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Abstract–The analysis of a lossless helical slow-wave structure (SWS)
using equivalent circuit approach, reported elsewhere, had been carried
out for the fundamental mode only. This is essentially used to pre-
dict the transmission line parameters. Moreover, in the analysis the
effect of permittivity on the radial propagation constant has not been
considered. The radial propagation constant was considered to be same
over the different structure regions. In this paper, the analysis has
been developed for the space-harmonic modes considering different ra-
dial propagation constant over different structure regions. Due to it,
the present analysis becomes more general, accurate and capable of
dealing with a wide range of structure parameters. The dispersion re-
lation developed here in terms of the equivalent line parameters for a
lossless structure, namely, shunt capacitance per unit length and series
inductance per unit length for the space-harmonic modes, as a special
case, passes on to those obtained earlier by considering same radial
propagation constants over different structure regions and for the fun-
damental mode. Besides the dispersion characteristics, characteristics
impedance has also been predicted in terms of line parameters. The
results presented here in terms of the structure parameters can be used
for structure design and performance evaluation as well as for the con-
trol of any space harmonic of interest. The present analysis has also
been validated with those experimental values reported elsewhere.
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1. INTRODUCTION

The helix, a non-resonant electromagnetic structure, finds widest ap-
plication both in civil and defence when used as a slow-wave structure
(SWS) in a wideband traveling-wave tube (TWT). The performance
characteristics of the helix, like, power, gain, bandwidth, etc. can be
considerably improved by suitably tailoring its design and with the
help of modern technological approaches.

In a practical TWT, helix is held in a position by a number of dielec-
tric rods/bars symmetrically arranged around the helix and the whole
is enclosed in a metal envelope. Such a support geometry essentially
causes an inhomogeneous loading of the helix [1–6]. To analyse such
an inhomogeneously loaded helical SWS, two analytical techniques are
frequently used: the field analytical approach [1–6] and the equivalent
circuit analytical approach [7–9]. However, both these analytical tech-
niques yield one the same dispersion relation, the equivalent circuit
analytical approach to be somewhat simple in that. In this approach,
one has to handle at a time only half of the total number of the bound-
ary conditions of the problem in order to obtain a line parameter —
capacitance per unit length or inductance per unit length for a lossless
structure [7] and thus reduces the complexity of the problem.

The equivalent circuit analysis, reported earlier [7–9], is for the ho-
mogeneously loaded helical SWS and handles only the fundamental
mode of the space harmonic and also ignores the effect of inequality of
the radial propagation constant. In this paper, a set of expressions for
the equivalent transmission line parameters have been derived for an
inhomogeneously loaded helix in the sheath model, for the mth mode
of the space-harmonics [10–12], by considering non-uniformity of ra-
dial propagation constant over the structure regions [2], and use them
to determine the dispersion characteristics of the structure to tailor
the device bandwidth or to design space-harmonic devices of inter-
est or to control the undesirable space-harmonic modes. The present
method which is simple, further extended to study another useful
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parameter, namely, the characteristics impedance. However, the in-
teraction impedance of the structure is out of scope from this present
analysis. The analytical results presented here also pass on to those,
reported elsewhere, as a special case, by considering same radial prop-
agation constant and for the fundamental mode only [7–9]. Moreover,
in the analytical results the effect of helix wire/tape thickness [13, 14]
has been ignored but considered in the actual analysis. Finally, the
results for the axial propagation constant of the fundamental mode
has also been validated with those experimental values published in
the literature [15].

2. ANALYSIS

For the analysis let us consider a helix supported by a number of
identical discrete dielectric rods/bars of an arbitrary cross section in a
metal envelope (Fig. 1a). Such a support geometry, in general, causes
an inhomogeneous loading and may be analysed in a model in which
the discrete supports are azimuthally smoothed out into n number
of continuous dielectric tube regions of effective permittivity values —
the value of n may be increased for the desired convergence accuracy
[3] (Fig. 1b). Considering the rf quantities associated with the mth
mode to vary as exp j(ψt − βmz + mθ) , one may write the following
expressions for the components of the electric (E) and magnetic (H)
field intensities in the different regions of the structure in the cylindrical
co-ordinate (r, θ, z) system for the mth mode in sheath-helix model
[10, 13]:

