	54	122	C15H17N5O3S	0.71
21	SO ₂ NH ₂	Н	Н	-OCH:	20-	71	183	C15H14N4O5S	0.67
2j	SO2NH2	-	-	-	-	59	152	C13H18N4O3S	0.46

^aIn TLC eluant for compounds **1a-c** and **2a** was benzene and for other compounds **2b-j** benzene : ethanol (9.8:0.2).

The spectral data of a representative compound (**1b**) was as follows: IR (KBr): 3450 (NH), 3440-3370 (OH of COOH), 3300-3240 (CONH), 1690 (C=O of COOH), 1640 (C=O), 1590 (C=N), 840 cm^{-1.1}H-NMR (CDCl₃) δppm: 5.8 (s, 1H, ArNH, D₂O

Scheme. Synthetic protocol of the compounds

instruments: IR, Jasco infrared spectrometer; ¹H-NMR, Jeol Fx 90Q FT-NMR spectrometer (90MHz) and were consistent with the proposed structures. TLC was carried on silica gel chromatograms.

4.1.1. Preparation of 4-carboxyphenyl semicarbazones (1a-c)

The 4-carboxyphenyl semicarbazide was prepared as reported by Pandeya et al.³ Equimolar quantities (0.003mol) of 4-carboxyphenyl semicarbazide and appropriate aldehyde were refluxed in ethanol in presence of glacial acetic acid for 1-2h. On cooling, the precipitate was obtained and recrystallized with 95% ethanol to give **1a-c**.

exchangeable), 6.9 (s, 1H, Carbimino H), 7.2-7.6 (m, 8H, ArH), 8.84 (s, 1H, COOH), 9.01 (s, 1H, CONH, D₂O exchangeable).

4.1.2. Preparation of 4-sulfamoylphenyl semicarbazones (2a-j)

Equimolar quantities (0.005mol) of 4-sulfamoylphenyl semicarbazide and the appropriate aldehyde or ketone were refluxed in ethanol in presence of glacial acetic acid for 1-3h. The product obtained after cooling was filtered and recrystallized with 95% ethanol.

The spectral data of a representative compound 2b was as:

IR (KBr): 3450, 3300-3240 (NH), 1640 (C=O), 1590 (C=N), 1499, 1314, 1160 (S=O) and 840 cm⁻¹; ¹H-NMR (CDCl₃) δppm: 5.89 (s, 1H, ArNH, D₂O exchangeable), 6.83 (s, 1H, Carbimino H), 7.2-7.7 (m, 9H, aromatic OH), 7.65 (bs, 2H, SO₂NH₂), 9.81 (s, 1H, CONH, D₂O exchangeable).

4.2. Biological Evaluation

4.2.1. NCI in vitro Cytotoxicity Assay

The NCI uses the sulforhodamine B assay for assessing the cytotoxicity of test agents in their panel of 60 cell lines¹⁷. Briefly, cell lines were inoculated into a series of 96-well microtitre plates, with varied seeding densities depending on the growth characteristics of particular cell lines. Following a 24-h drug-free incubation, test agents were added routinely at five 10-fold dilutions with a maximum concentration of 10⁻⁴M. After 2 or 6 days of drug exposure, the change in protein stain optical density allowed the inhibition of cell growth to be analyzed.

Acknowledgement

We are grateful to NCI Developmental Therapeutics Program for the antitumour evaluation.

Reference

- 1. Cotti L., (1940) Biochem. Terap. Sper. 27, 366; (1943) C.A. 37, 4421.
- 2. Dimmock J. R., Baker G. B., (1994) Epilepsia 35(3), 645.

- 3. Pandeya S. N., Aggarwal N., Jain J. S., (1999) Pharmazie 54, 300.
- 4. Pandeya S. N., Mishra V., Singh P. N., Rupainwar D. C., (1998) Pharmacol. Res. 37, 17.
- Fedorova O. V., Mordovskoi G. G., Rusinov G. L.; Ovchinnikova I. G., Zueva M. N., Kravchenko M. A., Chupakhin O. N., (1998) Khim.-Farm. Zh. 32(2), 11.
- Wang Y., Cai S. X., Lan N. C., Keena J. F. W., Illyin V. I., Weber E., WO 98 47,869 (1998)
 C. A. 26, P343416v.
- 7. Schulze W., Jungstand W., Gutsche W., Wohlrabe K., Horn G., (1978) Pharmazie 33, 111.
- 8. Fichtner J., Arnold W., (1983) Pharmazie 38, 30.
- Dimmock J. R., Kirkpatrick D. L., Negrave L. E., Russel K. L., Pannekock W. J., (1991) Can. J. Pharm. Sci. 16, 1.
- Gugova R., Raikov Z., Zakhariev S., Demirov G., Todorov D., Harionova M., (1989) Drugs Exp. Clin. Res. 15, 497.
- Schaffner K., Traxler P., Zimmermann M., Wehrli W., Scmidtappin K. H., EP 183649, (1986) C. A. 105, 152929j.
- 12. Vancurova J., Krepelka J., Rezabez K., Melka M., CS212670, (1985) C. A. 102, P2037042.
- 13. Brzozowski Z., (1998) Acta Pol. Pharm. 55(3), 233.
- 14. Conti G. M., Gaozza C. H., (1996) Farmaco 51(6), 419.
- Rosowsky A., Wright J. E., Vaidya C. M., Bader H., Forsch R. A., Mota C. E., Pardo J., Chen C. S., Chen Y. N., (1998) J. Med. Chem. 41, 5310.
- 16. Rosowsky A., Papouli A.T., Forsch R. A., Queener S. F., (1999) J. Med. Chem. 42, 1007.
- 17. Boyd M. R., Paull K. D., (1995) Drug Development Res. 34, 91.

Received May 3rd, 2000 Accepted August 28th, 2000