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Abstract: This study presents a comprehensive survey on the reliability evaluation of the electrical network system. The
impacts of integration of new and renewable energy sources (electric vehicle, energy storage system, solar, and wind) on the
reliability of electrical power system (EPS) are discussed. The impacts of these renewable sources have merits/demerits when
these sources are integrated with the conventional electric power system. However, the merits are predominant as it includes
unlimited, free, and cost-effective resources. The recent researches depict that the uncertainties of renewable energy resources
leads to the probabilistic and reliability analyses of EPS. EPS includes offshore and onshore wind farms, micro-grid, energy
storage system, and other high voltage grids. It also contains the failure-prone components related to the power systems. For
the accomplishment of these aspects, the handling methods of uncertainty parameters in generation, transmission, and
distribution systems are discussed. The incorporation of electric vehicles, wind energy system, and energy storage system for
reliability assessment is also discussed briefly. This study also presents the scope of a new research area for the researchers
on the reliability assessment of renewable energy integrated power system.

1 Introduction
Reliability evaluation (RE) is an integral part of the power systems
when generation transmission distribution (GTD) networks are
studied either individually or compositely. This paper is mainly
associated with the RE and improvement of the renewable energy
integrated power systems. The reliability improvements are seen
for electrical network planning and operation when the integration
of renewable sources including electric vehicle (EV), wind turbine
generator, energy storage system (ESS), and photovoltaic (PV) are
incorporated into the main electrical power system (EPS) [1–4].
However, due to the proliferation of renewable sources, an increase
in the uncertain parameters as well as the severity of uncertainty
(also referred to as unreliability) in renewable energy integrated
power system is also observed. Wind power, solar power, EV's
charging and discharging behaviour and their allocation, and
battery energy storage system (BESS) are the uncertainty
parameters [5–9]. These parameters affect the restructuring of the
power system. Thus, a thought process is developed among the
researchers regarding the uncertainty analysis with RE. The
analysis is done to establish a reliable operation. It is observed
from [10] that the research trend on reliability assessments is
increasing tremendously since last decade. The optimal and reliable
working conditions during the three operational stages including
GTD are necessary. Thus, the study on the handling of uncertainty
parameters for the reliability analysis is required. In this context,
Goswami et al. [11] have given a Monte-Carlo Simulation (MCS)
method for evaluating the reliability indicators. These indicators
include average service availability index (ASAI), average service
unavailability index (ASUI), customer average interruption
duration index (CAIDI), system average interruption frequency
index (SAIFI), system average interruption duration index
(SAIDI), expected energy not supplied (EENS), and so on at load
points. The calculation of these indices are accomplished by
simulating the random behaviours. The random behaviours are
classified as failures of control systems, communication systems,
and protection systems, and disturbances like human errors and
lightning of the EPSs. The significance of reliability is thus
described in [12]. A load-based reliability index is introduced to

implement reward and penalty scheme for utility companies to
improve the reliability of the system. The paper also gives a proper
understanding to the readers about the unreliability and its handling
approaches. The reliability improvement and assessment methods
and models are also described for the readers. In this regard, Table
1 is given to analyse the work of previous researches on RE and
enhancement methods of the renewable energy integrated power
systems. 

The important contributions of this paper are that the discussion
on uncertainty handling processes in EPSs is done so far in the
literature. After getting exposure to uncertainties handling analysis,
the RE in distribution systems is properly described by including
EV and BESS. Then reliability improvement methods are
discussed for electrical power distribution systems (EPDSs) and
wind integrated power systems (WIPSs).

The reliability analysis and improvement techniques for EPDS
and WIPS are discussed cumulatively in this paper. Therefore,
authors have discussed the basics of reliability analysis in Section
2, the reliability improvement techniques of EPDSs using EV and
ESS are discussed in Sections 3. Reliability improvement methods
in WIPS are presented in Section 4. In Section 5, reliability impacts
on reactive power, unit commitment and protection system are
described. Conclusions and scope of future work are presented in
Section 6.

2 Unreliability in EPSs
In EPSs, it is essential to consider the uncertain parameters of
renewable energy sources. It is also mentioned that why
uncertainty parameters are needed to be analysed? ‘Uncertainty’
which leads to the unreliability of the system, requires possibilistic
and probabilistic handling approaches. In possibilistic approach,
fuzzy membership functions are used to represent the uncertain
parameters and it is solved with fuzzy arithmetic. In probabilistic
approach, the modelling of uncertain parameters is done by
probability density functions (PDFs) and then analysed with MCS
and point estimate method (PEM). Figs. 1 and 2 show the
classification of uncertainties and their dealing approaches,
respectively [6]. 
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2.1 Possibilistic handling approach

In [40], Zadeh has mentioned the concept of possibilistic modelling
of uncertain parameters. The concept is mainly aimed at the input
uncertain parameters for their fuzzy membership function
representation. The membership function of the input variables is
applied to get the output membership function variables by using
the α-cut method. After getting the membership function, a
centroid method for defuzzification is applied to defuzzify the
variable outputs and produce the crisp output values. In [41–43], it

is seen that the possibilistic methods are applied to handle the
uncertainty parameters of the EPS.

2.2 Probabilistic handling approach

It is a general method to address the uncertainties including wind
power generation, EV dynamics, load, PV generation, and electric
rate in RE of the EPS. Equations (1)–(5) are the PDFs of uncertain
parameters including load, wind power, PV, and electricity price,
respectively. The uncertain parameters are first modelled into PDF
and then solved by probabilistic methods including MCS, PEM,
and scenario-based approach (SBA). According to applications, the
MCS method is further studied as accelerated, sequential, non-
sequential, bayes, and quasi Monte-Carlo methods (MCM) as
discussed in [13, 19, 20]

PDF(L) =
1
2πα

exp −
(L − β)2

2α
2 (1)

where L denotes the apparent power of the load, α is the forecasted
load mean value, β is the apparent power's standard deviation

Table 1 Important attributes of research work on RE in an EPS
S.
No.

Work consideration(s) Method(s) Remarks Ref.

1 To regulate the annual reliability
performance of utilities

Advanced metering infrastructure
architecture

The feeder reliability performance is evaluated by a
proposed utility reward/penalty scheme

[12]

2 Distribution system reliability by
OMS study, expansion planning,

CLPU events

MCS, SMCM, Novel 2-step
algorithm, LSA, GA

SAIFI, SAIDI, CAIDI, AENS, ASAI are calculated,
load curtailments and cost in power system is

minimised to improve the reliability of the distribution
system

[13, 14],
[15, 16],
[17, 18]

3 Reliability improvement using PL,
EV's PL allocation, stochastic traffic

flow and charging load of EVs

V-G programs, non-MCS, car
following models, MCM, Markov

Chain theory, FLS, Dynamic
traffic flow model

The PLs are utilised in reliability improvement, effect
on reliability improvement by integrating PL,

suppression of stochastic disturbances, EV charging
load benefits, reliability cost and SAIDI are minimised

[19, 20],
[21, 22],

[23]

4 Reliability during grid outages SMCM, optimisation function to
minimise the ENS

Reliability of EPDS is improved with V-G and V-H
centralised and dispersed EV charging, respectively

[14]

