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Abstract. For a certain Fréchet space F consisting of complex-valued C°°

functions defined on / = (0, oo) and characterized by their asymptotic be-

haviour near the boundaries, we show that:

(I) The pseudo-differential operator (-x~lD)" , v e R, D = d/dx , is an

automorphism (in the topological sense) on F ;

(II) (-x~lD)u   is almost an inverse of the Hankel transform  hv   in the

sense that
hl/o(x-xD)v(<p) = hfj((p),    VpeF, V¡/El;

(III) (—x~lD)r  has a Fourier-Bessel series representation on a subspace

Fb C F and also on its dual F¿ .

1. Introduction

Let F be the space of all C°° complex-valued function tp(x) defined on

/ = (0, oo) such that

(1.1) <p(x) = YJ^2i + o(x2k)

(=0

near the origin and is rapidly decreasing as x —> oo .
i
2For v > -A , we define a z^th order Hankel transform hv on F by

y»00

(1.2) OX» « [Kf(x)](y) = /    <p(x)jrv(xy)dm(x),
Jo

dm(x) = m'(x) dx = [2T(i/ + l)]~xx2v+x dx,

where

yv(x) = 2vY(u + l)x-vJv(x),

and Jv(x) is the Bessel function of order v . The inversion formula for (1.2)

is given by [1, 3, 4],

(1.3) q>(x)= /    ^(y)^(xy)dm(y).
_ Jo
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In this paper we will show that for every real v :

(I) The pseudodifferential operator (-x~xD)v  is a topological automor-

phism on F.
(II) The Hankel transform hv is also an automorphism on F .

(III) On F , (-x~xD)v is almost an inverse of hv in the sense that

[h„o(-x-xDy](<p) = ho(<p),        <pEF.

(IV) On a certain subspace Fb c F and on its dual F¿,  (-x~xD)v  has

Fourier-Bessel series representations.

In the sequel all automorphisms are topological automorphisms.

2. Preliminaries

For any real v 4 — \, Fv is the space of all C°° complex-valued function

<p(x) defined on I such that

(2.1) y»mk(<p) = suv\x<"A^x<p(x)\<*o,
xei

for each m, k — 0, 1, 2... , where

A^x = D2 + x~x(2v+ l)D.

Fv is a Fréchet space. Its topology is generated by the countable family of

separating seminorms {y"m>k}m,k=o,x,2,...,  [5; 7, p. 8].

Theorem 2.1 (i) of Lee [3, p. 429] shows that Fv = Fß = F (as a set) for

each v, p(4 -\) E R. Hence for each v 4 —\, we have a topology Tv on

F generated by the countable family of seminorms y"m k . Hence (F ,TV) is a

Fréchet space. When v = — \, F_x¡2 4 F , since the factor x~x(2v + l)D in

A„ tx , responsible for the even nature of cp(x) E Fv(x) near the origin, vanishes.

For example e~x E F_x¡i but e~x £ F„; v 4 -j ■

Definition. Zemanian [7, 8] defined a Hankel transform hv   (v > — j) by

/•OO

(2.2) *Y(y) = [hv¥(x)}(y)= /    y/(x)JxyJv(xy)dx.
Jo

He proved that hv is an automorphism on the space Hv that consists of

complex-valued C°° functions defined on I and satisfies the relation

(2.3) y"m k(ip) = sup \xm(x-lD)k[x-"-l'Mx)]\ < oo,
xei

for each m, k = 0, 1,2, ... , where D = d/dx .
The following theorem is a key result for the latter development of our theory.

Theorem 2.1. Let v , p be real number 4 -\- Then

(I)  The operation <p —> xv+xl2(p is an homeomorphism from F onto H„ .

(II) (x~xD)" : F —> F is an automorphism on F .

(III) (F, Tv) and (F, Tß) are equivalent topological spaces.

(IV) K(q>) = (-l)n[hu+n(x-xD)n]<p, for <p E F,  v > -{ , and n = 0, 1 ,

2,....
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Notation. In view of the Theorem 2.1(1, III), we will always write xu+xl2<p(x) —

<p(x) e Hv forq>eF and drop the suffix v from Tv . So henceforth the

topological linear space (F, T) will be denoted by F .