Ez,m,p = [Am,pIm{γm,pr} + Bm,pKm{γm,pr}] ,
Hz,m,p = [Cm,pIm{γm,pr} + Dm,pKm{γm,pr}] ,

Eθ,m,p = −
[(

mβm

rγ2
m,p

)
(Am,pIm{γm,pr} + Bm,pKm{γm,pr})

+
(

jωµ0

γm,p

) (
Cm,pI

′
m{γm,pr} + Dm,pK

′
m{γm,pr}

)]
,

Hθ,m,p =
[(

jωε0ε
′
r,p

γm,p

)
(Am,pI

′
m{γm,pr} + Bm,pK

′
m{γm,pr})

−
(

mβm

rγ2
m,p

)
(Cm,pIm{γm,pr} + Dm,pKm{γm,pr})

]
,
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(a) (b)

Figure 1. Cross section of an inhomogeneously loaded helix supported
by (a) arbitrarily-shaped dielectric bars and (b) its equivalent analyt-
ical model.

Er,m,p =
[(

jβm

γm,p

)
(Am,pI

′
m{γm,pr} + Bm,pK

′
m{γm,pr})

−
(

mωµ0

rγ2
m,p

)
(Cm,pIm{γm,pr} + Dm,pKm{γm,pr})

]

and

Hr,m,p =
[(

mωε0ε
′
r,p

rγ2
m,p

)
(Am,pIm{γm,pr} + Bm,pKm{γm,pr})

+
(

jβm

γm,p

)
(Cm,pI

′
m{γm,pr} + Dm,pK

′
m{γm,pr}

]
, (1)

where p refers to a region of the structure (Fig. 1b). Am,p, Bm,p, Cm,p,
and Dm,p are the field constants. γm,p (= (β2

m − ε′r,pk
2)1/2) is the ra-

dial propagation constant of pth region, k (= ω(µ0ε0)1/2) and βm (=
β0 + m cot ψ/a) being the free space and axial propagation constants
of the structure, respectively. ψ and a are the pitch angle and the
mean radius of the helix, respectively, and ε′r,p (= 1+(εr −1)Âs,p/Âp)
represents the effective relative permittivity [1–4] of the pth of the n
effective dielectric tube regions into which the discrete supports are
azimuthally smoothed out (Fig. 1), Âp being the cross-sectional area
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of the entire pth tube, Âs,p the cross-sectional area of the actual dis-
crete supports in the pth tube region, and εr the relative permittivity
of the support material, m represents the mode of the sheath helix.
Im{γm,pr} and Km{γm,pr} represent the modified Bessel functions of
order m of the first and second kinds, respectively, the prime indicat-
ing their derivative with respect to the argument.

In the analytical model, considered here, has n + 2 regions (Fig.
1b): the free-space region (p = 1, ε′r,1 = 1, 0 ≤ r ≤ a) inside the
winding radius (r = a) of the helical sheath, the free- space gap
(p = 2, ε′r,2 = 1, a ≤ r ≤ b0) between the sheath and the begin-
ning (r = b0) of the dielectric regions, to take into account the finite
helix wire/tape thickness [13, 14] (= 2(b0 −a)) , and n dielectric tube
regions. Out of (4n + 8) field constants relevant to these (n + 2) re-
gions, Bm,1 and Dm,1 become equal to zero to satisfy the condition
that the fields are to be finite at the axis (r = 0) of the structure,
giving (4n + 6) non-zero field constants. The relevant boundary con-
ditions for the problem are: (i) the sheath helix boundary conditions,
at r = a [11], (ii) the boundary conditions related to the continuity of
the tangential components of the electric and magnetic field intensities
at each of the interfaces (r = bp) between the discrete tube regions
(between the pth and (p + 1)th), and (iii) the boundary conditions
that the tangential components of the electric field intensities are null
at the metallic boundary (r = bn = b). With the help of the bound-
ary conditions, the remaining (4n + 6) field constants can be grouped
into two: one comprising of Am,p and Bm,p — expressed in terms
of a single constant, namely, Am,1 and the other of Cm,p and Dm,p

