THE FOURIER-BESSEL SERIES REPRESENTATION OF THE PSEUDO-DIFFERENTIAL OPERATOR $(-x^{-1}D)^{\nu}$

O. P. SINGH AND J. N. PANDEY

(Communicated by Andrew M. Bruckner)

ABSTRACT. For a certain Fréchet space F consisting of complex-valued C^{∞} functions defined on $I = (0, \infty)$ and characterized by their asymptotic behaviour near the boundaries, we show that:

(I) The pseudo-differential operator $(-x^{-1}D)^{\nu}$, $\nu \in \mathbb{R}$, D = d/dx, is an automorphism (in the topological sense) on F;

(II) $(-x^{-1}D)^{\nu}$ is almost an inverse of the Hankel transform h_{ν} in the sense that

$$h_{\nu} \circ (x^{-1}D)^{\nu}(\varphi) = h_0(\varphi), \quad \forall \varphi \in F, \ \forall \nu \in \mathbb{R};$$

(III) $(-x^{-1}D)^{\nu}$ has a Fourier-Bessel series representation on a subspace $F_b \subset F$ and also on its dual F'_b .

1. INTRODUCTION

Let F be the space of all C^{∞} complex-valued function $\varphi(x)$ defined on $I = (0, \infty)$ such that

(1.1)
$$\varphi(x) = \sum_{i=0}^{k} a_i x^{2i} + o(x^{2k})$$

near the origin and is rapidly decreasing as $\mathbf{x} \to \infty$.

For $\nu > -\frac{1}{2}$, we define a ν th order Hankel transform h_{ν} on F by

(1.2)
$$\Phi(y) = [h_{\nu}\varphi(x)](y) = \int_0^{\infty} \varphi(x) \mathscr{I}_{\nu}(xy) dm(x),$$

where

$$dm(x) = m'(x) dx = [2^{\nu} \Gamma(\nu+1)]^{-1} x^{2\nu+1} dx,$$

$$\mathcal{I}_{\nu}(x) = 2^{\nu} \Gamma(\nu+1) x^{-\nu} J_{\nu}(x),$$

and $J_{\nu}(x)$ is the Bessel function of order ν . The inversion formula for (1.2) is given by [1, 3, 4],

(1.3)
$$\varphi(x) = \int_0^\infty \Phi(y) \mathscr{I}_{\nu}(xy) \, dm(y).$$

Received by the editors February 16, 1990.

1991 Mathematics Subject Classification. Primary 47G30, 26A33; Secondary 46F12.

Key words and phrases. Pseudo-differential operator, Hankel transform of distributions, open mapping theorem, almost inverse.

This work was supported by NSERC grant A5298.

©1992 American Mathematical Society 0002-9939/92 \$1.00 + \$.25 per page In this paper we will show that for every real ν :

- (I) The pseudodifferential operator $(-x^{-1}D)^{\nu}$ is a topological automorphism on F.
- (II) The Hankel transform h_{ν} is also an automorphism on F.
- (III) On F, $(-x^{-1}D)^{\nu}$ is almost an inverse of h_{ν} in the sense that

$$[h_{\nu} \circ (-x^{-1}D)^{\nu}](\varphi) = h_0(\varphi), \qquad \varphi \in F.$$

(IV) On a certain subspace $F_b \subset F$ and on its dual F'_b , $(-x^{-1}D)^{\nu}$ has Fourier-Bessel series representations.

In the sequel all automorphisms are topological automorphisms.

2. Preliminaries

For any real $\nu \neq -\frac{1}{2}$, F_{ν} is the space of all C^{∞} complex-valued function $\varphi(x)$ defined on I such that

(2.1)
$$\gamma_{m,k}^{\nu}(\varphi) = \sup_{x \in I} |x^m \Delta_{\nu,x}^k \varphi(x)| < \infty,$$

for each m, k = 0, 1, 2..., where

$$\Delta_{\nu,x} = D^2 + x^{-1}(2\nu + 1)D.$$

 F_{ν} is a Fréchet space. Its topology is generated by the countable family of separating seminorms $\{\gamma_{m,k}^{\nu}\}_{m,k=0,1,2,...,}$ [5; 7, p. 8].