5 Reliability assessment with MBESS
integration

Markov models verified by MCM,
an AMCM, CCP

Modeling of MBESS and EPDS, EENS and CAIDI are
applied to RE, BESS is integrated to get the efficient

reliability

[24, 25],
[26]

6 Improving reliability by reducing
peak demand and electricity

charges for consumers

PMS algorithm A PMS for an integrated residential PV and ESU is
proposed to improve the reliability

[27]

7 WECS uncertainty and reliability
improvement

MCS, Power law process, RE
approach, condition monitoring
system (CMS), demand side
management (DSM), MCS,

Column and Constraint
Generation (CCG) algorithm

Reliability analysis of WT components is done, PSR
with or without intermittency consideration, cost of

CMS

[28, 29],
[30, 31],
[18, 32]

 

 
S. No. Work consideration(s) Method(s) Remarks Ref.
8 Reliability analysis of the hybrid system Analytical process Reliability indices LOLE and LOEE are calculated for a hybrid

system
[33]

9 To schedule the conventional generator outputs
in response to increase in renewable energy
penetration

GRA Transmission system reliability with renewable energy
penetration is given

[34]

10 EPS incorporates DTR and WF to enhance
reliability

SMCM, ARMA
model

The higher penetration of wind energy may be allowed on
DTR consideration

[35]

11 To avoid the volatility of wind power integration TBDRP, CBDRP The proposed approach examines the effect of DRPs on
LOLP, LOEE, ECOST, OPCOST, and TCOST

[36]

12 Reactive power optimisation problem in active
distribution networks formulated

CCG algorithm To address the uncertainties in WP output, a two-stage robust
reactive power optimisation model is proposed

[37]

13 An increased probability of undesirable
interactions between multiple SIPS

Markov modelling,
SMCM

Procedure to assess the risk of SIPS maloperations and
undesirable interactions between different SIPSs is
implemented

[38]

14 Computation time in evaluating PSR MCM with MLKNN The reliability indices are evaluated for accuracy and analysis
time is obtained for reducing computational burden

[39]

 

Fig. 1  Flow chart of unreliability dealing methods
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PDF(V) =
Sh

Sc

V

Sc

Sh − 1

exp −
V

Sc

Sh

(2)

where Sh and Sc are termed as shape and scale parameters,
respectively, and wind speed is denoted by V , and P(V) is the wind
power generated

P(V) =

0, V ≤ Vin
c ≥ Vout

c

V − Vin
c

Vrated
c − Vin

c , Vin
c ≤ V ≤ Vrated

c

Pr, otherwise

(3)

where Vin
c  and Vout

c  are referred as to cut-in and cut-out speeds,
respectively, Vrated

c  is referred as rated speed of wind turbine (WT),
Pr is power rated for WT

PDF(S) =
Γ(k′ + c′)
Γ(k′)(c′)

S
k − 1(1 − S)c − 1, if 0 ≤ S ≤ 1

0, otherwise
(4)

where k′ and c′ are the parameters of beta distribution and ‘S’ is
the solar irradiation power

PDF(PE) =
1

2παp
exp −

(pE − βp)
2

2αp
2 (5)

where PE denotes electricity price, αp and βp are referred to
standard deviation and the expected value of the electricity price.

The Gaussian PDF representation of uncertain loads which is
modelled as an expected value equals the forecasted value as seen
in (1). It is known that the wind power generated is completely
dependent on the wind speed [44–52]. The modelling of wind
speed data is done as a Weibull function (2) [53, 54]. The PV
power is mainly dependent on the solar irradiation [55–58]. The
solar irradiation is generally modelled as the beta distribution
function as represented in (4). The last-mentioned uncertain
parameter is electricity price [59]. It is also modelled as Gaussian
distribution function whose mean value equals to the forecasted
price [60]. The uncertain parameter modelling is done by common
PDF. Then, probabilistic methods are applied and analysed for
handling the uncertainty as described in [61–71].

In the next section of the paper, the latest researches are
assessed for RE in power system distribution network.

3 Reliability assessment in EPS
PDFs are utilised in handling the uncertainty parameters as
described in Section 2. Reliability function of any system is
defined by using PDF as given in (6) [72]. The EPDSs are the
significant individual contributors to the unreliability of customer
power supply [59]. The EPDSs are mainly recognised as the part of
highest occurring failure events. The reliability with economical
cost must be included in optimal dynamic expansion planning of
EPDS with the proliferation of renewable energy resources [15].
The failures in an EPDSs are having limited effects. Therefore, the
quantitative analyses on the adequacy of other EPDS's designs are
of less concern. Hence, the efforts devoted are still less till date. On
the other side of analysis, it is observed that the statistics of
customer related failures shows the maximum contribution to the
unavailability of supply as set by the electrical utilities. Table 2
shows the mean unavailability of customers index per year. This
table is also referred to as the customer unavailability statistics [73]

R(t) = ∫
t

∞

f (t) ⋅ dt (6)

where R(t) and f (t) are the reliability function and PDF,
respectively, at a time ‘t’.

The important aspects in RE of EPDS are balanced GTD
operation, outage management system (OMS), expansion planning,

allocation of backups, and improvement in maintenance policy. But
due to outage events like cold load pick-up (CLPU) during OMS
study, time-based reliability indices including SAIFI, CAIDI,
energy not supplied (ENS) are evaluated. These events are
improved by using lightning surge algorithm optimisation method
[16]. CLPU events signify that the reliability of the system
decreases. Thus, optimal restoration using the LSA method is
applied to bring reliability indices SAIDI, CAIDI, ENS as close as
a normal system.

The indexes for RE including mean failure rate, mean annual
outage time (or unavailability) and mean outage time are defined.
But these indexes are unable to show the significance or severity of
an EPS outage. Therefore, extra customer-related reliability indices
including ASAI, ASUI, CAIDI, CAIFI, SAIDI, and SAIFI, are
frequently defined for further study. While ENS, average energy
not supplied (AENS), and average customer curtailment index are
the load and energy-related indices. All indices are helpful and
Table 3 shows that the previous researches have used different
reliability indices in the evaluation of power system reliability
(PSR). 

The CRIs are evaluated because the transmission lines, busbars,
isolators, cables, and so on are the series of components in the
radial EPDS. Hence, all series components are required in between
any points of operation in load and supply. Also, the generating
capacity indices, for example loss of load probability (LOLP) and
capacity outage probability indicate the electrical generation is
sufficient or deficient. So, considering all the above facts, this
paper focuses mainly on the RE and improvement methods in
renewable energy integrated EPS. In this context, this section
demonstrates the various reliability improvement methods in the
distribution network of power systems.

3.1 Power system reliability using MCS and multi-label K-
nearest neighbour (MLKNN)

The power system network is well known for its complexity. This
complexity of a power system increases with the integration of
renewable sources into it. The reliability assessment becomes more
important for the renewable integrated power system. The
reliability is analysed by the adequacy and security of the power
system. Security is defined with the dynamic state of the system.
Hence, in most of the cases, adequacy is considered for the PSR

Fig. 2  Sources of unreliability parameters
 

Table 2 Usual unavailability index of customers
Contributor Mean unavailability per customer

per year
Time, min Percent, %

transmission and
generation

0.5 0.5

LV 10.9 12
11 and 6.6 kV 59.5 61
66 and 33 kV 7 8
132 kV 2.1 2
planned shutdowns 16.9 16.5
total 96.90 100
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assessment [77]. The adequacy is described as the supply
fulfilment for the load connected. So, the adequacy of the system is
analysed by using LOLP index for RE. Transmission line flow
constraints and generator outage are accounted for in the LOLP

calculation. Thus, to assess the reliability of the composite power
system, MCS with MLKNN algorithm is used as a state classifier
[39].