— expressed in terms of a single constant, namely, Cm,1 . Using the
sets of boundary conditions at the sheath helix (r = a) , one may
express Am,1 and Cm,1 in terms of Iza and Iθa , the axial and az-
imuthal components of sheath-helix current, respectively. The axial
and azimuthal electric fields at the sheath helix (r = a) are then ex-
pressed in terms of Am,1 and Cm,1, respectively, and hence in terms
of Iza and Iθa, respectively. These field expressions can now be con-
verted into the transmission line equations, from which, one can get
the expressions for the capacitance per unit length Ce,m and induc-
tance per unit length Le,m of the structure after a lengthy algebraic
formulations as [10] (Appendix A):

Ce,m = C0,mαc,m, (2)
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and
Le,m = L0,mα1,m. (3)

Where C0,m and L0,m occurring in (2) and (3), respectively, are the
expressions for the transmission line parameters of the mth mode of
the space-harmonics for a helix in free- space and are given as:

C0,m =
(

2πβmε0

γ2
m

) ((
γ2

ma + m2
)
cot ψ

m + aβm cot ψ

)(
1 − mβm cot ψ

γ2
ma

)−1

· (Im{γma}Km{γma})−1 , (4)

L0,m = −
(

βmµ0 cot2 ψ

2π

)((
γ2

ma + m2
)
cot ψ

m + aβm cot ψ

)−1(
1 − mβm cot ψ

γ2
ma

)−1

· I ′m{γma}K ′
m{γma}, (5)

and αc,m, α1,m are the functions of structure parameters, and are
given as:

αc,m =
(

1 +
Pm,0Im{γma}
Qm,0Km{γma}

)−1

, (6)

α1,m =
(

1 +
Sm,0I

′
m{γma}

Rm,0K ′
m{γma}

)
, (7)

Where γm (= γm,1 = γm,2) = (β2
m − k2)−1/2 is the radial propaga-

tion constant of the free-space region 0 ≤ r ≤ a and a ≤ r ≤ b0.
Pm,0, Qm,0, Rm,0, and Sm,0 are given by:
For 2 ≤ p ≤ n

Pm,p−2 =
[(

ε′r,p
Km{γm,p+1bp−2}

Im{γm,pbp−2}
− γm,p

γm,p+1
ε′r,p+1

K ′
m{γm,p+1bp−2}
I ′m{γm,pbp−2}

)
Pm,p−1

+
(
ε′r,p

Im{γm,p+1bp−2}
Im{γm,pbp−2}

− γm,p

γm,p+1
ε′r,p+1

I ′m{γm,p+1bp−2}
I ′m{γm,pbp−2}

)
Qm,p−1

+
mβm

ωε0bp−2γm,p

(
1 −

γ2
m,p

γ2
m,p+1

)

·
(

Rm,p−1Km{γm,p+1bp−2} + Sm,p−1Im{γm,p+1bp−2}
I ′m{γm,pbp−2}

)]

· Im{γm,pbp−2}I ′m{γm,pbp−2} (8)
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Qm,p−2=−
[(

ε′r,p
Km{γm,p+1bp−2}
Km{γm,pbp−2}

− γm,p

γm,p+1
ε′r,p+1

K ′
m{γm,p+1bp−2}

K ′
m{γm,pbp−2}

)
Pm,p−1

+
(
ε′r,p

Im{γm,p+1bp−2}
Km{γm,pbp−2}

− γm,p

γm,p+1
ε′r,p+1

I ′m{γm,p+1bp−2}
K ′

m{γm,pbp−2}

)
Qm,p−1

+
mβm

ωε0bp−2γm,p

(
1 −

γ2
m,p

γ2
m,p+1

)

·
(

Rm,p−1Km{γm,p+1bp−2} + Sm,p−1Im{γm,p+1bp−2}
K ′

m{γm,pbp−2}

)]

· Km{γm,pbp−2}K ′
m{γm,pbp−2} (9)

Rm,p−2 =
[(

Km{γm,p+1bp−2}
Im{γm,pbp−2}

− γm,p

γm,p+1

K ′
m{γm,p+1bp−2}
I ′m{γm,pbp−2}

)
Rm,p−1

+
(

Im{γm,p+1bp−2}
Im{γm,pbp−2}

− γm,p

γm,p+1

I ′m{γm,p+1bp−2}
I ′m{γm,pbp−2}

)
Sm,p−1

+
mβm

ωµ0bp−2γm,p

(
1 −

γ2
m,p

γ2
m,p+1

)

