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Chapter 3  

STUDY OF REGULARIZED STATISTICAL 

APPROACHES FOR CT/PET/SPECT 

IMAGE RECONSTRUCTION 

In this chapter, various regularization priors have been studied and fo-

cus on improving statistical iterative reconstruction algorithms by incorporating 

a suitable prior knowledge of the object being scanned. This chapter is divided 

into the following sections and sub-sections. Section 3.2 formulates the back-

grounds of reconstruction problem and introduces some notations of the EM 

method. Sub-Section 3.3 describes the proposed hybrid method using fusion of 

regularization term AD with MLEM.  Sub-Section 3.3.1 presents the first pro-

posed model based on the selection of priors for SIR method with their result 

and analysis discussion. Sub-section 3.3.2 presents the second proposed a new 

PDE based EM model adapted to poisson noise for medical image reconstruc-

tion their result and analysis discussion. Section 3.4 presents the overall discus-

sion about simulation and results of both the proposed models with their quali-

tative and quantitative analysis and in the last section 3.5, final conclusion of 

this chapter are presented.  

3.1. Introduction 

Medical image reconstruction algorithms play a significant role in the image 

quality by using spatial regularization that penalizes image intensity difference 
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between neighboring pixels. In literature many image reconstruction algorithms 

have been described for CT/PET (Qi J et. al., 2006). Statistical image recon-

structions (SIR) algorithms substantially improve the image quality as compared 

to the conventional filtered back-projection (FBP) method (J. Devaney, 1982) 

for various clinical tasks. SIR based maximum likelihood expectation maximi-

zation (MLEM) algorithm (Shepp and Vardi, 1982) produces images with better 

quality than analytical techniques. It can better use of noise statistics, accurate 

system modeling, and image prior knowledge. MLEM estimates the objective 

function that is being maximized (log-likelihood) when the difference between 

the measured and estimated projection is minimized. There have been further 

refinements of the SIR with introduction of ordered subset expectation maximi-

zation (OSEM) (Hudson and Larkin, 1994) that uses a subset of the data at each 

iteration, thereby producing a faster rate of conversion.  

Although, likelihood increases, the images reconstructed by classical MLEM 

are still very noisy because of ill-posed nature of SIR algorithms. During recon-

struction process, poisson noise effectively degrades the quality of reconstructed 

image. Regularization is therefore required to stabilize image estimation within 

a reconstruction framework to control the noise propagation and to produce a 

reasonable reconstruction. Generally, the penalty term is chosen as a shift-

invariant function that penalizes the difference among local neighbouring pixels. 

The regularization term incorporates prior knowledge or expectations of 

smoothness or other characteristics in the image, which can help to stabilize the 

solution and suppress the noise and streak artifacts. Various regularizations have 

been presented in the past decades based on different assumptions, models and 

knowledge. Although some of them were initially proposed for SIR of CT, they 

can be readily employed for PET. This regularization term is used to stabilize 

the image estimation. To incorporate prior knowledge or expectations of 

smoothness in the image, which encourage preservation of the piecewise con-

trast region while eliminating impulsive noise, but the reconstructed images still 

suffer from streaking artifacts and poisson noise.  

Numerous edge preserving priors have been proposed in the literature (Chen 

Y et. al., 2006; Denisova NV et.al., 2004; Chlewicki W et. al.,  2004; Perona 

and Malik, 1990; Rajeev Srivastava et. al., 2013; Liang Z et. al., 1989; Nunez J 
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et. al., 1990; Fessler, 2006; Herman and Levitan, 1987; Chen G-H et. al., 2008; 

Chun I Y et. al., 2013; Kang D et. al. 2013; Wang G et. al., 2012; Z. G. Gui et. 

al., 2012; D. Kazantsev et. al., 2012) to produce sharp edges while suppressing 

noise within boundaries. A wide variety of methods such as the quadratic mem-

brane (QM) (Chen Y et. al., 2006) prior, Gibbs prior (Geman and Geman, 

1984), entropy prior (Denisova NV et.al., 2004; Liang Z et. al., 1989; Nunez J 

et. al., 1990), Huber prior function (Chlewicki W et. al.,  2004), Compressed 

sensing (CS) based prior (Chun I Y et. al., 2013), Total Variation (TV) prior 

(Panin VY et. al., 1999), Block-Matching 3D (BM3D) (Kang D. et. al., 2013), 

Probabilistic Patch Based prior (PPB) (Wang G et. al., 2012), and Anisotropic 

Diffusion (AD) (Perona and Malik, 1990) etc. regularization priors are used as a 

penalty function in previous studies.  In order to suppress the noise and preserve 

edge information simultaneously, image reconstruction based on AD has be-

come the interesting area of research (Z. G. Gui et. al., 2012; D. Kazantsev et. 

al., 2012; Qian He et. al., 2014; Hsiao I-T et. al., 2003). Zhi-guo Gui and Jiawei 

He, proposed a regularized maximum likelihood algorithm (Z. G. Gui et. al., 

2012) that combined MLEM with AD filter during post-processing reconstruc-

tion (named PML_NewAD) and could obtain acceptable reconstructed results. 

However, PML_NewAD cannot remove the isolated noise and preserve edge 

information accurately due to the defects of P-M diffusion model (D. Kazantsev 

et. al., 2012). Qian He and Lihong Huang also follow the same trends and pro-

posed (named PML_AMD) (Qian He et. al., 2014) that combined median AD 

with MRP during post-processing. 