Proof. (I) By induction on n and noting that

(2.4) Au,x = x2(x-xD)2 + 2(v + l)(x-xD),

it can be proved that

(2.5) Anvx = x2n(x-xD)2n + axX2("-l)(x-xD)2n-1 +■■■ + an(X-xD)n ,

where a, 's are the constants depending on v . Now tp e F iff tp e H„ (follows

from Remark II of Lee [3]) and taking ao = 1, it follows from (2.5) that

2k

(2-6) 7um,k(<P) < ¡£u2fc-¿%+2(,-fc),/(0)>
,=k

proving the continuity of the inverse operation <p —> x~v~xl2rp . Invoking the

Open Mapping Theorem [6, p. 172], F being Fréchet space, we complete the

proof.
(II) Let <pj be a sequence tending to zero in F. Then (p¡ —» 0 in Hv for

i
2arbitrary v 4 - \ ■ Hence

2k

Yum,kl(x-lD)"9j(x)]< £û2*-'-C-2(/-fcM+«(^)    (from (2.6))
i=k

—►0       as 7 —> oo.

It remains to be shown that (x~xD)n is bijective. It is enough to prove this

for n = 1. So, let x~xD(px(x) = x~xD(p2(x) for (px,<P2 € F. Hence

<Px(x) - q>2(x) — constant. But tpx(x) and <p2(x) are of rapid descent as x —>

oo => <px(x) = q>2(x). Now let y/(x) e F. Then <p(x) = - f£° ty/(t)dt, de-
fined uniquely (since \p is of rapid descent as x —> oo) in F, is such that

x~xD(p(x) = ip(x). So we see that (x~xD)n is a continuous bijection on F .

The space F being a Fréchet space, the Open Mapping Theorem shows that

(x~xD)n is a bicontinuous bijection on (F, Tv) for each ¡/el-{)}.

(Ill) Let v = p+a, a E R, and (pn be a sequence tending to zero in (F, Tß).

Then

yvm k(9n)= sup\xm[All,x + 2a(x-lD)]k<pn(x)
x<El

< supx
xei

k k

+ J2\(2aX~lD)k~ÍK,x(PnM\^A^7i(2ax-1D)>„(x)
1=0 ;=C

+ terms of the type |AJ,' x(2ax~xD)hA^ x ■ ■ ■ tp„(x)\

and \(2ax-xD)J< Aß\x(2ax~xD)h ■ ■ ■ g>„(x)\

(where /, j- h + i3 + ■ ■ • = jx +j2 + j3--- = k)

—> 0 as n —> oo, for each m, k = 0, 1,2... ,
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972 O. P. SINGH AND J. N. PANDEY

since álx and (x~xD)' are continuous on (F, Tß).

(IV) follows from integration by parts and induction on n .

Remark 1. It can be shown that on F

A^xo(x-xD)" = (x-lDyoAk_nx.

The proof follows by induction on k .

Definition. In view of Theorem 2.1 (IV), we define the Hankel transform hv

formally for any v e R, as

(2.7) hv(<p) = hv+no(-X-xD)n<p,        tpeF,

where n is so chosen that v + n > - \ .

This is a well-defined definition as (x~xD)n is an automorphism.

Definition. Let F'  be the dual space of F.   Then for f e F', define the

generalized Hankel transform hvf(— f) of / by

(hf,hu<p) = (f,(p)   VpeF, veR.

Theorem 2.2. For v eR, hv is an automorphism on F and hence on F'.

Proof. Let q>(x) e F. Then

/•OO

A„(9») = <D(y)=  /    (x-xD)2"<p(x)^+2n(xy)dm(x)
Jo

(2.8) =y->1-x/%(ij/(x))(y),    where p = v + 2« > -\ ,

where
xft(x) = x>i+x/2w(x) = x"+l/2(x-xD)2n(p(x).

Let

Pm{x) —> 0   in F     =►     Wm(x) —> 0   in Hß    (Theorem 2.1(1)),

=>    h(Wm)^0   inH^,

=>    K(<pm) ̂ 0   in F.

Now hfi, the Zemanian Hankel transform, being bijective, (2.8) shows that hi,

is a bijection. Hence use of the Open Mapping Theorem completes the proof.

Writing v = 0 in (2.7) we get

h0(<p) = hno(-x-xD)n(<p),       tpeF.