·
(

Pm,p−1Km{γm,p+1bp−2} + Qm,p−1Im{γm,p+1bp−2}
I ′m{γm,pbp−2}

)]

· Im{γm,pbp−2}I ′m{γm,pbp−2} (10)

and

Sm,p−2 = −
[(

Km{γm,p+1bp−2}
Km{γm,pbp−2}

− γm,p

γm,p+1

K ′
m{γm,p+1bp−2}

K ′
m{γm,pbp−2}

)
Rm,p−1

+
(

Im{γm,p+1bp−2}
Km{γm,pbp−2}

− γm,p

γm,p+1

I ′m{γm,p+1bp−2}
K ′

m{γm,pbp−2}

)
Sm,p−1

+
mβm

ωµ0bp−2γm,p

(
1 −

γ2
m,p

γ2
m,p+1

)

·
(

Pm,p−1Km{γm,p+1bp−2} + Qm,p−1Im{γm,p+1bp−2}
K ′

m{γm,pbp−2}

)]

· Km{γm,pbp−2}K ′
m{γm,pbp−2} (11)

where
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Pm,n−1 =Km{γm,n+2bn−1}Im{γm,n+1bn−1}

·
[
γm,n+1

γm,n+2
ε′r,n+2

(
1 − I ′m{γm,n+2bn−1}Km{γm,n+2b}

K ′
m{γm,n+2bn−1}Im{γm,n+2b}

)

· K ′
m{γm,n+2bn−1}

Km{γm,n+2bn−1}
−ε′r,n+1

(
1−Im{γm,n+2bn−1}Km{γm,n+2b}

Km{γm,n+2bn−1}Im{γm,n+2b}

)

· I ′m{γm,n+1bn−1}
Im{γm,n+1bn−1}

−
mβmγm(1 − γ2

m,n+1/γ2
m,n+2)

ω2µ0ε0 cot ψε′r,nε′r,n+1bn−1γm,n+1

·
(

Pm,0Km{γma} + Qm,0Im{γma}
Rm,0K ′

m{γma} + Sm,0I ′m{γma}

)

·
(

1 − Im{γm,n+2bn−1}K ′
m{γm,n+2b}

Km{γm,n+2bn−1}I ′m{γm,n+2b}

)]
(12)

Qm,n−1 = − Km{γm,n+2bn−1}Km{γm,n+1bn−1}

·
[
γm,n+1

γm,n+2
ε′r,n+2

(
1 − I ′m{γm,n+2bn−1}Km{γm,n+2b}

K ′
m{γm,n+2bn−1}Im{γm,n+2b}

)

· K ′
m{γm,n+2bn−1}

Km{γm,n+2bn−1}
−ε′r,n+1

(
1−Im{γm,n+2bn−1}Km{γm,n+2b}

Km{γm,n+2bn−1}Im{γm,n+2b}

)

· K ′
m{γm,n+1bn−1}

Km{γm,n+1bn−1}
−

mβmγm(1 − γ2
m,n+1/γ2

m,n+2)
ω2µ0ε0 cot ψε′r,nε′r,n+1bn−1γm,n+1

·
(

Pm,0Km{γma} + Qm,0Im{γma}
Rm,0K ′

m{γma} + Sm,0I ′m{γma}

)

·
(

1 − Im{γm,n+2bn−1}K ′
m{γm,n+2b}

Km{γm,n+2bn−1}I ′m{γm,n+2b}

)]
(13)

Rm,n−1 = − Km{γm,n+2bn−1}Im{γm,n+1bn−1}

·
[
γm,n+1

γm,n+2

(
1 − I ′m{γm,n+2bn−1}K ′

m{γm,n+2b}
K ′

m{γm,n+2bn−1}I ′m{γm,n+2b}

)

· K ′
m{γm,n+2bn−1}

Km{γm,n+2bn−1}
−

(
1 − Im{γm,n+2bn−1}K ′

m{γm,n+2b}
Km{γm,n+2bn−1}I ′m{γm,n+2b}

)