Here in this chapter, we introduces and evaluates a hybrid approach to regu-

larize which dominate in CT/PET images. Our model is looking equivalent to 

that proposed in (Z. G. Gui et. al., 2012), and (Qian He et. al., 2014) but it’s dif-

ferent in the sense that we focus on edge-preserving regularizer (AD) with 

MLEM i.e. (MLEM+AD), which produces fast reconstructed results in an effi-

cient manner. However, unlike (Z. G. Gui et. al., 2012; Qian He et. al., 2014) 

which treat post-processing reconstruction steps our approach is based on an el-

egant formulation that use priors (filters) within the reconstruction process rather 

than using at the end after the reconstructed image is ready.  
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3.2. Background 

Maximum likelihood Expectation Maximization (MLEM) has become one of 

the most widely used iterative methods for CT/PET reconstruction (Qi J et. al., 

2006, Fessler, 2006; Herman and Levitan, 1987; Lange K et. al., 1987). The 

significant merit of this algorithm is that it can achieve much better quality im-

ages with lesser number of views needed in FBP (J. Devaney, 1982).Here a 

standard model of photon emission tomography as described in (Qi J et. al., 

2006) is used and the measurements follow independent Poisson random distri-

bution as follows: 

( )( ) , 1,...,y Poisson y f i Ii i =PoissonPoisson     (3.1) 

where yi is the measured projectional data which are counted by the i
th

 detector 

during the data collection,  f  represents the estimated image vector and the ele-

ment of f denotes the activity of image. In iterative methods, the calculation of 

the system matrix during the reconstruction process is essential and given as fol-

lows: 

( )
J

i ij j

j

y f a f=å       (3.2) 

where, { }ijA a=  is the weight matrix or system matrix which represents the prob-

ability of an event in pixel i being detected by LOR (Line Of Response) j. Sys-

tem matrix is a key factor in MLEM algorithm which models the relationship 

between the measured projection data and the estimated image vector. The prob-

ability distribution function (pdf) of the Poisson noise reads: 

( )
( )

( )( )exp ,
!

yiy fI iP y f y fiyi i

= -Õ             (3.3) 

and the corresponding log-likelihood can be described as follow: 

       
( ) ( )log log

1 1 1

I J J
L f P y f y a f a fi ij j ij j

i j j

æ öæ ö
= = -ç ÷å å åç ÷ç ÷ç ÷= = =è øè ø

   (3.4) 
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where I is the number of detector pairs, J is the number of the objective image 

pixels, and P(y|f) is the probability of the detected measurement vector y with 

image intensity f.  

The formula of MLEM algorithm can thus be described as:  

( )
( 1)

*
1 *

1 1

k
f y anj i ijk

f n mj kia a fij ij j
i j

+ = å
=å å

= =

     (3.5) 

where
( )1k

jf
+

is the updated image after (k+1)
th 

iteration. Although, MLEM algo-

rithm is better than filtered back-projection (FBP) algorithm (Shepp and Vardi, 

1982), its major problem is that different features converges at different speeds, 

and as the number of iteration increases, they tend to computationally intensive. 

Additionally, MLEM algorithm is also ill-posed. To deal with the issue of ill-

posedness nature of MLEM, various edge preserving regularization priors have 

been proposed in the literature (Wang G et.al., 2012; Z. G. Gui et. al., 2012; D. 

Kazantsev et. al., 2012; Qian He et. al., 2014; Hsiao I-T et. al., 2003) to produce 

sharp edges while suppressing noise within boundaries.  

Further, we propose to incorporate a regularization function in the above re-

construction problem Eq. (3.5) to remove noise and blur in an images, while 

preserving edges (Rajeev et. al., 2013; Hsiao I-T et. al., 2003). This can be 

achieved by casting the reconstructed problem adapted to poisson noise by the 

following general optimization framework as:  

 ( ) ( )( )ˆ arg max
0

f L y f U f
f

b= -
³      

(3.6)
 

where U(f) is the image roughness penalty. Conventionally the image roughness 

is measured based on the intensity difference between neighboring pixels: 

( ) ( )
j

jk j k

j k W

U f w f ff
Î

= -åå     (3.7) 

where ( )tj is the penalty function. The regularization parameter β controls the 

trade-off between data fidelity and spatial smoothness. When β goes to zero, the 
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reconstructed image approaches the ML estimate. The main reason for the insta-

bility of traditional regularizations is that the image roughness is calculated 

based on the intensity differences may not be reliable in differentiating sharp 

edges from random fluctuation due to noise. When the intensity values contain 

noise, some possible choices of penalty function ( )tj  are categorized as follows: 

A common choice of ( )tj  in PET image reconstruction is the quadratic func-

tion: 

( ) 21

2
t tj =

      
(3.8) 

A disadvantage of the quadratic prior (Chen Y et. al., 2006) is that it may 

over-smooth edges and small objects when a large β is used in order to smooth 

out noise in large regions.  

The second type of independent prior is based on the entropy function (Den-

isova NV et.al., 2004), whose corresponding energy function U (μ) can be de-

scribed as: 

( ) lnj j

j

t t tj =å      (3.9) 

Basically, these two priors have the tendency to smooth both high-frequency 

edge regions and low-frequency background, so they cannot explicitly enforce 

smoothness in the image (Fessler, 2006). 

The third type of independent prior is the Gaussian prior (Levitan and Her-

man, 1987), whose energy function has the form: 

( )
( )2

22

jj

j j

t t
tj

s

-
=å     (3.10) 

where 
jt and 2

js are the mean and variance respectively, and when 0jt =  it re-

duces to Eq. (3.8). 
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Similarly, the Gamma prior (Lange K et. al., 1987) allows only non-negative 

image values and can be a more natural model for an image: 

( ) ( ), ,jj j

j

t t tj r s=å    (3.11) 

where ( ), ,jj jt tr s is a Gamma PDF. 