Theorem 2.1(i) of Lee [3, p. 429] shows that $F_{\nu} = F_{\mu} = F$ (as a set) for each ν , $\mu(\neq -\frac{1}{2}) \in \mathbb{R}$. Hence for each $\nu \neq -\frac{1}{2}$, we have a topology T_{ν} on F generated by the countable family of seminorms $\gamma_{m,k}^{\nu}$. Hence (F, T_{ν}) is a Fréchet space. When $\nu = -\frac{1}{2}$, $F_{-1/2} \neq F$, since the factor $x^{-1}(2\nu + 1)D$ in $\Delta_{\nu,x}$, responsible for the even nature of $\varphi(x) \in F_{\nu}(x)$ near the origin, vanishes. For example $e^{-x} \in F_{-1/2}$ but $e^{-x} \notin F_{\nu}$; $\nu \neq -\frac{1}{2}$.

Definition. Zemanian [7, 8] defined a Hankel transform \bar{h}_{ν} ($\nu \ge -\frac{1}{2}$) by

(2.2)
$$\Psi(y) = [\bar{h}_{\nu}\psi(x)](y) = \int_0^\infty \psi(x)\sqrt{xy}J_{\nu}(xy)\,dx.$$

He proved that \bar{h}_{ν} is an automorphism on the space H_{ν} that consists of complex-valued C^{∞} functions defined on I and satisfies the relation

(2.3)
$$\bar{\gamma}_{m,k}^{\nu}(\psi) = \sup_{x \in I} |x^m (x^{-1}D)^k [x^{-\nu - 1/2} \psi(x)]| < \infty,$$

for each $m, k = 0, 1, 2, \dots$, where D = d/dx.

The following theorem is a key result for the latter development of our theory.

Theorem 2.1. Let ν , μ be real number $\neq -\frac{1}{2}$. Then

- (I) The operation $\varphi \to x^{\nu+1/2}\varphi$ is an homeomorphism from F onto H_{ν} .
- (II) $(x^{-1}D)^n : F \to F$ is an automorphism on F.
- (III) (F, T_{ν}) and (F, T_{μ}) are equivalent topological spaces.
- (IV) $h_{\nu}(\varphi) = (-1)^n [h_{\nu+n}(x^{-1}D)^n] \varphi$, for $\varphi \in F$, $\nu \geq -\frac{1}{2}$, and $n = 0, 1, 2, \ldots$.

Notation. In view of the Theorem 2.1(I, III), we will always write $x^{\nu+1/2}\varphi(x) = \bar{\varphi}(x) \in H_{\nu}$ for $\varphi \in F$ and drop the suffix ν from T_{ν} . So henceforth the topological linear space (F, T) will be denoted by F.

Proof. (I) By induction on n and noting that

(2.4)
$$\Delta_{\nu,x} = x^2 (x^{-1}D)^2 + 2(\nu+1)(x^{-1}D),$$

it can be proved that

(2.5)
$$\Delta_{\nu,x}^{n} = x^{2n} (x^{-1}D)^{2n} + a_1 x^{2(n-1)} (x^{-1}D)^{2n-1} + \dots + a_n (x^{-1}D)^n,$$

where a_i 's are the constants depending on ν . Now $\varphi \in F$ iff $\overline{\varphi} \in H_{\nu}$ (follows from Remark II of Lee [3]) and taking $a_0 = 1$, it follows from (2.5) that

(2.6)
$$\gamma_{m,k}^{\nu}(\varphi) \leq \sum_{i=k}^{2k} a_{2k-i} \bar{\gamma}_{m+2(i-k),i}^{\nu}(\bar{\varphi}),$$

proving the continuity of the inverse operation $\bar{\varphi} \to x^{-\nu-1/2}\varphi$. Invoking the Open Mapping Theorem [6, p. 172], F being Fréchet space, we complete the proof.

(II) Let φ_j be a sequence tending to zero in F. Then $\overline{\varphi}_j \to 0$ in H_{ν} for arbitrary $\nu \neq -\frac{1}{2}$. Hence

$$\gamma_{m,k}^{\nu}[(x^{-1}D)^{n}\varphi_{j}(x)] \leq \sum_{i=k}^{2k} a_{2k-i}\overline{\gamma}_{m+2(i-k),i+n}^{\nu}(\overline{\varphi}_{j}) \quad (\text{from } (2.6))$$
$$\to 0 \quad \text{as } j \to \infty.$$