· I ′m{γm,n+1bn−1}
Im{γm,n+1bn−1}

−
mβmε′r,nε′r,n+1(1 − γ2

m,n+1/γ2
m,n+2)

γmbn−1γm,n+1

·
(

Rm,0K
′
m{γma} + Sm,0I

′
m{γma}

Pm,0Km{γma} + Qm,0Im{γma}

)

·
(

1 − Im{γm,n+2bn−1}Km{γm,n+2b}
Km{γm,n+2bn−1}Im{γm,n+2b}

)]
(14)
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and

Sm,n−1 =Km{γm,n+2bn−1}Km{γm,n+1bn−1}

·
[
γm,n+1

γm,n+2

(
1 − I ′m{γm,n+2bn−1}K ′

m{γm,n+2b}
K ′

m{γm,n+2bn−1}I ′m{γm,n+2b}

)

· K ′
m{γm,n+2bn−1}

Km{γm,n+2bn−1}
−
(
1−Im{γm,n+2bn−1}K ′

m{γm,n+2b}
Km{γm,n+2bn−1}I ′m{γm,n+2b}

)

· K ′
m{γm,n+1bn−1}

Km{γm,n+1bn−1}
−

mβmε′r,nε′r,n+1(1 − γ2
m,n+1/γ2

m,n+2)
γmbn−1γm,n+1

·
(

Rm,0K
′
m{γma} + Sm,0I

′
m{γma}

Pm,0Km{γma} + Qm,0Im{γma}

)

·
(

1 − Im{γm,n+2bn−1}Km{γm,n+2b}
Km{γm,n+2bn−1}Im{γm,n+2b}

)]
. (15)

Once the expressions for the line parameters for a loss less structure,
namely, Ce,m and Le,m are obtained, the dispersion relation of the
structure can be obtained from the transmission line equation as:

β2
m = ω2Le,mCe,m (16)

Finally, by substituting (2) and (3) in (16) one gets the dispersion
relation of the structure for the mth mode of the space-harmonics as
follows:

(
1 − mβm cot ψ

γ2
ma

)2

(α1,mαc,m)−1Im{γma}Km{γma}

+
(

k cot ψ

γm

)2

I ′m{γma}K ′
m{γma} = 0. (17)

Similarly, the characteristics impedance Ze,m of the structure, can also
be predicted as:

Ze,m = (Le,m/Ce,m)0.5 (18)

The values of Le,m and Ce,m are given in (3) and (4), respectively.
The expressions for the interaction impedance [2–6] are out of scope
here.

Special Case:

Here, it is of interest to mention that from the dispersion relation
(17) — for an inhomogeneously loaded helix in the sheath-model, one
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can get the same dispersion relation for an inhomogeneously loaded
helix in the tape-model [2] without going through rigorous field analy-
sis, by multiplying both sides of (17) by sin(βnδ/2)/(βnδ/2) and then
summing up the equation from − ∝ to + ∝ . Moreover, on substitut-
ing γm,1 = γm,2 = . . . = γm,p = . . . = γm,n+2 = γm, and m = 0 (that
is for the fundamental mode), the expressions for the line parameters
(2) and (3) and hence the dispersion relation (17) passes on to those
obtained earlier [8].

3. RESULTS AND DISCUSSION

It is of interest to study the effects of the various support parame-
ters on the equivalent circuit parameters of the helical SWS, namely,
the inductance per unit length (Le,m) (Fig. 2) and the capacitance
per unit length (Ce,m) (Fig. 3). These effects on the circuit parame-
ters are reflected on the other important parameters of the structure,
namely, the characteristics impedance (Ze,m) (Fig. 4) and the axial
propagation constant (βm) (Fig. 5). The results presented here are
for the first space-harmonic, that is, m = ±1 including the funda-
mental mode, which are relevant to the amplification in a TWT or
to the prevention of unwanted backward-wave oscillation therein. The
structure parameters which have been found significantly influencing
the results are the inhomogeneity of the structure and the proximity
of the envelope with respect to the helix.