Basically, the Gaussian and Gamma priors encourage the neighbouring pixel 

values to be close to the mean image. Thus, the determination of the mean image 

has a significant effect on the reconstructed image. Some researchers investigat-

ed a new approach to estimate the mean image during the reconstruction using 

either the median or the mean of neighbouring pixels. However, in these cases, 

the priors are no longer truly independent. 

Another form of priors assumes that the attenuation maps are locally smooth, 

i.e., the neighbouring pixels tend to have similar values. One simple mathemati-

cal model that can describe this property is the Markov random field (MRF) 

model, also known as Gibbs distribution (Geman and Geman, 1984):   

( ) ( )1
expP f U f

Z
b= -é ùë û     (3.12) 

where Z  is a normalizing constant, and the Gibbs energy U(f) is a weighted 

sum of potential functions (Wernick, 2004): 

( ) ( )
1 2 3 1 2 3 1 2 3, , ... ... , , ,...

jm m m W m m m m m m

j

U f w f f ffÎ=å å  (3.13) 

where 
jW represents the MRF window of the jth pixel, and pixels indexed by 

m1, m2, m3, ..., are the neighbouring pixels within the MRF window; m1,m2,m3 

... w denotes the weighting coefficient (indicating interaction degree) among the 

pixels; andf denotes a positive potential function. The choice of potential func-

tion is very critical since it strongly determines the smoothness properties of the 

MAP estimate. One common choice of f  in image reconstruction is the quadrat-

ic function, ( ) 2 2,f D = D and in this case, Eq. (3.13) becomes: 
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( ) ( )
2

1

2
j

jm j m

j m W

U f w f f
Î

= -å å     (3.14) 

which corresponds to the Gaussian MRF (GMRF) prior (Yuxiang Xing et. 

al., 2004) that has been widely used for SIR. A major drawback of the GMRF 

prior is that it can excessively penalize the differences between neighbouring 

pixels when 
jf and mf  fall across a discontinuous boundary in the image, thus 

may lead to over smoothing of edges and fine structures in the reconstructed im-

age. To mitigate this issue, some researchers replaced the quadratic potential 

function with non-quadratic functions that increase less rapidly for sufficiently 

large differences. In this way, the corresponding priors are expected to remove 

noise while retaining sharp edges in the reconstructed image. 

Another family of convex function prior is q-generalized Gaussian MRF pri-

or (q-GGMRF) (18), which can be described as: 

( ) ( )1 2
1

p

p q
q pf

d -

D
D = £ £ £

+ D
    (3.15) 

By giving specific parameter values, it can become:  

( )

( )
( )

( )

( )

( )

2

2

, 2,

, 1,

, 1 2,

, 1, 2,
1

, 1 2,
1

p

p

p q

q p Gaussian prior

q p median pixel prior

q p generalized Gaussian MRF

q p approximate Huber prior

q p q generalized Gaussian MRF

f
d

d -

ìD = =
ï
D = =ï

ï
D < = £ï

ïï DD = = =í
+ Dï

ï
Dï £ < £ -

ï + Dï
ïî

(3.16) 

In Median root Prior (MRP), intensity differences among neighboring pixels 

are not penalized. Instead, the penalty is set according to how much the central 

pixel differs from the local median. Mathematically, the MRP can be described 

as (Alenius S, Ruotsalainen, 1989): 

( )
( )( )

( )

2

j j

j j

f median f
U f

median f

-
=å     (3.17) 
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where ( )jmedian f is the local median. Therefore, no penalty is applied when 

the image is locally monotonic, and only non-monotonic local changes among 

neighbouring pixels are penalized. Although the MRP captures significant edges 

while encouraging preservation of locally monotonic regions, it is a heuristic 

empirical method and not convex in theory. 

Recently, a new signal reconstruction theory, compressed sensing (CS) (Chen 

G-H et. al., 2008; Chun I Y et. al., 2013), has been rigorously formulated to ac-

curately reconstruct a signal from much fewer samples than that is required by 

the Nyquist sampling theorem (Candes E J et. al., 2006). The main idea of CS is 

that most signals are sparse in appropriate orthonormal systems, that is, a major-

ity of their coefficients are close or equal to zero. Researchers tried to apply this 

theory to accurately reconstruct CT images at a much lower angular-sampling 

rate than the Nyquist sampling, but the CT images are generally not sparse in 

their original pixel representation (Chun I Y et. al., 2013). 

Mathematically, the CS method reconstructs an image via the Lp norm (0 ≤ p 

< 2) minimization. Herein, for a vector θ, ||θ||0 represents the L0 norm of vector θ 

which counts the number of nonzero components of θ, and ||θ||p (p > 0) denotes 

the Lp norm of vector θ which is defined as: 

1 p

p pp

j jp p
j j

q q q q
æ ö

= ® =ç ÷
è ø
å å    (3.18) 

It should be noted that ||θ||p is not actually a norm when 0 ≤ p < 1 because it is 

not sub-additive, yet we still refer it as norm following convention (sort of abuse 

of terminology). 

The next choice is total-variation (TV) which is widely used penalty function 

in image reconstruction that avoids smoothing of salient details (Panin VY et. 

al., 1999), which is given as the 1-norm of the gradient of the solution. Regular-

ization with the TV penalty results in smoothing of weakly varying details and 

preservation of salient (having strong variation) details such as edges: 

( ) 2t t T Tj = + -
     

(3.19) 
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where, T is a thresholding  parameter. Another methods to reduce the amount of 

noise present in the images, we used a high performance spatially adaptive 

Block matching 3D filter (BM3D), (Kang D et. al., 2013) which is used for the 

noise removal. BM3D is based on the assumption that a noise-free image spec-

trum of similar image fragments group can be better approximated as a combi-

nation of a few spectrum elements than a single image fragment (Wang and Qi, 

2012), proposed a patch-based regularizations. 