MCS with MLKNN algorithm classify the states including
failure and success level at the bus of a composite power system
without performing the optimal power flow (OPF) analysis because
it decreases the computational burden. Some of the researchers
have suggested fuzzy OPF [78], state-space pruning [79], variance
reduction techniques [80] to classify the failure and success states
of the system. Some population-based intelligent search algorithms
including genetic algorithm (GA) [81, 82], particle swarm
optimisation [83], ant colony algorithm [84] are used for state
classification. The pattern classification is also one of the
techniques used for state classification. These techniques are
artificial immune recognition system [85], artificial neural network
[86], least-square support vector machine [87]. The above-
mentioned techniques are used to determine the system states
(success and failure) by incorporating proper classification
technique. Thus, it enhances the computational competency of RE
by decreasing the computational efforts of OPF analysis.

IEEE-30 bus system and IEEE-RTS are compared to calculate
the accuracy in classification and time of computation to evaluate
the composite PSR indices. The indices including success states,
failure states, loss of load, sensitivity, specificity, G-mean, and
analysis time are analysed. The procedures to evaluate these
aspects are mentioned in Fig. 3. The origination of multi-label
intelligence is from text classification problem [88]. Firstly, a
training database is generated by MLKNN with an MCS technique.
Success and failure states are defined by MCS and a dataset is
created. Then the datasets are to be trained by the MLKNN
classifier. The dataset size is obtained by the specific number of
samples (SNS) or the coefficient of variation (COV). SNS or COV
is proportional to the LOLP of the system and it is a sufficient
number to determine the attributes in the input training patterns.
After creating a balanced training pattern, the MLKNN gets
training for the selected group of input and output patterns. After
training the MLKNN classifier, the MCS follows the same
previous steps except for DC-OPF implementation. By following
these steps, the reliability indices are calculated without OPF
calculations which reduces the computational burden and enhance
the system's reliability.

3.2 EPDS reliability assessment using EV

EV has two modes of operations including centralised and
dispersed EV charging. These modes are suggested by Xu and
Chung [14]. In these two modes, residential demands are fulfilled
by vehicle to home (V-H) or/and vehicle to grid (V-G) during the
islanding condition. Further, as a part of planning, the
reconfiguration of electrical network for the PSR improvement is
presented in [89]. The implementation of EVs' V-G programs is
effectively considered in [17] for reliability and adequacy analysis
of EPDSs. A comparative analysis is done and mentioned in Table
4, where it is observed that the reliability improves with EVs
proper mode of scheduled operations. The reliability assessment
techniques and models are discussed in this subsection as follows.

3.2.1 Traffic flow model: It is elaborated under two scenarios.
First scenario is the impact of time interval of reliability statistics
on traffic flow system. Second scenario is the impact on the
stability of traffic system. These scenarios provide the significance
of information reliability on the stability of traffic stream. It is
analysed by using analytic methods [21]. Therefore, the two car-
following models are developed to solve the above-mentioned
problems on optimal velocity [90] and the dynamics of information
reliability. The equations based on car following models are
explained as follows:

dvk(t)
dt

= γ(V(ΔS(t)) − vk(t)) (7)

V(Δsk) =
vmax

2
(tanh(Δsk − sc) + tanh(sc)) (8)

Table 3 Insight on reliability indices and energy resources
utilised in previous literature for reliability improvement in
EPS

Reliability improvement in electrical distribution
system

Paper Reliability indicator Economic
analysis

Energy resource
used

[1] EENS yes wind, PV, battery
[2] SAIDI, SAIFI, CAIDI,

ENS, EENS, AENS,
IEAR

yes wind, PV, battery

[3] LOLP, LOEE yes wind
[14] SAIDI, SAIFI, EENS,

ASAI
no conventional

[15] SAIDI, EENS yes conventional
[16] SAIDI, SAIFI, CAIDI,

ENS
no conventional

[17] AENS no EV
[18] SAIDI, SAIFI, ENS no wind, PV
[22] Information reliability no EV
[23] LOLE, LOEE, EWEB no wind, PV
[24] EENS, CAIDI, ASAI,

ASUI
no MBESS

[25] FMEA no BESS
[26] Optimal scheduling yes MBESS
[30] LOLE, LOLF, LOLP,

LOEE, EDNS
no conventional

[33] LOLE, LOEE no wind, PV, battery
[74] EENS yes MBESS
[75] ENS no wind, PV
[76] LOLP yes PEV

 

Fig. 3  Combined process of MCS method and MLKNN method for
composite PSR

 
Table 4 Approximate value of reliability indices with and
without EVs [14]
Indices V-G V-H V-H with V-G Centralised Dispersed
EENS 53.40 17.30 14.60 14.30 14.20
SAIFI 1.20 1.19 0.70 0.65 0.65
SAIDI 1.70 1.68 1.10 1.00 1.00
ASAI 0.999798 0.999800 0.999870 0.999880 0.999880
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dvk(t)
dt

= γ V ∑
L = 1

P

αLηLΔsk + L − 1(t) (9)

γ is constant which is termed as driver's sensitivity
sk is the distance of kth vehicle
vk is the kth vehicle velocity
Δsk is the head to head distance between k vehicles and its

immediate next vehicle ahead
V( ∗ ) is the expected velocity which is dependent on Δsk

sc is the distance of safety
αL is a variable which shows the information which is shared by

Lth vehicle, if available
ηL is the coefficient of influence of the Pth preceding vehicle on

other vehicles
P is the Pth vehicle which is coming before of present vehicle

k;
where, L < P; L ∈ 1, 2, 3, …, P

Also, EV charging load modelling methods with EV charging
controlling to avoid the power system unreliability are reported in
Table 5 [22]. 

In [21], the information reliability effect is analysed in two
situations. Situation ‘1’ is a stochastic method of traffic flow
model. It has suppressed the disturbances to obtain the stable
vehicular system. Situation ‘2’ is the communication data
availability due to time gap effect on traffic-flow dynamics. It is
seen that a free flow model is achieved if time gap of 5 s is set. The
extension of the vehicular stream into a crimp-anti crimp wave is
achieved when the stochastic period is greater than 25 s.

3.2.2 Monte-Carlo method (MCM) for EV charging: The
charging load of EVs has problems in EPS operation, electricity
market, and planning. It is due to the imbalanced spatial
distribution of EVs. The MCM is suitable in determining the
charging time span and charging power of EV. MCM is completely
dependent on the probabilistic distribution of conventional vehicle.
Thus, improves the reliability of an EPDS. Equations (10) and (11)
describe the charging start time and PDF of daily mileage

f x(y) =

1
σx 2π

exp −
(y − μx)

2

2σx
2 , μx − 12 < y ≤ 24

1
σx 2π

exp −
(y + 24 − μx)

2

2σx
2 , 0 < y ≤ μx − 12

(10)

f z(y) =
1

yσz 2π
exp −

(ln y − μz)
2

2σz
2 (11)

where PE denotes electricity price, αp and βp are referred to
standard deviation and the expected value of the electricity price;
σx, σZ, and μZ are the respective shape parameters.