It is found from the Figs. 2a, 3a, 4a, and 5a, the inhomogeneity fac-
tor χ (= ε′r,p/ε′r,p−1; p ≤ 3 ≤ n + 2) significantly affects the structure
parameters. The value of the inhomogeneity factor χ < 1 and > 1
corresponds to the effective relative permittivities of the equivalent di-
electric tube regions decreasing or increasing radially outward from the
helix, respectively. The values predicted by the present approach for
the first positive space harmonic (m = +1) in respect of Le,m, Ze,m

increase and of Ce,m decreases at faster rate, respectively, and for the
first negative space harmonic (m = −1) the value of Le,m decreases
and values of Ze,m and Ce,m increase as expected. The values of
the structured parameters obtained by this present approach for the
space-harmonic modes (m = −1 and or +1) increases or decreases
depending upon χ < 1 or > 1 . The metal envelope to helix separation
(b/a) , also significantly affects these line parameters corresponding to
m = +1 and m = −1 . As the envelope is brought closer to the helix
i.e. with the decreases in the value of b/a , or with the increase of
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Figure 2. Frequency response of equivalent series inductance per unit
length (Le,m) of an inhomogeneously dielectric loaded helix in a metal
envelope, taking (a) χ (solid line for 0.9 and broken line for 1.1) (a =
0.825 mm, b0 = a, ε′r,3 = 2.0, b/a = 1.75, cot ψ = 0.8, tape width-to-
pitch ratio = 0.50, n = 10), and (b) b/a (solid line for 1.5 and broken
line for 2.5) (a = 0.825 mm, b0 = a, ε′r,3 = 2.0, χ = 1.1, cot ψ = 8.0,
tape width-to-pitch ratio = 0.50, n = 10) as the parameters (Line
with squares for m = −1, line with circles for m = 0, and solid lines
for m = +1).
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Figure 3. Frequency response of equivalent shunt capacitance per unit
length (Ce,m) , taking (a) χ, and (b) b/a as the parameters, for iden-
tical situations as given in Fig. 2.
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Figure 4. Frequency response of characteristics impedance (Ze,m) ,
taking (a) χ, and (b) b/a as the parameters, for identical situations
as given in Fig. 2.
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Figure 5. Frequency response of axial propagation constant (βe,m),
taking (a) χ, and (b) b/a as the parameters, for identical situations
as given in Fig. 2.
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helix loading the value of Le,m and βm increases for m = +1 and
decreases for Ce,m and Ze,m However, for m = 0 or −1 , these effects
are reversed. It is found in general that for both the approaches, Le,m

and Ze,m decrease with frequency for m = +1 and m = 0 and Ce,m

decreases for m = +1 and increases for m = 0 . However, the effect
of m = −1 on the parameters is reversed. This is due to the decrease
of βma or γma for m = −1 which will not compensate the increase
in βma or γma for m = +1 and hence the effects are reversed for
m = −1 .

Experimental Validation

It is worth validating the present analysis with those experimental
results for the axial propagation constant of the fundamental mode (ze-
roth order), reported elsewhere. The results predicted by the present
analysis for the fundamental mode (m = 0) of the axial propaga-
tion constant β0 , closely agree with those obtained from [15] (Fig. 6).
The axial propagation constant β0 has been obtained by changing the
phase velocity vp (= ω/β0) . For validation of the present theory with
experimental results, practical structures, namely, rectangular bar and
circular rod supports has been considered. Moreover, helix thickness
has also been considered (Fig. 6).