Traditional regularizations penalize image roughness based on the intensity 

difference between neighboring pixels, but the pixel intensity differences may 

not be reliable in differentiating sharp edges from random fluctuation due to 

noise. To address this issue, (Wang and Qi 2012) proposed patch-based regular-

izations which utilize neighborhood patches instead of individual pixels to 

measure the image roughness. Since they compare the similarity between patch-

es, the patch-based regularizations are believed to be more robust in distinguish-

ing real edges from noisy fluctuation. The patch-based roughness regularizations 

are defined as: 

( ) ( ) ( )( )2,
1

j

j

n

jk j k c
j k SW

U f w g f g fj
= Î

= -å å
  

(3.20) 

where 1jkw = , or 1jk jkw d=  and ( )jg f and ( )kg f is the feature vector consisting of in-

tensity values of all pixels in the patch centered at pixel j and k respectively. 

3.3. Proposed Models 

In this section, a new hybrid framework (here referred to as: MLEM+AD) to 

reduce number of iterations as well as to improve the quality of reconstructed 

images is proposed. This method speedup the reconstruction process using a sta-

tistical EM algorithm called maximum likelihood expectation maximization 

(MLEM). Additionally, nonlinear partial differential equation (PDE) based dif-

fusion process, anisotropic diffusion (AD) prior (Perona and Malik, 1990), is 

combined to maximize the likelihood function. The proposed method solves 

computational time, slow convergence as well as ill-conditioned problem of it-

erative methods. Numerical simulation experience demonstrates that proposed 
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penalized reconstruction algorithm is superior to the MLEM without prior and 

MLEM with QM, Huber, TV, BM3D, PPB priors.  

Finally, hybrid method is applied to CT/PET tomography for obtaining 

optimal solutions. Generally, the SIR methods can be derived from the maxi-

mum a posteriori (MAP) estimation, which can be typically formulated by an 

objective function consisting of two terms named as “data-fidelity” term, models 

the statistics of projection measurements, and “regularization” term, penalizes 

the solution. It is an essential criterion of the statistical iterative algorithms that 

the data-fidelity term provides an accurate system modeling of the projection 

data. The regularization or penalty term play an important role in the successful 

image reconstruction. Further, the next section presents, penalizaed or regular-

ized maximum likelihood reconstruction algorithm using various choice and 

evaluation of priors for CT/PET.  

3.3.1. On the choice and evaluation of regularization priors in 

penalized maximum-likelihood image reconstruction for 

CT/PET 

Computed Tomography and Positron Emission Tomography (CT/PET) is an ef-

fective and indispensable imaging tool. The noise contained in the data meas-

ured by imaging instruments is primarily Poisson type and decreasing the noise 

has the potential to optimize the quality of CT/PET images. In this section, ani-

sotropic diffusion (AD) prior based maximum-likelihood expectation maximiza-

tion (MLEM) method is proposed for the reconstruction of CT/PET images from 

noisy projection data. The proposed method is well capable of dealing with the 

problem of ill-posedness arising due to sole use of MLEM algorithm. Further, 

this section investigates and presents the quantitative analysis of various priors 

available in reconstruction literature to deal with the problem of ill-posedness 

and makes a recommendation for selecting an appropriate prior to be used with 

MLEM.  The various priors investigated include Quadratic Membrane (QM) 

prior, Huber Prior, Total Variation (TV) based prior, Block-Matching 3D 

(BM3D), Gaussian probabilistic patch based prior (PPB), and anisotropic diffu-

sion  (AD) based prior. The MLEM based reconstruction method was tested 

along with the combination of different above mentioned priors one at a time for 
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different phantom test data sets. From obtained results, it is observed that the 

anisotropic diffusion (AD) based prior with MLEM is performing better in com-

parison to other priors and produces the good quality reconstructed images.  

The proposed hybrid model as shown in Fig.3.1 

 

Fig. 3.1: The proposed Hybrid Model 

The basic AD equation is: 

( )f
div C f f

t

¶
= Ñ Ñé ùë û¶                

(3.21)
 

where f is the image, t is the iteration step, fÑ is the local image gradient and 

( )C fÑ is the diffusion function, which is a monotonically decreasing function of 

the image gradient magnitude, sometimes called the ‘edge-preserving’ function. 

The following diffusion functions were first proposed by Perona and Malik 

(1990): 

( )
2

1 exp
f

C f
K

é ùÑæ ö= -ê úç ÷
è øê úë û

 

 or ( )
2

2 1 1
f

C f
K

æ Ñ ö
= + ç ÷

è ø        

(3.22) 

where K is a gradient threshold that controls the edge sensitivity of the model. It 

is a user-specified constant which determines the threshold of the local gradients 

and controls the edge sensitivity of the filter. However, P-M diffusion model can 

remove isolated noise and preserve the edges to some extent it cannot preserve 

the edge details effectively and accurately. To address the limitation of AD 

method, here we use median filter to the result obtained by AD method (29) in 

each iteration and the discretised final model is given as follows: 

( )( )1

, ' , '

j

k k k k

j j j j j j

j N

f f t C f f+

¢Î

= +D Ñ Ñå
    

(3.23)
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For the discretized versions of Eq. (3.23) to be stable, the von Neumann 

analysis (10) shows that we require
2

1
4( )

t

f

D
<

D
. If the grid size is set to 1=Df  then 

tD < ¼ i.e.( tD < 0.25). Therefore, the value of tD is set to 0.25 for stability of 

Eq. (3.23). The proposed hybrid cascade framework is shown in Fig. 1. Towards 

the end, we refer to the proposed algorithm as an efficient hybrid approach for 

PET/SPECT image reconstruction and outline it as follows. 