It remains to be shown that $(x^{-1}D)^n$ is bijective. It is enough to prove this for n = 1. So, let $x^{-1}D\varphi_1(x) = x^{-1}D\varphi_2(x)$ for $\varphi_1, \varphi_2 \in F$. Hence $\varphi_1(x) - \varphi_2(x) = \text{constant.}$ But $\varphi_1(x)$ and $\varphi_2(x)$ are of rapid descent as $x \to \infty \Rightarrow \varphi_1(x) = \varphi_2(x)$. Now let $\psi(x) \in F$. Then $\varphi(x) = -\int_x^\infty t\psi(t) dt$, defined uniquely (since ψ is of rapid descent as $x \to \infty$) in F, is such that $x^{-1}D\varphi(x) = \psi(x)$. So we see that $(x^{-1}D)^n$ is a continuous bijection on F. The space F being a Fréchet space, the Open Mapping Theorem shows that $(x^{-1}D)^n$ is a bicontinuous bijection on (F, T_ν) for each $\nu \in \mathbb{R} - \{\frac{1}{2}\}$.

(III) Let $\nu = \mu + a$, $a \in \mathbb{R}$, and φ_n be a sequence tending to zero in (F, T_{μ}) . Then

$$\begin{split} \gamma_{m,k}^{\nu}(\varphi_{n}) &= \sup_{x \in I} |x^{m}[\Delta_{\mu,x} + 2a(x^{-1}D)]^{k}\varphi_{n}(x)| \\ &\leq \sup_{x \in I} x^{m} \left[\left| \sum_{i=0}^{k} \Delta_{\mu,x}^{k-i}(2ax^{-1}D)^{i}\varphi_{n}(x) \right| + \sum_{i=0}^{k} |(2ax^{-1}D)^{k-i}\Delta_{\mu,x}^{i}\varphi_{n}(x)| \\ &+ \text{ terms of the type } |\Delta_{\mu,x}^{i_{1}}(2ax^{-1}D)^{i_{2}}\Delta_{\mu,x}^{i_{3}}\cdots\varphi_{n}(x)| \\ &\quad \text{ and } |(2ax^{-1}D)^{j_{1}}\Delta_{\mu,x}^{j_{2}}(2ax^{-1}D)^{j_{3}}\cdots\varphi_{n}(x)| \right] \\ &\quad (\text{where } i_{1}+i_{2}+i_{3}+\cdots=j_{1}+j_{2}+j_{3}\cdots=k) \\ &\to 0 \text{ as } n \to \infty, \text{ for each } m, k=0, 1, 2 \dots, \end{split}$$

since $\Delta_{\mu,x}^i$ and $(x^{-1}D)^i$ are continuous on (F, T_{μ}) . (IV) follows from integration by parts and induction on n.

Remark 1. It can be shown that on F

$$\Delta_{\nu,x}^k \circ (x^{-1}D)^n = (x^{-1}D)^n \circ \Delta_{\nu-n,x}^k.$$

The proof follows by induction on k.

Definition. In view of Theorem 2.1(IV), we define the Hankel transform h_{ν} formally for any $\nu \in \mathbb{R}$, as

(2.7)
$$h_{\nu}(\varphi) = h_{\nu+n} \circ (-x^{-1}D)^n \varphi, \qquad \varphi \in F,$$

where *n* is so chosen that $\nu + n > -\frac{1}{2}$.

This is a well-defined definition as $(x^{-1}D)^n$ is an automorphism.

Definition. Let F' be the dual space of F. Then for $f \in F'$, define the generalized Hankel transform $h_{\nu} f(=\hat{f})$ of f by

$$\langle h_{\nu}f, h_{\nu}\varphi \rangle = \langle f, \varphi \rangle \quad \forall \varphi \in F, \ \nu \in \mathbb{R}.$$

Theorem 2.2. For $\nu \in \mathbb{R}$, h_{ν} is an automorphism on F and hence on F'. *Proof.* Let $\varphi(x) \in F$. Then

(2.8)
$$h_{\nu}(\varphi) = \Phi(y) = \int_{0}^{\infty} (x^{-1}D)^{2n}\varphi(x)\mathscr{I}_{\nu+2n}(xy) dm(x) = y^{-\mu-1/2}\bar{h}_{\mu}(\bar{\psi}(x))(y), \text{ where } \mu = \nu + 2n > -\frac{1}{2},$$

where

$$\bar{\psi}(x) = x^{\mu+1/2} \psi(x) = x^{\mu+1/2} (x^{-1}D)^{2n} \varphi(x)$$

Let

$$\varphi_m(x) \to 0 \text{ in } F \Rightarrow \overline{\psi}_m(x) \to 0 \text{ in } H_\mu \text{ (Theorem 2.1(I))},$$

 $\Rightarrow \overline{h}_\mu(\overline{\psi}_m) \to 0 \text{ in } H_\mu,$
 $\Rightarrow h_\nu(\varphi_m) \to 0 \text{ in } F.$

Now \bar{h}_{μ} , the Zemanian Hankel transform, being bijective, (2.8) shows that h_{ν} is a bijection. Hence use of the Open Mapping Theorem completes the proof.