4. CONCLUSION

The present simple and elegant analysis of a helical structure includes
the space harmonics considering axial periodicity of the sheath helix
[12], the finite helix thickness [13, 14], the structure inhomogeneity for
the dielectric supports deviating from the simple wedge geometry [4]
from and the non-uniformity of radial propagation constant over the
structure cross section. This makes the present analysis more gen-
eral and capable of dealing with a wide range of structure parameters.
This analysis shows its potential to suppress unwanted space-harmonic
modes in high voltage and millimeter-wave TWTs or to design space-
harmonic devices. Though the results presented here are for the first
space-harmonic mode only, it can be evaluated for any mode of space-
harmonic of interest. In fact, the results converges for m ∼ ±3 or
±4 . Importantly, the present analysis gives the method of evaluat-
ing the transmission line parameters for the mth mode of a sheath
model for a dielectric-loaded metal envelope structure in a practical
configuration for helix TWTs.
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Figure 6. Comparison between the theoretical (solid line) and exper-
imental (line with circles) [15] values of fundamental mode of axial
propagation constant (zeroth order) considering typical structure di-
mensions including helix thickness (s = (b0 − a)) . (a) a = 2.95 mm,
s = 0.138 mm, b = 5.13 mm, pitch angle = 10.12◦, tape width =
1.27, εr = 1.0, n = 15 , (b) a = 1.465 mm, s = 0.125 mm, b =
2.92 mm, pitchangle = 9.50◦, tape width = 0.89, εr = 5.2, number
of supports = 3, n = 15 .
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Figure 6. (c) a = 0.826 mm, s = 0.063 mm, b = 1.449 mm, pitch
angle = 6.4◦, tape width = 0.127, εr = 9.0, n = 15) .

APPENDIX A

With the help of (4n + 6) boundary conditions and field expressions
one can express the axial electric field (Ez) and the azimuthal electric
field (Eθ) intensities at the sheath helix radius (r = a) in terms
of the axial and the azimuthal components of sheath helix current,
respectively, as:

Eza = PcIza, (A.1)
Eθa = QcIθa, (A.2)

where

Pc =
(

jγ2
m

2πωε0

)(
1−mβm cot ψ

γ2
ma

)(
1− P0Im{γma}

Q0Km{γma}

)
Im{γma}Km{γma},

(A.3)
and

Qc =
(

jωµ0

2π

)(
1−mβm cot ψ

γ2
ma

)−1(
1+

S0I
′
m{γma}

R0K ′
m{γma}

)
I ′m{γma}K ′

m{γma}.
(A.4)
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These electric field intensities (A.1) and (A.2) are expressed in terms
of circuit potential V and vector potential A as follows:

E(z,θ)a = −(∇V )(z,θ) −
∂A(z,θ)

∂t
, (A.5)

suffix (z, θ) representing axial (z) and or azimuthal (θ) components.
In the cylindrical coordinate system (A.5) can be written as:

E(z,θ)a = − ∂V

∂(z, θ)
−

∂A(z,θ)

∂t
, (A.6)

assuming that the rf quantities vary as exp j(ωt − βmz − mθ), one
may express (A.6) as:

Eza = j(βmV − ωAz), (A.7)
Eθa = −j(mV + ωAθ). (A.8)

Further, the vector potential A and the scalar potential V are related
through

�∇ · �A + µ0ε0
∂V

∂t
= 0, (A.9)

expanding (A.9) in the cylindrical coordinate system, and since there
is no sheath helix current in the radial direction, i.e., Ar = 0, one may
express (A.9) as:

jmAθ/a − βmAz + ωε0µ0V = 0. (A.10)

With the help of boundary condition (Eza + Eθa cot ψ = 0) at the
sheath helix, r = a, and using (A.7) and (A.8) one may express the
azimuthal component of the vector potential Aθ in terms of scalar
potential and axial component of the vector potential Az as:

Aθ =
(βm − m cot ψ)V − ωAz

ω cot ψ
. (A.11)

Substituting (A.11) in (A.10) and then in (A.7) one can express Eza

in terms of circuit potential as:

Eza = jV

[
m + aβm cot ψ

(γ2
ma + m2) cot ψ

]−1

, (A.12)
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with the help of (A.12) and (A.1), the axial component of the sheath
helix current expressed in terms of circuit potential V as:

Iza = j

(
V

Pc

) [
m + aβm cot ψ

(γ2
ma + m2) cot ψ

]−1

. (A.13)

Similarly, the expression for the azimuthal component of sheath helix
current can be written as:

Iθa = −j

(
V tanψ

Qc

) [
m + aβm cot ψ

(γ2
ma + m2) cot ψ

]
. (A.14)

Finally, with the help of telegraphist equation (for a loss less structure),
(A.13) and (A.12) and also with the help of the boundary condition
Iθa sinψ = Iza cos ψ and after a lengthy algebraic formulations one can
get the expressions for shunt capacitance per unit length and series
inductance per unit length as:

Cem = C0mαcm, (A.15)
Lem = L0mα1m. (A.16)
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