Proposed Algorithm: Reconstruction using MLEM algorithm
 

trueX   = true projections, a = system matrix  

ny      = updated image after n
th 

MLEM iteration,  

n

calcx   = calculated projections at n
th 

iteration. 

1. Set n = 0 and chose any random image (zero image density or random 

image density).  

2. Calculate Projections: find projections after n
th 

 iterations using updated 

image:                         *n T n

calcx a y=        

Error Calculation:-Find error in calculated projection (element-wise division) 

   
n
calc

true
error

x

X
X =     

 Back projection:-Back-project the error onto image 

   
n
error

n
error XaX *=     

3. Normalization:- Normalize the error image(element-wise division) 

   å
=

j
ij

n
errorn

norm
a

X
X     

4. Update:- update the image 

   
n
norm

nn Xyy *.1 =+
    

Prior: Use AD as prior 

5. Set m = 0 and apply Anisotropic Diffusion 

   ( )11
1

++
+ = n

m
n
m yADy     

6. Put m = m+1 and repeat till m = 3; 

7. Put n = n+1, repeat with EM reconstruction. 

In our algorithm, we monitor the SNR during each loop of secondary recon-

struction. The processing is stopped when SNR begins to saturate or degrade 

from any existing value. 
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3.3.1.1 Simulation and Results Analysis  

To demonstrate the validity of the proposed algorithm (MLEM+AD) we com-

pared the reconstructed images using the proposed algorithm with different algo-

rithm such as MLEM without prior and MLEM with QM, Huber, TV, BM3D, 

PPB priors in computer simulation. These algorithms were tested by two differ-

ent computer generated CT phantoms such as modified PET mathematical phan-

tom and standard thorax phantom image as shown in Fig. 3.2. We simulate the 

sinograms with total counts amount 6x10
5
. The simulated data is all Poisson dis-

tributed and all assumed to be 64 radial bins and 64 angular views evenly spaced 

over 180
0
. Projections are calculated mathematically. The standard thorax test 

image is gray-scale image of size 128x128, with coverage angle ranging from 0 

to 360 º
 
with rotational increment of 2 º to 10 º. The resultant reconstructed im-

age obtained from different algorithms is given in Fig. 2 & 5. For simulation 

study MATLAB 2013b software was used on PC with Intel(R) Core (TM) 2 

Duo CPU U9600 @ 1.6GHz, 4.00 GB RAM, and 64 bit Operating system.  

  

Fig 3.2: Modified Sheep-Logan mathematical phantom (64x64pixels) & 

Standard thorax medical image (128x128 pixels) 

The performance of the proposed hybrid method (MLEM+AD) for image re-

construction defined by Equation (3.23) has been evaluated both qualitatively 

and quantitatively in terms of various performance measurements metrics such 

as: signal-to-noise ratio (SNR), the root mean square error (RMSE), the correla-

tion parameter (CP) (Rajeev et. al., 2013), and mean structure similarity index 

map (MSSIM) (Rajeev et. al., 2013). The SNR and RMSE give the error 

measures in reconstruction process. The correlation parameter (CP) is a measure 

of edge preservation in the reconstructed image. The MSSIM is a measure of 

preservation of luminance, contrast and structure of the image after the recon-

struction process, which is necessary for medical images.  
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Fig. 3.3: The PET test Phantom with different reconstruction methods. Projection 

including 10% uniform Poisson distributed background events.  
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(c) 

  

(d) 

Fig.3.4: The Plots of (a) SNR, (b) RMSE, (c) CP, and (d) MSSIM along with  

No. of Iterations for Test case 1. 
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(b) 

Fig.3.5: The Line Plots of (a) Shepp-Logan head Phantom and (b) Thorax image  

 

 

Fig. 3.6: The SPECT elliptical Test Phantom with different reconstruction methods. 

Projection including 10% uniform Poisson distributed background events. 
 

Table 3.1: Performance measures for the reconstructed images using Proposed 

(MLEM+AD) and other methods for Test case 1 

Performance 

Measures 
MLEM 

MLEM 

+QM 

MLEM 

+Huber 

MLEM 

+TV 

MLEM 

+BM3D 

MLEM 

+PPB 

MLEM+AD 

(Proposed) 

SNR 14.5846 14.5898 14.3568 14.9474 14.7936 14.6635 20.7875 

RMSE 0.0771 0.770 0.791 0.739 0.0752 0.0764 0.0377 

CP 0.7675 0.7718 0.7588 0.7860 0.7774 0.7714 0.9671 

MSSIM 0.9999 0.9999 0.9998 0.9999 0.9999 0.9999 0.9999 
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(d) 

Fig. 3.7: The Plots of (a) SNR, (b) RMSE, (c) CP, and (d) MSSIM along with  

No. of Iterations for Test case 2. 