3.2.3 Markov and fuzzy theory: The Markov chain theory
consists of three parameters including the starting point of time,
residence time, and destination time. These parameters are
described by Markov chain process for each EV as shown in Fig. 4
[91]. It describes the states of the EVs with state transition
probabilities.

On the other hand, fuzzy logic system (FLS) is applied where
the difficulty in assessment of the battery charging state is
observed. Also, FLS is implemented where the parameters like
residence time are to issue a charging decision. Hence, the states of
charging like ‘high’, ‘low’, and ‘medium’ and residence time
‘long’, ‘short’, ‘middle’, are narrated as fuzzy criteria as shown in
Fig. 5. 

3.2.4 MCM for EV dynamics: The EVs are extensively integrated
into the systems including conventional power system, charging
service network, and transportation network. The dynamic models
of EVs are applied in predicting the charging load of a
transportation network station. Also, the MCM is used for driving,

parking, and EV charging load forecasting. The MCS method uses
the queuing theory and the Floyd algorithm for reliability
assessment of the system. The queuing theory algorithm and Floyd
algorithm are applied to find the minimum path from all the initial
point to the endpoint of traffic network [92]. Parking generation
rate and demographic models; and the software on traffic
simulation are also crucial in power system planning and electricity
market development. Also, the operation with EV charging load
modelling leads to resolve the problems like power supply
unreliability, voltage drops, equipment overload, and power loss. In
[22], a proposed model explores and rectifies the EV charging load
modelling limitations. In this reliability handling technique, the
limitations are observed by adopting the methods based on spatial,
temporal, and hybrid uncertainties.

3.2.5 Vehicle-to-home and vehicle-to-grid: The V-H and V-G
are incorporated into the EPDS for reliability assessment. V-G is to
assist the grid during outages by providing the regulation in
frequency and spinning reserve [93–95]. The energy available from
EVs is dependent on the duration of outages, charging requirement
time, and spatial patterns. Electric V-H acts as an energy source
which supplies household demands. EVs are useful when the
power loss along the lines are involved. Then an optimisation
problem is established. The purpose of this optimisation problem is
to get a minimal residual amount of ENS at all nodes. So to
achieve a minimum loss and improved reliability, a non-linear
optimisation method is implemented.

It is also observed that the V-G capability of plug-in EVs
(PEVs) enhances MG reliability. Shams et al. [76] has proposed
mixed-integer non-linear programming (MINLP) to obtain the

Table 5 Usual unavailability index of customers
Temporal dimension Spatial dimension

MCM (i) PDF (ii) differentiating
scenario sampling

the dynamic traffic flow model (i)
traffic network (ii) the Floyd

algorithm
Markov chain theory (i) state
transition theory (ii) state
duration and transition
probability

demographic model (i) regional
population distribution

FLS (i) fuzzy criteria (ii) charging
behaviour decision

parking generation rate model (i)
regional parking demand

traffic simulation software (i)
vehicle individual behaviour

 

Fig. 4  Markov process for EV travelling
 

Fig. 5  Fuzzy logic criteria for EV charging
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optimal planning of MG when PEVs are present. Reliability is
improved at a reduced cost by implementing a suitable charge and
discharge strategy of PEVs. The LOLP and total operational cost
for three cases are mentioned in Fig. 6. Case 1 is considered when
the charging station is not taken. A high power rate charging
station is considered in case 2. Finally, case 3 is taken when an
optimised power rate is considered for a charging station.

3.2.6 Optimisation of EV charging: The aim of non-linear
optimisation [96] is to minimise the losses over the power network
throughout EV charging. The power flow calculation uses the
quadratic programming technique. This technique serves as a most
effective tool. An iterative backward–forward sweep method may
be applied in power flow calculation for better results. On the other
study of optimisation, the interior point method is described to
obtain the optimum values. While in each trial the optimum flow
algorithm is run to get the maximum power imported at each node
of the system [97]. In the EV charging, the reliability of EPDS is
improved together with the basic participation of EVs. There is the

involvement of local V-G for centralised charging and local V-H
for dispersed charging. This involvement leads to the reliability
improvement of EPDS. The EPDS has gained interests as EV
industries with large power capacities and energy are growing
frequently. The sequential Monte-Carlo method (SMCM) method
for this assessment provides reliable results and enhanced
reliability.

3.2.7 General discussion on EV and reliability: An integration
of different DG technologies is considered in the adequacy study of
EPDSs. This can be achieved when the EV's V-G programs with
their associated charging load are successfully implemented. The
probabilistic model of the uncertainties associated with wind power
generation offers available energy from V-G programs. The
historical association of different energy demands is developed in
RE. The general analytic approach to reliability studies is shown in
Fig. 7.

The interfacing between energy consumers, and transportation
infrastructure, and generating units are the different forms of
energy in an energy hub [98]. To model the interactions between
various DG technologies, a renewable-based energy hub is
considered. The related reliability indices SAIDI and EENS during
grid-connected and islanded conditions are obtained [27]. Also, the
implementation of the proposed framework is done on the
calculation of reliability indices. The test system is calculated by
taking various working energy hub strategies. Thus, the reliability
improvement of energy demands is achieved by using bi- or tri-
generation converters in an energy hub. At last, the reliability is
also improved by energy hubs which are dependent on the
component's reliability, energy networks' level, and operation
planning [17].Fig. 6  Reliability index LOLP with load variation using MINLP [76]

 

Fig. 7  Reliability studies with a systematic approach
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3.3 EPDS reliability improvement by the ESS

The integration of mobile battery energy storage system (MBESS)
and BESS is described in [24, 25], respectively, and a stochastic
model is proposed by Mohammadi-Hosseininejad et al. [20] which
are developed for reliability improvement and support the
microgrids (MGs) in OMS during contingency events. The effect
of MBESS is observed on reliability indices as shown in Fig. 8. 
EENS and CAIDI are measured in kWh and hour, respectively. The
reliability enhancement techniques and models are discussed in this
subsection as follows.

3.3.1 ESS as spinning reserve: The uncertainty in renewable
energy resources confirms the supply security and operational
reliability studies. ESS is also used as a spinning reserve for a
segregated MG. The uncertainty modelling of MGs is probabilistic
WT, PV, load injection, and load models. A chance constrained
programming (CCP) is used to study the uncertainty in
optimisation [26]. This programming is utilised to provide the
services for segregated MGs as a spinning reserve. The reliability
is thus improved. The probability optimisation function is
described using

(see (12)) 

H j(k) ≤ 0; j = 1, 2, 3, …, ND; (13)

where Prob(.) is an event occurrence probability, H j(k) is termed as
deterministic constraint, η, γ are confidence levels, δ is a random
variable.