Writing $\nu = 0$ in (2.7) we get

$$h_0(\varphi) = h_n \circ (-x^{-1}D)^n(\varphi), \qquad \varphi \in F.$$

The above equation motivates us to propose the following

Definition. For $\nu \in \mathbb{R}$, define $(-x^{-1}D)^{\nu}$ by

(2.9)
$$(-x^{-1}D)^{\nu}(\varphi) = h_{\nu}^{-1} \circ h_0(\varphi), \qquad \varphi \in F.$$

Then $(-x^{-1}D)^{\nu}$ is clearly an automorphism on F for each real ν . From equation (2.9) we get

(2.10)
$$(-x^{-1}D)^{\nu}\varphi(x) = \int_0^{\infty} dm(y)\mathscr{I}_{\nu}(xy) \int_0^{\infty} dm(x)\varphi(x)\mathscr{I}_{0}(xy).$$

972

For distributions $f \in F'$, define $(-x^{-1}D)^{\nu}$ by

(2.11)
$$\langle (-x^{-1}D)^{\nu}f, \varphi \rangle = \langle f, (-x^{-1}D)^{\nu}\varphi \rangle, \qquad \varphi \in F.$$

So we modify Theorem 2.1(II) to give our main result.

Theorem 2.3. The pseudodifferential operator $(-x^{-1}D)^{\nu}$ is an automorphism on F and hence on F' for each $\nu \in \mathbb{R}$.

3. The Fourier-Bessel series expansion of $(-x^{-1}D)^{\nu}$

Equation (2.10) gives the integral representation of the operator $(-x^{-1}D)^{\nu}$. To get the Fourier-Bessel series expansion, we modify our leading function space F suitably as follows (similar to the ones as in Zemanian [7, 9]).

For b > 0, define

(3.1)
$$F_b = \{ \varphi \in F | \varphi \equiv 0 \text{ for } x > b \}.$$

The topology of F_b is generated by a countable family of seminorms

(3.2)
$$\gamma_k^{\nu}(\varphi) = \sup_{0 < x < b} |\Delta_{\nu, x}^k \varphi(x)| < \infty, \qquad k = 0, 1, 2, \dots.$$

Clearly all the topologies obtained by choosing different ν 's are equivalent.

Remark 2. Without loss of generality, we may take $\nu > -\frac{1}{2}$.

Definition. We define finite Hankel transform h_{ν} by

(3.3)
$$\Phi(z) = [h_{\nu}\varphi](z) = \int_0^b \varphi(x) \mathscr{I}_{\nu}(xz) dm(x).$$

Then $\Phi(z)$ is an even entire function by Griffith's Theorem [2, 9]. Let z = y + iw and $G_b = \{\Phi(z) | \Phi(z) \text{ is an even entire function satisfying (3.4)} \}$.

(3.4)
$$\alpha_b^k(\Phi) = \sup_{z \in \mathbb{C}} |e^{-b|w|} z^{2k} \Phi(z)| < \infty,$$

for k = 0, 1, 2, Then G_b is a linear topological space with α_b^k as seminorms.

Both the spaces F_b and G_b are Hausdorff, locally convex topological linear spaces satisfying the axiom of first countability. They are sequentially complete spaces.

Theorem 3.1. h_{ν} is an homeomorphism from F_b onto G_b . *Proof.* Let $\varphi \in F_b$. Then

$$\Phi(z) = h_{\nu+2m}[(x^{-1}D)^{2m}\varphi(x)], \quad \text{for } m \in \mathbb{N}.$$

Hence

$$z^{2m}\Phi(z) = \int_0^b x^{2\nu+2m+1} [(x^{-1}D)^{2m}\varphi(x)](xz)^{-\nu} J_{\nu+2m}(xz) dz.$$

From the asymptotic formula

$$J_{\nu}(z) \sim \sqrt{2/\pi z} \cos\left(z - \frac{\nu \pi}{2} - \frac{\pi}{4}\right), \qquad |z| \to \infty, \ |\arg z| < \pi,$$

and from the fact that $z^{-\nu}J_{\nu+m}(z)$ is an entire function, it follows that for all x and z,

$$e^{-b|w|}(xz)^{-\nu}J_{\nu+2m}(xz)| < C_{m\nu}$$
 (a constant).