Table 3.2: Performance measures for the reconstructed images using Proposed 

(MLEM+AD) and other methods for Test case 2 

Performance  

Measures  

MLEM MLEM 

+QM 

MLEM 

+Huber 

MLEM 

+TV 

MLEM 

+BM3D 

MLEM 

+PPB 

MLEM+AD 

(Proposed) 

SNR 5.5856 5.3628 5.1948 5.1785 5.6333 4.9893 8.5556 

RMSE 31.2321 32.0435 32.6695 32.7307 31.0613 33.4517 22.1871 

CP 0.3213 0.3213 0.3282 0.3342 0.3430 0.3239 0.4064 

MSSIM 0.4649 0.4611 0.4545 0.4657 0.4662 0.4526 0.5902 

For implementation of the proposed method i.e. (MLEM+AD) algo-

rithms Eq. (14) were used. A Poisson noise of magnitude 10% is added to pro-

jections. The value of Ñ  was set to 0.24 and value of conductivity coefficient k 

(kappa) was set to 0.033 to 1.0 for different test cases and within each MLEM 

step, AD is run for 3 iterations. The reconstructed images generated by different 

algorithms are shown in Fig.3.3 & 3.6. From the figures, we can see that the 

proposed algorithm has well performance of noise removal and edges preserva-

tion especially the thin edges and detail information. At the same time, we can 

observe that the MLEM+AD algorithm overcomes the shortcoming of streak 

artifacts and the reconstructed image is more similar to the original phantom. 

The algorithm is run for 1000 iterations and graphs are plotted for SNR, 

RMSE, CP, and MSSIM along with number of iterations for different algorithms 

are shown in Fig. 3.4 and 3.7 for two different test cases. From Fig. 3.4 and 3.7, 

it is observed that the SNR values associated with the hybrid method is always 

higher than that produced by other algorithms such as traditional MLEM with-

out prior and MLEM with QM, Huber, TV, BM3D, PPB priors, which indicates 
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that the hybrid framework significantly improves the quality of reconstruction in 

terms of SNR.  Further it is observed for both the test cases that the proposed 

method is producing better reconstructed image in (100-150) iterations whereas 

other methods are taking much higher number of iterations.  

Figure 3.4 & 3.7, shows that the RMSE values of proposed method are higher 

in comparison to other methods which indicate that the proposed method is per-

forming better. Fig. 3.4 and 3.7, show that the CP values of proposed method are 

higher and close to unity in comparison to other methods which indicate that the 

proposed method is also capable of preserving the fine edges and structures dur-

ing the reconstruction process. Fig. 3.4 and 3.7, shows that the MSSIM values of 

proposed method is higher which indicate that better reconstruction, it also pre-

serves the luminance, contrast and other details of the image during the recon-

struction processes. Table 3.1-3.2; shows the quantification values of SNRs, 

RMSEs, CPs, and MSSIMs. The comparison table indicates that the proposed 

reconstruction method produce images with prefect quality than other recon-

struction methods in consideration.  

Figure 3.5, shows the error analysis of the line profile at middle row for the 

test case. To check the accuracy of the proceeding reconstructions, line plots 

were drawn, where x-axis represents the pixel position and y-axis represents 

pixel intensity value. Line plots along the mid-row line through the reconstruc-

tions produced by different methods show that the proposed method can recover 

image intensity effectively in comparison to other methods. Both the visual-

displays and the line plots suggest that the proposed model is preferable to the 

existing reconstruction methods.  

In view of above analysis and discussions for above simulation study under 

consideration it is observed that the proposed hybrid iterative framework con-

verges very fast, producing the better visual results having less reconstruction 

error, higher SNR values, better edge, structure, luminance, and contrast preser-

vation capabilities in comparison to other standard methods in consideration. In 

the next section, we propose a PDE based EM algorithms in variational frame-

work adapted to poisson noise for medical image reconstruction. 
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3.3.2. A PDE based Expectation Maximization algorithm 

adapted to Poisson noise for Medical Image Reconstruction 

The noise contained in the data measured by CT/PET imaging instruments is 

primarily Poisson type and decreasing the noise has the potential to optimize the 

quality of CT/PET images. But the traditional iterative reconstruction algorithms 

of CT/PET cannot effectively filter the noise. Recently anisotropic diffusion 

(AD) based nonlinear filter is introduced into tomography reconstruction that 

purports to filter the noise without blurring edges. This section introduces and 

evaluates a hybrid approach to regularized maximum likelihood expectation 

maximization (MLEM) iterative reconstruction technique with Poisson variabil-

ity.  Regularization is achieved by penalizing MLEM with Anisotropic diffusion 

(AD) filter to form hybrid method for CT/PET image reconstruction using par-

tial differential equation (PDE) based variational framework.  

The proposed method in which we use the regularization function )( xÑf to 

be an energy function defined in terms of gradient norm of the image. Here we 

can use the following regularization method was proposed by (Perona & Malik, 

1990). 

    
2

)( xx Ñ=Ñf  ,   (L2 norm)        (3.29)
 

The advantages of this PDE based nonlinear diffusion method is to reduce the 

noise which encourages the intra region smoothing
 
while reserving the sharp 

transition between the two different regions. The anisotropic diffusion penalized 

poisson maximum likelihood estimation is obtained by minimizing following: 
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Therefore, the proposed PDE based model reads as: 
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(3.31) 

The functional )(xE is defined on the set of )(WÎBVx such that )(log 1 WxL and x

must be positive everywhere. 