The above equation motivates us to propose the following

Definition. For v e R , define (-x'^Df by

(2.9) (-x-iD)"(<p) = h-xoho(<p),        cpeF.

Then (-x~xD)v  is clearly an automorphism on F for each real v.   From

equation (2.9) we get

/•OO /»OO

(2.10) (-x-xDy<p(x)=        dm(y)Ji(xy)        dm(x)tp(x)^o(xy).
Jo Jo
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For distributions f e F', define (-x~xD)" by

(2.11) ((-x-xDff,(p) = (f,  (-x-'Z))>),        <peF.

So we modify Theorem 2.1 (II) to give our main result.

Theorem 2.3. The pseudodifferential operator (-x~xD)v  is an automorphism

on F and hence on F' for each v e R.

3. The Fourier-Bessel series expansion of (-x~xD)v

Equation (2.10) gives the integral representation of the operator (-x~xD)v .

To get the Fourier-Bessel series expansion, we modify our leading function space

F suitably as follows (similar to the ones as in Zemanian [7, 9]).

For b > 0, define

(3.1) Fb = {tp e F\tp = 0 for x > b}.

The topology of Fb is generated by a countable family of seminorms

(3.2) yk(q>)=  sup \Ak x<p(x)\<oo,        k = 0,l,2,....
0<x<b

Clearly all the topologies obtained by choosing different v 's are equivalent.

Remark 2. Without loss of generality, we may take v > -\ .

Definition, We define finite Hankel transform h„ by

,b

(3.3) &(z) = [hv(p](z) = /   q>(x)Jr„(xz)dm(x).
Jo

Then <P(z) is an even entire function by Griffith's Theorem [2, 9]. Let

z = y + iw and Gb = {<P(z)|<P(z) is an even entire function satisfying (3.4)} .

(3.4) a£(<P) = sup \e-b^z2k<&(z)\ < oo,
zee

for k = 0, 1, 2, ... . Then C7¿ is a linear topological space with a£ as semi-

norms.

Both the spaces Fb and Gb are Hausdorff, locally convex topological linear

spaces satisfying the axiom of first countability. They are sequentially complete

spaces.

Theorem 3.1.  hv is an homeomorphism from Fb onto Gb.

Proof. Let tp e Fb. Then

<D(z) = h„+2m[(x-xD)2m<p(x)],    forme N.

Hence

rb
z2m®(z)= [ x2v+2m+x[(x-xD)2m(p(x)](xz)-'/Ju+2m(xz)dz.

Jo

le asymptotic formula

Jv(z) ~ ï/2/nzcos (z—-——j,        \z\ —>oo,  |argz|<7r,
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974 O. P. SINGH AND J. N. PANDEY

and from the fact that z~v Jv+m(z) is an entire function, it follows that for all

x and z ,

\e~bM(xz)-1' Jv+2m(xz)\ < Cmv    (a constant).

Hence

(3.5) <(<*>) < Cmvb2(m+v+xhvo[(x-xD)2m<p(x)] < oo.

(x xD)2m being an automorphism (also on Fb), (3.5) implies the continuity

of hv . hv is clearly injective. For any <P(z) e Gb , take

/•oo

q>(x)= /    <t>(y)Sv(xy)dm(y).
Jo

Then it follows from Griffith's Theorem [2] that <p is zero almost everywhere

for x > b . Also,

yvk(<p)=   sup
0<x<b

=   sup
0<x<b

/»oo

AktX /    <l>(y)Su(xy)dm(y)
Jo

/•OO

/    Q>(y)(-l)ky2l,+2k+x(xy)-vJv(xy)dy

Jo

< oo,     for each k = 0, 1,2,... ,

since Ak x[(xy)~v Jv(xy)] = (-l)ky2k(xy)~vJ„(xy), 0(y) is of rapid descent

as y —► oo, and (xy)~v Jv(xy) is bounded for 0 < y < oo . Therefore, q> E Fb .

Hence hv is surjective. Now the Open Mapping Theorem completes the proof.