3.3.2 Chance constrained programming method: It is required
to minimise the problem of uncertainties in renewable generation
and load during main grid support. A CCP-based scheduling model
is used. An ESS is used as a reserve for an isolated MG. A
discretised step transformation method is evolved to transform the
model into a MILP difficulty. It is because of the readily solvable
capability of the MILP. This approach ensures the MG operation to
get a trade-off between economy and reliability by fixing a suitable
level of confidence.

3.3.3 Integrated residential ESS unit and PV (IREPV)
system: The system's reliability is improved by using an IREPV
system. It reduces the electricity charges for residential customers
and the peak demand of the EPDSs. To achieve this, an algorithm
on power management strategy (PMS) is given in [27]. The PMS
algorithm is an integrated residential ESS unit. PV arrangement is
suggested for islanded and grid-connected conditions to get the
benefits of time-of-use pricing. The PMS algorithm is shown in
Fig. 9. 

At the start, if the grid is ‘ON’ the GIC mode for DC link
voltage control is opted. If the grid is ‘OFF’ then GIC mode for
sliding mode control (SMC) is selected. In SMC, either ESU or PV
with ESU operate according to the status of PV power and state of

charge (SOC). In Fig. 9, seven modes are explained and the DC-
link voltage is regulated by the following five operational modes.

• Mode 1: The islanding scenario of an IREPV is observed in this
mode. PV energy is not available but DC link voltage is controlled
by the energy storage unit (ESU).
• Mode 2: Still an islanded scenario is observed. But the PV power
is accessible now.
• Mode 3: This mode comes at peak time. IREPV works in the grid
interaction control (GIC) mode. It implies that the ESU and PV are
all set to supply local load.
• Mode 4: This mode comes at an off-peak time. ESU is charged on
constant current and constant voltage technique.
• Mode 5: This mode is operated at shoulder time which is between
peak and off-peak times. IREPV works in GIC mode. It checks the
availability of PV power and saves the ESU energy for peak time
use.
• Mode 6: This mode comes when ESU is not fully charged. Thus,
the DC link voltage is controlled by the ESU controller with MPP.
• Mode 7: It is also in the islanded case. When ESU is fully
charged and MPPT controller provides a constant boost DC
voltage.

3.3.4 Effect analysis and accelerated MCM (AMCM): The
MCM is implemented and the reliability indices are estimated
which takes considerable computational time in the context of
adopting multi-state model (MSM) of distributed energy resources
(DERs). In MSM, BESS is especially integrated to obtain efficient
reliability. Yan et al. [25] have also suggested planning oriented RE
improvement techniques, which include a two-dimensional MSM
for BESS and an effective procedure for a sampled isolated MG
state analysis. AMCM method is described for the effect analysis
process where the required simulation time is fixed to one year,
hence, realises the reliability improvement. The flow charts of the
effective analysis and behaviour AMCM method are described in
Figs. 10 and 11, respectively. The terms used in flow chart are
referred as: E(RIT) is expectation of interruption time of each load
point, E(RID) is expectation of interruption duration of each load
point, MPS and MSS are the power shortage and SOC state matrices,
respectively, PPS is the power difference of total demand and
supply resources, NL is the subsequent SOC states, i, j, k1, kTTR are
count numbers and set at 1, (i, j) is the state, n × N is the number of
states in BESS state space, n × N × mTTR is the total number of all
possible scenarios.

In Fig. 10, the effect analysis is suggested to measure the value
of reliability indices for customers fed by an isolated MG. Consider
the main grid fault at tth time interval. Then isolated microgrid
(IMG) starts operating with various DGs and BESS. But due to the
uncertainty in DGs and BESS operation, it is very typical to obtain
load point reliability assessment by determining the indices. Hence,
a method is given which is based on a two-dimensional MSM of
the BESS. The probabilities of all BESS states during the TTRth
interval is given by

pBESS, i, j(TTR) = ∑
sce = 1

n × N × mTTR

psce(sce) × αBESS, i, j(sce) (14)

where IMG may also expose to a power interruption while the
extinction of a fault. The reliability assessment at faulty load points
is important in this interruption. So, the RE technique is given in
Fig. 11. This technique is based on a SMCM which nesting the
failure mode and effect analysis (FMEA) method. MCM will
sample a sequence of BESS states which cannot be known prior to
the simulation process. In AMCM, it does not need to do as MCM.
Since all the possible states of a BESS are given in advance, the

Fig. 8  Approximate values of reliability indices with and without MBESS
[24]

 

min Fun
s . t . Prob[Fun(k, δ) ≤ Fun] ≥ γ, objectivefunction
Prob[Gh(k, δ) ≤ 0] ≤ η; $ h = 1, 2, 3, …, NP $ , uncertaintyconstraints

(12)
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only matter to concern is to determine the state probabilities
varying with the preceding simulation process.

3.3.5 Modelling and Markov process of BESS: The reliability
models for EPDSs with MGs are the MSMs of net load and BESS.
In this model, the available capacity rate SOC is modelled to get
the improved PSR. Then the model is implemented on the modified
IEEE-RBTS Bus 6 F4 test system [99]. DERs like MBESS
enhance the reliability of the EPDSs. MBESS facilitates the grid in
the islanded situation. MBESS with uncertain DERs is modelled
for reliability analysis (DER generation and demand) by using
Markov models. These models are then verified using the MCS
method. To determine the island operation time and restore time of
the concerned zone, a MBESS model is used. The models for RE
include MBESS modelling in time-varying demand and DG output,
and EPDS modelling is shown in Fig. 12. The block diagram for
reliability assessment with MBESS integration is shown in Fig. 13
[74]. Where λ1 is Unit 1 failure rate, μ1 is Unit 1 rate of repair
subsequent to battery installation, λ2 is Unit 2 failure rate, μ2 is Unit
2 repair rate, Ins is the rate of battery installation. IEEE 15 bus
system and modified RBTS system are compared for RE by
calculating EENS and CAIDI. It concludes that the reliability is
improved for the latter case. The investigation about the robustness
and stability of the overall power system is done under different
modes of operation of the ESS unit. It enhances the EPS reliability
as mentioned in [27].

Fig. 12 shows the time table of a power system. Tfault, Tstart, and
Trestore are the fault occurrence time, MBESS start time, and power
system restoration time, respectively. The integration of MBESS
depicts that the radial distribution system facilitates the isolated
(downstream) section during post-fault. Therefore, this

arrangement enhances the reliability of the system. The reliability
index EENS is improved with MBESS integration, therefore the
reliability as given in (15). A two-section distribution system is
used to describe the Markov process in Fig. 13

EENS = {p2 × L(2) + p3[L(1) + L(2)]}8760

+ p4[L(1) + L(2)(1 − pisland)]8760
(15)

where p2, p3, p4 are the average ratio of success probability of island
operation mode during fault, pisland is the success probability of
island mode, ‘i’ is referred as number of section; here it is 2,
L(i) ≤ Pi

Dis(t) + Pi
DG(t) viz discharging for MBESS plus

distribution generation output.

4 Reliability improvement methods for WIPS
The authors of this paper present their views on RE and
improvement by focusing only on WIPS. The main cause to focus
on WIPS is the volatility including (i) penetration, (ii) wake effect,
(iii) output power correlation for WTs, (iv) the effect of parameters,
and (v) environment. The above-mentioned causes are incorporated
in reliability assessment [28] because these are the major
contributors for reduction in PSR. Some researches [29, 30, 33, 34]
are done on reliability analysis of WIPS.