After applying Euler-Lagrange minimization technique (Rajeev et.al, 2012), 

the Equation (3.31) reads 



86 

 

( ) ( )( )2

1

min

log ,

0, 1,...., ,

M

ii i
i

j

imize

x x Ax b Ax

subject to

x j N

a
=W

ì
ï

Ñ + -í
ï
î
³ =

åò

           
    

(3.32)

  
Using Euler Lagrange minimization for the optimization problem given by 

Eq. (3.31), the optimality condition is given as follows:  
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yj ≥ 0,  xj ≥ 0,   j = 1, . . . . . . , N, 

or equivalently 
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After plugging the EM step from Eq.(3.28), the Eq. (11) reads  

0.( ( ) ) EM

j jx xc x x a a+ - =Ñ Ñ Ñ     (3.35)  

The Final proposed model reads as follows: 

     

1
,.( ( ) )EM

j jx x c x x
a

= - Ñ Ñ Ñ
  

(3.36)
 

The second term in Equation (3.36), which is first derivative of log likelihood of 

Poisson probability distribution function (pdf) with respect to estimated image, 

acts as the data attachment term and measures the dissimilarities at a pixel be-

tween observed image and its estimated value obtained during filtering process 

there by making the whole filtering process adapted to noise. 

3.3.2.1 Simulation and Results Analysis  

To demonstrate the validity of the proposed algorithm (MLEM+AD) we com-

pared the reconstructed images using the proposed algorithm with different algo-

rithm such as SART, MLEM and MRP in our computer simulation. These algo-

rithms were tested on different computer generated CT phantoms such as modi-

fied Shepp-Logan phantom and standard thorax phantom image as shown in Fig. 

3.8. We simulate the sinograms with total counts amount 6x10
5
. The simulated 

data is all Poisson distributed and all assumed to be 64 radial bins and 64 angu-

lar views evenly spaced over 180
0
. Projections are calculated mathematically. 
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The standard thorax test image is gray-scale image of size 128x128, with cover-

age angle ranging from 0 to 360 º
 
with rotational increment of 2º to 10º. The re-

sultant reconstructed image obtained from different algorithms is given in Fig. 

3.9 & 3.12. For simulation study MATLAB 2013b software was used on PC 

with Intel(R) Core (TM) 2 Duo CPU U9600 @ 1.6GHz, 4.00 GB RAM, and 64 

bit Operating system.  

 

Fig 3.8: Modified Sheep-Logan mathematical phantom (64x64pixels) &  

Standard thorax medical image (128x128 pixels) 

The performance of the proposed hybrid method (MLEM+AD) for image recon-

struction defined by Equation (14) has been evaluated both qualitatively and 

quantitatively in terms of various performance measurements metrics such as: 

signal-to-noise ratio (SNR), the peak signal-to-noise ratio (PSNR), the correla-

tion parameter (CP) (Rajeev et. al., 2013), and mean structure similarity index 

map (MSSIM) (Rajeev et. al., 2013). The SNR and PSNR give the error 

measures in reconstruction process. The correlation parameter (CP) is a measure 

of edge preservation in the reconstructed image. The MSSIM is a measure of 

preservation of luminance, contrast and structure of the image after the recon-

struction process, which is necessary for medical images.  

For implementation of the proposed method i.e. (MLEM+AD) algo-

rithms Eq. (3.36) were used. A Poisson noise of magnitude 10% is added to pro-

jections. The value of tD  was set to 0.24 and value of conductivity coefficient k 

(kappa) was set to 0.033 to 1.0 for different test cases and within each MLEM 

step, AD is run for 3 iterations. The reconstructed images generated by different 

algorithms are shown in Fig.3.9 & 3.12. From the figures, we can see that the 

proposed algorithm has well performance of noise removal and edges preserva-

tion especially the thin edges and detail information. At the same time, we can 

observe that the MLEM+AD algorithm overcomes the shortcoming of streak 

artifacts and the reconstructed image is more similar to the original phantom. 
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For comparative analysis, the proposed and other standard algorithms 

were run for 1000 iterations to observe the convergence pattern. The algorithm 

is run for 1000 iterations and graphs are plotted for SNR, PSNR, CP, and 

MSSIM along with number of iterations for different algorithms which are 

shown in Figs. 3.10 and 3.13 for two different test cases. From Figs.3.10 and 

3.13, it is observed that the SNR and PSNR values associated with the hybrid 

method is always higher than that produced by other algorithms such as tradi-

tional SART, MLEM and MRP methods which indicates that the hybrid frame-

work significantly improves the quality of reconstruction in terms of SNR and 

PSNR.  Further it is observed for both the test cases that the proposed method is 

producing better reconstructed image in 100-150 iterations whereas other meth-

ods are taking much higher number of iterations.  Fig. 3.10 & 3.13 shows that 

the CP values of proposed method are higher and close to unity in comparison to 

other methods which indicate that the proposed method is also capable of pre-

serving the fine edges and structures during the reconstruction process. Fig. 3.10 

& 3.13 shows that the MSSIM values of proposed method is higher which indi-

cate that better reconstruction, it also preserves the luminance, contrast and other 

details of the image during the reconstruction processes. Table 3.3-3.4; shows 

the quantification values of SNRs, RMSEs, PSNRs, and CPs. The comparison 

table indicates that the proposed reconstruction method produce images with 

prefect quality than other reconstruction methods in consideration. All the pa-

rameters show the same trends of MLEM+AD > MRP > MLEM > SART. Fig-

ure 3.11 and 3.14, shows the error analysis of the line profile at middle row for 

the test case. To check the accuracy of the proceeding reconstructions, line plots 

were drawn, where x-axis represents the pixel position and y-axis represents 

pixel intensity value. Line plots along the mid-row line through the reconstruc-

tions produced by different methods show that the proposed method can recover 

image intensity effectively in comparison to other methods.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.9: The modified Shepp-Logan phantom image reconstructed by different 

algorithms: (a) SART, (b) MLEM, (c) MRP, (d) MLEM+AD 
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(c) 

 

(d) 

Fig.3.10: The Plots of (a) SNR, (b) PSNR, (c) CP, and (d) MSSIM along with No. of 

Iterations for different reconstruction algorithms. 