Hence

(3.5)
$$\alpha_b^m(\Phi) \le C_{m\nu} b^{2(m+\nu+1)} \gamma_0^{\nu} [(x^{-1}D)^{2m} \varphi(x)] < \infty.$$

 $(x^{-1}D)^{2m}$ being an automorphism (also on F_b), (3.5) implies the continuity of h_{ν} . h_{ν} is clearly injective. For any $\Phi(z) \in G_b$, take

$$\varphi(x) = \int_0^\infty \Phi(y) \mathscr{I}_\nu(xy) \, dm(y).$$

Then it follows from Griffith's Theorem [2] that φ is zero almost everywhere for x > b. Also,

$$\gamma_k^{\nu}(\varphi) = \sup_{0 < x < b} \left| \Delta_{\nu, x}^k \int_0^\infty \Phi(y) \mathscr{I}_{\nu}(xy) \, dm(y) \right|$$

=
$$\sup_{0 < x < b} \left| \int_0^\infty \Phi(y) (-1)^k y^{2\nu + 2k + 1}(xy)^{-\nu} J_{\nu}(xy) \, dy \right|$$

< ∞ , for each $k = 0, 1, 2, \dots$,

since $\Delta_{\nu,x}^k[(xy)^{-\nu}J_{\nu}(xy)] = (-1)^k y^{2k}(xy)^{-\nu}J_{\nu}(xy)$, $\Phi(y)$ is of rapid descent as $y \to \infty$, and $(xy)^{-\nu}J_{\nu}(xy)$ is bounded for $0 < y < \infty$. Therefore, $\varphi \in F_b$. Hence h_{ν} is surjective. Now the Open Mapping Theorem completes the proof.

Theorem 3.2. Let $\varphi \in F_b$. Then

(3.6)
$$\varphi(x) = \lim_{\varepsilon \to 0^+} \frac{2}{b^2} \sum_{n=1}^{\infty} \lambda_{\varepsilon}(x) \left(\frac{\lambda_n}{x}\right)^{\nu} \frac{J_{\nu}(x\lambda_n)}{J_{\nu+1}^2(b\lambda_n)} \Phi(\lambda_n),$$

where the λ_n 's are the positive roots of $J_{\nu}(bz) = 0$ arranged in the ascending order and for $0 < \varepsilon < b/4$,

$$\lambda_{\varepsilon}(x) = \begin{cases} E(x/2\varepsilon), & 0 < x < 2\varepsilon, \\ 1, & 2\varepsilon \le x \le b - 2\varepsilon, \\ 1 - E\left(\frac{x - b + 2\varepsilon}{2\varepsilon}\right), & b - 2\varepsilon < x < b, \\ 0, & x \ge b, \end{cases}$$

and $E(u) = \int_0^u \exp[1/x(x-1)] dx / \int_0^1 \exp[1/x(x-1)] dx$. *Proof.* Trivial. See also [5].

Theorem 3.2 gives the required Fourier-Bessel Series expansion for the pseudo-differential operator $(-x^{-1}D)^{\nu}$, which we obtain in the following

Theorem 3.3 (The Fourier-Bessel Series). For $\varphi \in F_b$, we have

(3.7)
$$[(-x^{-1}D)^{\nu}]\varphi(x) = \lim_{\varepsilon \to 0^+} \frac{2}{b^2} \sum_{n=1}^{\infty} \lambda_{\varepsilon}(x) \left(\frac{\lambda_n}{x}\right)^{\nu} \frac{J_{\nu}(x\lambda_n)}{J_{\nu+1}^2(b\lambda_n)} \Phi_0(\lambda_n),$$

where $\Phi_0(y) = h_0[\varphi(x)](y)$.

974

Proof. Equation (2.9) along with Theorem 3.2 gives the required proof.

Note that

$$|\lambda_n^{\nu+1/2} \Phi_0(\lambda_n)| \le A_{k\nu} \lambda_n^{(\nu+1/2)-2k}$$

 $A_{k\nu}$ constants and $[J_{\nu}(x\lambda_n)/x^{\nu}\lambda_n^{1/2}J_{\nu+1}^2(b\lambda_n)]$ is smooth and bounded on 0 < x < b, $0 < \lambda_n < \infty$.