It is suggested to integrate wind/PV/battery in the EPDS to
enhance the electrical system's reliability. Also, the effect of BESS
is explained in the wind farm (WF) integrated electrical system
under four scenarios as given in Fig. 14. Scenario no. 1 is taken
when intermittency and inertia of WT are not considered. The
spinning reserve requirement is considered in Scenario 2. Scenario
3 includes Scenario 2 with the inclusion of the wind penetration

Fig. 9  Algorithm for power management strategy
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limit in watts. Lastly, large-scale ESS is considered in Scenario 4.
In Fig. 14, loss of load expectation (LOLE) is measured in hour/
year, LOLF is in failure/year, EDNS is in MW/year, and loss of
energy expectation (LOEE) is in MWh/year. Further discussion on
WIPS reliability improvement methods is described in the later part
of this section. The pros and cons of WIPS reliability improvement
methods are explained in Table 6. 

4.1 Generation rescheduling algorithm (GRA)

GRA is implemented in [34], which provides adjustable output
generation. The output generation removes the fluctuations of
power flows in the transmission branch and also the probability of
overloading is relieved. This algorithm is used to schedule the
conventional generation in order to increase the transmission
system reliability with wind energy penetration. It is done in
response to wind penetration and power uncertainty impacts.
Although, GRA is mainly useful in preventing the congestion in
power and the balance in DERs and power system loads. The
previous methods like participation factor control are unable to
consider the locations of the generators. Hence, the GRA is
developed to increase the reliability with load and wind power
uncertainty. Overall, the GRA is applicable in determining the
optimal generator rescheduling solution. This solution is useful for
mitigating the overloading scenarios and minimising the weighted

sum of variances of electrical line power flow. The method is
explained briefly in flow chart of Fig. 15.

To evaluate the uncertainty effects of renewable energy on the
power system, the GRA method is implemented. It is a
probabilistic method and applied to evaluate the reliability indices
considering branch power flows. These indices signify as power
variances which are needed to be minimised. The variances are
mainly because of uncertainty in renewable resources and loads. In
the previous analysis, only thermal limits are considered but
weighting factors are introduced to take care of uncertainties as
well.

4.2 Condition monitoring (CM) of semiconductor

Moeini et al. [31] have described a CM system method to improve
WIPS reliability. The WTs are dependent on the reliability of
power electronics converters as the occurrence of failure is
maximum (32%) in power module of WT [100]. The IGBTs used
in grid side converter are affected by the abnormal variations in
temperature. CM reduces the costs related to maintenance and limit
the unexpected interruptions of the power generation. The usual
cost of a CM system is about € 10,000 per year per WT [101]. This
cost is comparably very low to the maintenance cost of remotely
located WTs, e.g. € 100,000 to € 300,000 (for 2–3 MW) offshore
WTs and € 200,000 to € 720,000 for offshore WTs larger than 3 
MW [102]. Thus, the CM of semiconductor devices is required to

Fig. 10  Flow chart of effect analysis
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increase the reliability of WTs because CM also limits the
uncertain disturbance in power generation.

4.3 Auto-regressive moving average model (ARMA)

ARMA model is described to improve the WIPS reliability. An
ARMA model is a series of models. These models assess statistical
data to produce higher-order autocorrelation. The daytime and
seasonal data are thus useful in WIPS's reliability studies. The
ARMA model and simulated wind speed model are given in (16)–
(19) [103–105]. The main advantage of using the ARMA model is
that an enormous number of years of data is not required so the

Fig. 11  Flow chart of AMCM algorithm
 

Fig. 12  EPDS modelling include MBESS modelling time-varying demand and DG output
 

Fig. 13  Markov process for reliability assessment with MBESS integration
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incorporation of wind energy conversion system (WECS) is
justified in the ARMA model

yT = f (x1, x2, x3, x4, x5, …) (16)

yT = ϕ1′yT − 1 + ϕ2′yT − 2 + ⋯ϕn′yT − n + βT −

θ1′βT − 1 − θ2′βT − 2⋯ − θm′ βT − m

(17)

SWST = μT + σT yT (18)

where SWST is the simulated wind speed, μT is wind speed hourly
mean value for T hour, σT= wind speed standard deviation for T
hour. The swift current site ARMA model in Canada is [106]

yT = 1.17yT − 1 + 0.10yT − 2 + 0.35yT − 3 + 0.037yT − 4

+βT − 0.50βT − 1 − 0.29βT − 2

−0.13βT − m

(19)

where Φk and βl are the two ARMA parameters. k = 1, 2, …, n;
l = 1, 2, …, m βT is a typical white noise with mean value 0 and
variance σa

2 that is βT ∈ N (0, σa
2), N denotes NID (normally

Fig. 14  Reliability indices with 26 conventional generators and 43 WFs on IEEE-RTS 69 Bus system [30]
 

Table 6 Reliability improvement methods with their pros and cons
S.

No.
Method Pros Cons

1 GRA (i) Power flow variations are taken out from the
transmission line

(ii) It minimises the probability of overburdening
(iii) Increases the transmission system reliability

Gives a flexible output power generation by ignoring the
congestion in power, and stabilises the wind energy resources with

power system loads

2 CM (i) Identifies the faults and degradation in
semiconductor devices

(ii) It is cheap and limits the uncertain interruptions of
power generation

(iii) Enhances generation reliability

The assumptions such as upper-lower limits of voltage and current
are taken on the characteristics of power electronics devices

3 ARMA (i) Years of big data are not needed
(ii) WECS is explained in the ARMA model

(i) The noise changes in various ways even yet the
equations of the system remain deterministic

(ii) Single reliable statistical test for chaoticity is not
possible, incorporating multiple tests is a crucial aspect,
especially when one is handling with limited and noisy

datasets like wind speed and impedance loading
4 DTLR (i) More penetration of wind energy is supported due

to current carrying capability of aerial lines
(ii) Raises the PSR

(i) The DLR saturates after a particular stage of installed
wind power

(ii) The maximum utilisation of power transmission
capability is discontinued for long transmission lines

5 DRP (i) Eliminates the opposite impacts of wind energy
volatility on PSR

(ii) Evaluates short term reliability of WIPS.

Real-world uncertainties influence the reliability enhancement
feature of DRP

6 ESS (i) It includes reliability enhancement with analysing
the power system service recovery

(ii) It utilises PL as a substitute for a disturbed zone

(i) Energy loss in charging–discharging makes it inefficient
(ii) It is complex and not cheap and requires infrastructure

and space
7 DSM (i) It evaluates the load side reliability

(ii) Reliability increases for the combined stage of
hybrid energy and DSM

(i) Users have a restricted resource to use the DSM
(ii) DSM is a better fit for greater energy consumers or

those with complex energy demands
 

Fig. 15  Steps of GRA execution
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independently distributed). To determine the order (n, m), F-
criterion test is used to find n which provides the best fit solution.