 

0 100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of Iterations

C
P

 

 

SART

MLEM

MRP

MLEM+AD

0 100 200 300 400 500 600 700 800 900 1000
0.94

0.95

0.96

0.97

0.98

0.99

1

No. of Iterations

M
S

S
IM

 

 

SART

MLEM

MRP

MLEM+AD

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Error Analysis of the Line Profile at middle row

Pixel Position

P
ix

e
l 
In

te
n
s
it
y
 V

a
lu

e

 

 
Original Phantom

SART

MLEM

MRP

MLEM+AD



91 

 

Fig. 3.11 Comparision of Line Plots of reconstructed Modified Shepp-Logan Phan-

tom image using proposed (MLEM+AD) and other methods 

 

Table 3.3: Performance measures for the reconstructed images of Test case 1 

Performance  

Measures 
SART MLEM MRP 

(Proposed) 

MLEM+AD 

SNR 14.7154 18.6479 19.7099 23.1723 

PSNR 70.5598 74.4923 75.5543 79.0168 

CP 0.7732 0.9178 0.9372 0.9864 

MSSIM 0.9999 0.9999 0.9999 1.0000 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.3.12: The real thorax phantom image reconstructed by different algorithms: 

(a) SART, (b) MLEM, (c) MRP, (d) MLEM+AD 

  

Fig. 3.14: Line Plot of standard Thorax phantom image 

Table 3.4: Performance measures for thereconstructed images in Fig. 3.12 
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Performance  

Measures 
SART MLEM MRP 

(Proposed) 

MLEM+AD 

SNR 13.2663 18.4005 19.2487 21.9977 

PSNR 69.6957 74.8299 75.6781 78.4271 

CP 0.7403 0.9336 0.9391 0.9863 

MSSIM 0.9998 0.9999 0.9999 0.9999 

 

Both the visual-displays and the line plots suggest that the proposed model is 

preferable to the existing reconstruction methods. In view of above analysis and 

discussions for above simulation study under consideration it is observed that 

the proposed hybrid iterative framework converges very fast, producing the bet-

ter visual results having less reconstruction error, higher SNR values, better 

edge, structure, luminance, and contrast preservation capabilities in comparison 

to other standard methods in consideration.  

3.4. Discussions  

Statistical image reconstruction methods for Computed Tomography (CT), 

Positron Eemission Tomography (PET) and Single Positron Emission Computed 

Tomography (SPECT) play a significant role in the image quality by using spa-

tial regularization that penalizes image intensity difference between neighboring 

pixels. The chapter introduced the most commonly used quadratic priors, which 

smooth’s both high frequency noise and edge details, which tends to produce an 

unfavorable result while edge-preserving non-quadratic priors tends to produce 

blocky piecewise regions. However, these edges-preserving priors mostly de-

pend on local smoothness or edges. It does not consider the basic fine structure 

information of the desired image, such as grey levels, edge indicator, dominant 

direction and frequency. To address the aforementioned issues of the conven-

tional regularizations/priors, this chapter presented and evaluated a hybrid ap-

proach to regularize maximum likelihood expectation maximization (MLEM) 

iterative reconstruction technique with poisson variability.  

In the second proposed model, regularization was achieved by penalizing 

MLEM with partial differential equation (PDE) diffusion based anisotropic dif-

fusion (AD) prior to form hybrid method (MLEM+AD) that aim to impose an 
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effective edge preserving and noise removing to optimize the quality of 

SPECT/PET reconstructed images. The measured data is corrupted by Poisson 

noise iteratively in the image domain. The proposed hybrid approach was more 

robust than the conventional regularization in differentiating sharp edges from 

random fluctuations due to noise. A comparative analysis of the proposed model 

with some other existing standard methods in literature was presented qualita-

tively and quantitatively using simulated test phantom and standard digital im-

age. An experimental result indicates that the proposed method yields signifi-

cantly improve in quality of the reconstructed images from the projection data. 

The obtained results justify the applicability of the proposed method. This 

method provides comparisons over using 1000 iterations; found that the pro-

posed method provided much improved results. The proposed method needs 

fewer measurements to obtain a good high quality image, which result decrease 

in the missing or incomplete data problem. This method has shown to fetch bet-

ter looking images, improved SNR values and reduced noise levels. For the case 

without regularization, the blurring and dislocating the useful edge information 

of images problem has been increased and the limit of the sequence of iterations 

is also increasing.  

3.5. Conclusion 

In this chapter, various priors have been studied and this chapter focuses on im-

proving statistical iterative reconstruction algorithms by incorporating a suitable 

prior knowledge of the object being scanned. We have presented some statistical 

maximum likelihood (ML) based approach for CT, PET, and SPECT image re-

construction methods. The proposed method investigates and presents various 

choices of regularization priors used in standard SIR reconstruction methods 

like MLE, MRP, and OSEM in literature. Experimental analysis has been per-

formed over own created mathematical test phantoms and benchmark Shepp-

Logan head phantom plus real thorax test phantom. The results have been com-

pared with existing methods using six quantitate measures that are signal-to-

noise ratio (SNR), the root mean square error (RMSE), the peak signal-to-noise 

ratio (PSNR), the correlation parameter (CP), and mean structure similarity in-

dex map (MSSIM). Overcoming the undesirable effects with regularization will 
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lead to smooth out and reduction in the reconstructed images. Therefore, pro-

posed hybrid approach (called MLEM+AD) to regularize which dominates in 

CT images that improve the SNR values. The method has been easily extended 

to three dimensions. Future work includes faster implementation using parallel 

computing, graphical processing units (GPU’s) and application to real data.  

 

 

 

 

 

 

 