Theorem 3.2. Let <p E Fb. Then

(3.6) fWTal¿E*W.(Í)'-á^(W.

where the Xn 's are the positive roots of Jv(bz) - 0 arranged in the ascending

order and for 0 < e < b/A,

Ae(jc) = <

' E(x/2e),

I,

x - b + 2e
1 -E

10,

2e

0 < x < 2e,

2e < x < b - 2e,

b - 2e < x < b,

x > b,

and E(u) = J0"exp[l/x(x - l)]dx/ J0 exp[l/x(x - l)]dx.

Proof. Trivial. See also [5].

Theorem 3.2 gives the required Fourier-Bessel Series expansion for the

pseudo-differential operator (-x~xD)v , which we obtain in the following

Theorem 3.3 (The Fourier-Bessel Series). For tp E Fb, we have

(3.7)        K-r'WW^t»^^)^"^.),

where <P0(y) = h0[(p(x)](y).
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Proof. Equation (2.9) along with Theorem 3.2 gives the required proof.

Note that
\W2<t>o(Xn)\<Akjrxl2)-2k,

Akv constants and \Jv(xkn)/xvXn   J2+x(bXn)] is smooth and bounded on 0<

x < b, 0</l„<oo.
Hence the truncation error

-ÄP-jM^jg^«En
n=N+l

has exponential decay for large A.

The Theorem 3.3 gives the Fourier-Bessel series representation of the oper-

ator (-x~xD)v on the testing function space Fb . We wish to investigate the

nature of the Fourier-Bessel series for the pseudodifferential operator (-x~xD)v

on the distribution space F'h .
The spaces Fl and G'b are dual spaces of Fb and Gb, respectively. They

are assigned the weak topologies generated by the seminorms

Pp(f) = \(f,9)\,      <P£Fb, fen,

and

P®(hf) = \(Kf,hv(p)\,        hvrpEGb,  hvfEG'b,

respectively.

Both the spaces are sequentially complete.

Definition. For f E F'b, tp e Fb , we define the generalized finite Hankel trans-

form hvf by

(3.8) (hvf,hv<p) = (f,<p).

Theorem 3.4. For v E R, hv is an homeomorphism from F'b onto G'b .

Theorem 3.5. For every e E (0, b/A) and each f E F'b, the function

(3.9) fE(y) = (f(x), y-»-x'2Xe(x)m'(y)^(xy)),

where XE(x) is defined as in Theorem 3.2, is a smooth function of slow growth,

and defines a regular generalized function in G'b .

Proof. Note that (x~xD)kXe(x) is bounded on 0 < x < b for each k . Using

(2.6), it is easy to see that y~v~xl2XK(x)m'(y)Ju(xy) e Fb . Hence (3.9) is well

defined. The rest of the proof is similar to that of Zemanian [8, Lemma 12].

Theorem 3.6. The finite Hankel transform hvf of a generalized function f in

F'b is the distributional limit, as e —► 0+ , of the family fE(z) defined by (3.9).

Proof. Trivial.

Theorem 3.7. Let f E F'b and f = hvf. Then in the sense of convergence in

F'b, we have

(3.10) f(x) = lim ¿ ¿ ^lUxkn)IJÎ+x(Mn)\ ■ M).
N^°°b „ri v a«

Proof. The proof follows easily from Theorems 3.2 and 3.6.
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Remark 3. For f e F'b, such that either / is regular or supp/ c (0, b], the

limit of fe(z) as e —» 0+ exists as an ordinary function and is equivalent to

the finite Hankel transform of / [5].

A consequence of the above theorem is the following

Theorem 3.8. Let f,gE F'b . If (hvf)(Xn) = (hvg)(k„), for n = 1,2,3, ... ,
then f = g and hvf = hvg.

Definition. For f EF'b, define (-x~xD)vf by

(3.11) ((-x-xDTf,(p) = (f,(-x-xDy(p),        <pEFb, veR.

From equations (2.9), (3.8), and (3.11), it follows that

((-x-lDyf,<p) = (f,(-x-xDy<p)

= (hQXhvf,(p),       feFb', <peFb.

Hence

(3.12) (-x-]Dyf = hQlhuf   onF/,.

Applying Theorem 3.7 to equation (3.12) we get

Theorem 3.10 (The Fourier-Bessel Series). Let f E F'b and f = hvf. Then in
the sense of convergence in Fb, we have

2   N
(3.13) (-x-xDyf(x) = lim ^ J] -=[JQ(xkn)IJx2(bXn)\f(K)-
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