4.4 Dynamic thermal line rating (DTLR)

The consideration of DTLR reliability becomes crucial when
renewable energy sources are integrated with power system [107].
The operation of the transmission line under a considerable impact
of wind online ratings (current carrying capacity of overhead lines)
is termed as DTLR. Thus, the electrical network incorporating
DTLR and WF needs to evaluate reliability. It shows that DTLR
system has increased the PSR with more wind energy penetration
is allowed. SMCM method is used due to the dependencies of wind
power and line ratings on time. Hence, the time-series data
modelling is done by the ARMA model as discussed in Section 4.3
of this paper. The steady-state ratings of transmission line are
described in (20). The wind-powered IEEE-24 bus reliability
network for testing is elaborated in [35]. The procedure to calculate
the reliability improvement of dynamic thermal rating (DTR)
method is implemented

HC(QC, QA, VW, ϕ) + HR(QC, QA) = Qs(θ) + i
2
r(QC), (20)

where HC is the convection heat loss, QC is the operating
temperature, QA is the air temperature, VW is the speed of the wind,
ϕ is the wind angle, HR is the heat loss due to radiation, QS is the
solar heat gain, θ is the angle of solar radiation, i is the current in
the conductor, r is the conductor resistance.

4.5 Demand response program (DRP)

A DRP is implemented to meet the reliability requirements in
WIPS. The implementation of DRPs is a beneficial solution for
avoiding uncertainties. Hence, reliability improvement is achieved
in the EPS. The RE study of composite power systems with the
influence of the lead time and unlike initial states of system
components of demand response (DR) is explained in [36]. DR is
divided into direct and indirect impacts including the contingency-
based demand response program (CBDRP) and time-based demand
response program (TBDRP), respectively. A deterministic model of
DRPs is developed, in which curtailed load programs (CLP) are
executed by system operators directly. Hence, the programs are not
needed to be modelled on the basis of market signals. The
modelling of the DRPs is based on the price flexibility of demand
[108–112]. DRPs are also based on the penalty and incentive of
programs [113–115]. The RBTS [116] is used to apply the
proposed approach over the daily horizon time with a maximum
demand of 185 MW. The cross elasticity equations are described
between price and demand in (21)–(28) [117]

The TBDRP model is

demTBDRP
i

= DemTBDRP(1 + δdemTBDRP
i

) (21)

δdemTBDRP
i

= ∑
N = 1

24

φN
i, j . δPa

j (22)

φN
i, j = φN

i, j + Nϵ
i, j (23)

where demTBDRP
i  is the final demand in time ‘i’, δdemTBDRP

i  is the
final change in demand in time ‘i’, φN

i, j is the cross elasticity in
normal condition (between demand and price in periods i and j,
respectively), δPa

j is the change in actual price in period ‘i’, Nϵ
i, j is

the random variable which is characterised with mean=0 and
variance for normally distributed data, DemTBDRP is the total
demand which responds to variations in price.

The CBDRP model is

demCBDRP
i

= DemCBDRP
i

(1 + δdemTBDRP
i

) (24)

DemCBDRP
i
= DemCBDRP

i(ZCS) 1 −

exp −
(ηα

i . αi + ηβ
i . β

i)

ηPe

i . Pe
i

(25)

δdemTBDRP
i

=
φE

i, i
δPa

i +
αi + β

i

Pe
i

, −
γi

Demi
< δdemi ≤ 0

φE
i, i . δPa

i , δdemi ≤ −
γi

Demi
or δdemi > 0

(26)

where αi, β
i, and γi are the level of load reductions as an incentive,

penalty, and contractual, respectively, in a DRP for the period of
‘i’, Pe

j is the expected price in period ‘i’. The CLP model is

demCLP
i

= DemCLP
i

(1 − δdemCLP
i ) (27)

DemCLP
i

= DemCLP
i (ZC

S) (28)

where Z
CS represents a random variable and DemCBDRP

i (ZCS) and
DemCLP

i (ZC
S) are the demand values, ηα

i, ηβ
i and ηPe

i are the
participation coefficients, φE

i, i refers cross elasticity in emergency
condition (between price and demand in periods i).

The DRP effect is seen on LOLP, LOLE, expected interruption
cost (ECOST), operational cost (OPCOST), expected total cost
(TCOST), and interrupted energy assessment rate (IEAR) which
are referred to the EPS reliability indices.

4.6 Energy storage system

A MCS technique is implemented to inspect the PSR benefits from
ESS. The SAIDI and total reliability cost are minimised. The cost
is dependent on the aggregate interruption cost of the consumer.
The aggregate installation cost of a parking lot (PL), and
incorporation cost are considered. The PL acts as a unit which
provides the back-up for the interrupted zone (reduces the
interruption time). It also acts as a unit which provides the storage
in the back-up feeder (reduced the congestion frequency) as battery
ESS unit. The voltage deviation and energy costs are also taken
into consideration during reliability cost determination. The overall
objective function is the combination of operative and reliability
objectives. The stochastic model and MCS technique are proposed
in [23]. This technique is useful in determining the PL effects to
nearby services. It also contributes to reliability enhancement with
the consideration of service restoration. The reliability-based
objective functions of EV parking lot allocation problem is
described in (29) and (30). The minimisation of two reliability
indices ESAIDI and ETC

 is accomplished for reliability improvement

O . F .rel : α1

ETC
− TCOPT

TCOPT

+ α2

ESAIDI − SAIDIOPT

SAIDIOPT
(29)

where O . F .rel is the optimisation function, TcOPT and SAIDIOPT

are determined optimally by putting any of the weighting factors
‘zero’ [75]

ETC
= ETIC

+ ETPIC
+ TIMC (30)

where ETC
, ETIC

, ETPIC
, and TIMC are the expected overall reliability

cost, interruption cost, PLs incorporation cost in service
restoration, and overall investment and maintenance costs of PL.

4.7 Demand side management (DSM)

To assess the load side reliability, DSM method is proposed [18].
The method is implemented in EPDS to achieve efficient PSR.
Hence, MCS and a local load system method are developed for RE
and assessment, respectively. The developed method incorporates
DSM and wind as described in Fig. 16.
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The DSM method modelling [118] is applied to get the
improved load reliability; ENS.

In Fig. 16, F(t) is the cumulative distribution function at hour
‘t’, U(t) is the unavailability of system or device, R(t) is the
curtailment level in % that specifies when to consider the
generation unavailable. There are four operational stages namely
the base stage, the hybrid renewable system stage, the DSM stage,
and the hybrid plus DSM stage. The reliability increases for the
combined hybrid and DSM stage. This algorithm is implemented to
simulate and extract failure and repair times. Thus, reliability
assessment is accomplished.

5 Reliability impacts on reactive power, unit
commitment, and protection system
5.1 Reactive power optimisation

The reliability impacts on reactive power optimisation [37] are
caused by the stochastic nature and integration of renewable energy
creates the biggest challenge to traditional operation and planning.
The optimisation problem of reactive power in EPDS is solved by a
mixed-integer convex programming model. It is applied where the
WFs are integrated centrally. Hence, a bi-level robust reactive
power optimisation model is used to synchronise the continuous
and discrete reactive power compensators. The robust optimal
solution is also obtained when wind power uncertainty is to be
addressed. The ‘wait-and-see’ decisions are implemented for
continuous reactive power compensators. These compensators may
adjust the actual WT output while the ‘here-and-now’ decisions for
discrete reactive power compensators are performed. In the ‘here-
and-now’ decision, compensators are not adjustable after the
revelation of uncertainty. The 33, 69, and 123 bus systems
mentioned in [119] are used to compare the results analytically.
The robust reactive power optimisation model is given as

Pm = ∑
m ∈ π(m)

(Hnm − rnmInm) − ∑
k ∈ δ(m)

Hmk, ∀m ∈ B (31)

Qm = ∑
n ∈ π(m)

(Gnm − xnmInm) − ∑
k ∈ δ(m)

Gmk + bs, mum,

∀m ∉ Ω
(32)

um = un − 2(rnmHnm + xnmGnm) + (rnm
2 + xnm

2 )Inm,

∀(n, m) ∈ E T
(33)

where Pm, Qm are referred to real and reactive powers of bus m;
rnm, xnm are the resistance and reactance of the branch (n, m); Hnm,
Gnm are the real and reactive power flows from the bus n to bus m,
bs, m is the shunt susceptance from m to ground, um is the voltage
magnitude of bus m.

5.2 Unit commitment (UC) in wind generation

The reliability impact is observed on wind generation unit
commitment. The absorption of wind power by the bulk power
system during the UC scheme is one of the biggest problems in the
power system. Hence, a risk-based assessment approach is
proposed. A risk-minimisation model is developed and solved by
using a CCG algorithm. The mathematical formulation for
admissibility of wind generation is described in (34) and (35). The
risk-based admissibility measure is described in recent researches
[32, 120]. Admissible wind generation (AWG) is referred to as a
subset of the wind generation. For AWG, no load shedding or wind
generation curtailment is needed for reliability reasons. So, the
wind generation admissibility is explained and examined by
solving the bi-level programs

F = ∑
t = 1

T

∑
m = 1

M

emtΔωmt + ∑
j = 1

J

f jtΔDjt (34)

s . t . UgtPmin
g ≤ pgt ≤ UgtPmax

g , ∀g, ∀t (35)

where F defines the economical loss during operation, T is the
number of time periods, M is the number of WFs, emt is the price
curtailment of generation WF m in time period t, ΔΩmt is the WF m
generation curtailment in time period t, J is the total number of
load buses, f jt is load shedding price of bus j in time period t, ΔDjt

is load bus j load shedding in time span t, Ugt is taken as binary
variable which refers that on and off of generator g in time span of
t, Pmax

g  and Pmin
g  are maximum and minimum outputs of generator g

at running condition, pgt output generation of generator g in time
period t, g is the generators' index.

The above equations are used for the maximum admissibility of
wind generation. Then, it is required a UC strategy and used for the
economic dispatch (ED) strategy. These strategies impact
admissible wind generation. Therefore, the admissible assessment
problem is converted into an optimisation problem as described in
(34) and (35).

5.3 Protection schemes

The reliability impacts on protection schemes are discussed in this
subsection. The system integrated protection schemes (SIPS) is
applied to adjust the new interconnections especially WFs. This
depicts that the uncertainty in interactions between SIPS raises the
interest in SIPS reliability. Hence, the Pennsylvania-New Jersey-
Maryland (PJM) 5-bus system is presented in [38] to describe the
SIPSs performances. It involves advanced Information and
Communications Technology (ICT) and Wide Area Management
(WAM), protection, and control. The risk assessment procedure
methodologies are demonstrated to evaluate the system's reliability
as shown in Figs. 17 and 18. The methodologies including
reliability assessment at the component level, Markov model at the
system level, integration of wind power, assessment of SIPS
impact, and assessment method of risk are incorporated.

The suggested assessment procedures on risk facilitate the
electric power utilities in managing the effect of ICT on the
reliability of the SIPS. To measure the probabilities of unplanned

Fig. 16  Monte-Carlo simulation implementation in DSM
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contacts of SIPS, assessment procedures are utilised. The method is
also useful in maintaining the balance between the operational and
planning costs. It also balances the system reliability in
transmission and generation expansion and operation planning.
Hence, the reliability analysis in composite power system is
necessary as already described in Section 3.1

SIPS fails to operate in two ways: (i) dependability-based mal-
operation (DBM) and (ii) security-based mal-operation (SBM).
DBM is a mal-operation to operate when SIPS is needed and SBM
is an unwanted SIPS operation when there is no disruption present
in the system. FMEA method is used to obtain all the modes of
failure. Then the reliability assessment is done using the Markov
model as shown in Fig. 17. The four operational states ‘0’, ‘1’, ‘2’,
and ‘3’ are determined. In-state ‘0’, component works to
accomplish the operations of SIPS. The mal-functioned
components are repaired and replaced before leading to a SIPS
DBM in state ‘1’. But when state ‘1’ is not detected the SIPS fails
to operate. At state ‘3’ a component operates even though not
needed. It may be due to the spurious function of the protection
system.

Another method known as SMCM is implemented as a risk
assessment procedure. It is also implemented to analyse the impact
of SIPS operation as shown in Fig. 18. It is well suited for time-
based events. ARMA models in Section 4.3 for load and WF
output profiles are incorporated into the SMCM model. Then each
stage of Markov models is mapped into the SMCM model to
simulate the behaviour of the system.

6 Conclusions
The uncertainty parameters lead to the unreliable operation of
EPSs; thus, it is needed to do a lucrative study on reliability
assessment of such a system. The paper is concentrated on the
crucial methods which are useful in the handling of uncertainty
parameters; and also, in RE with improvement in EPDSs. The
probabilistic and possibilistic approaches are discussed for dealing
with the uncertainty parameters when there is an integration of
renewables into EPSs. The probabilistic approach leads to the
study of MCS, PEM and SBA methods in dealing with modelled
uncertain parameters.

Fig. 17  Markov model applied for reliability assessment
 

Fig. 18  Reliability assessment using SMCM method in SIPS
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The MCS method is being used in SIPS, composite power
system, and so on, and reliability enhancement of the system is
observed. The aspects including OMS, expansion planning,
allocation of backups, and improvement in maintenance policy,
outage events are focused by the authors. It is found that the time-
based reliability indices including SAIFI, CAIDI, ENS are
evaluated during reliability assessment and improvement. Further,
it is mentioned in this paper that how the reliability of EPDSs is
improved with the integration of EV, BESS, and so on, and some
studies on CM of semiconductor, DTR, DRP, DSM, and so on are
useful in WIPS in RE. At last, the paper has given an overview of
reliability impacts on reactive power compensation, UC, and
protection schemes in the renewable integrated EPSs. Present
studies explore the following future research scopes:

(i) The uncertainties may be dealt rigorously by using a
combination of probabilistic and possibilistic approaches in RE.
(ii) The power system becomes a complex network because of the
incorporation of new energy sources; hence, needed to be analysed
for the trade-off between reliability and economic, reliability and
planning, and so on.
(iii) Due to the availability of very few researches on EV and ESS
unit as a reliability improvement means; thus, the work on
operation and planning can be done on these renewables.
(iv) The paper introduces the reliability impacts on UC, reactive
power optimisation and power system protection schemes in WIPS,
which may be further explored and analysed in detail to find out
the methods to mitigate the negative impacts on PSR.
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