Hence the truncation error

$$E_N = \lim_{\varepsilon \to 0^+} \frac{2}{b^2} \sum_{n=N+1}^{\infty} \lambda_{\varepsilon}(x) \left(\frac{\lambda_n}{x}\right)^{\nu} \frac{J_{\nu}(x\lambda_n)}{J_{\nu+1}^2(b\lambda_n)} \Phi_0(\lambda_n)$$

has exponential decay for large N.

The Theorem 3.3 gives the Fourier-Bessel series representation of the operator $(-x^{-1}D)^{\nu}$ on the testing function space F_b . We wish to investigate the nature of the Fourier-Bessel series for the pseudodifferential operator $(-x^{-1}D)^{\nu}$ on the distribution space F'_b .

on the distribution space F'_b . The spaces F'_b and G'_b are dual spaces of F_b and G_b , respectively. They are assigned the weak topologies generated by the seminorms

$$P_{\varphi}(f) = |\langle f, \varphi \rangle|, \qquad \varphi \in F_b, \ f \in F'_b,$$

and

$$P_{\Phi}(h_{\nu}f) = |\langle h_{\nu}f, h_{\nu}\varphi \rangle|, \qquad h_{\nu}\varphi \in G_b, \ h_{\nu}f \in G'_b,$$

respectively.

Both the spaces are sequentially complete.

Definition. For $f \in F'_b$, $\varphi \in F_b$, we define the generalized finite Hankel transform $h_{\nu}f$ by

(3.8)
$$\langle h_{\nu}f, h_{\nu}\varphi \rangle = \langle f, \varphi \rangle.$$

Theorem 3.4. For $\nu \in \mathbb{R}$, h_{ν} is an homeomorphism from F'_b onto G'_b .

Theorem 3.5. For every $\varepsilon \in (0, b/4)$ and each $f \in F'_b$, the function

(3.9)
$$\hat{f}_{\varepsilon}(y) = \langle f(x), y^{-\nu - 1/2} \lambda_{\varepsilon}(x) m'(y) \mathscr{I}_{\nu}(xy) \rangle,$$

where $\lambda_{\varepsilon}(x)$ is defined as in Theorem 3.2, is a smooth function of slow growth, and defines a regular generalized function in G'_{h} .

Proof. Note that $(x^{-1}D)^k \lambda_{\varepsilon}(x)$ is bounded on 0 < x < b for each k. Using (2.6), it is easy to see that $y^{-\nu-1/2} \lambda_{\varepsilon}(x)m'(y)\mathcal{I}_{\nu}(xy) \in F_b$. Hence (3.9) is well defined. The rest of the proof is similar to that of Zemanian [8, Lemma 12].

Theorem 3.6. The finite Hankel transform $h_{\nu}f$ of a generalized function f in F'_b is the distributional limit, as $\varepsilon \to 0^+$, of the family $\hat{f}_{\varepsilon}(z)$ defined by (3.9). *Proof.* Trivial.

Theorem 3.7. Let $f \in F'_b$ and $\hat{f} = h_{\nu}f$. Then in the sense of convergence in F'_b , we have

(3.10)
$$f(x) = \lim_{N \to \infty} \frac{2}{b^2} \sum_{n=1}^{N} \frac{x^{\nu+1}}{\sqrt{\lambda_n}} [J_{\nu}(x\lambda_n)/J_{\nu+1}^2(b\lambda_n)] \cdot \hat{f}(\lambda_n).$$

Proof. The proof follows easily from Theorems 3.2 and 3.6.

Remark 3. For $f \in F'_b$, such that either f is regular or $\operatorname{supp} f \subset (0, b]$, the limit of $\hat{f}_{\varepsilon}(z)$ as $\varepsilon \to 0^+$ exists as an ordinary function and is equivalent to the finite Hankel transform of f [5].

A consequence of the above theorem is the following

Theorem 3.8. Let $f, g \in F'_b$. If $(h_{\nu} f)(\lambda_n) = (h_{\nu} g)(\lambda_n)$, for n = 1, 2, 3, ..., then f = g and $h_{\nu} f = h_{\nu} g$.

Definition. For $f \in F'_b$, define $(-x^{-1}D)^{\nu}f$ by

(3.11) $\langle (-x^{-1}D)^{\nu}f, \varphi \rangle = \langle f, (-x^{-1}D)^{\nu}\varphi \rangle, \qquad \varphi \in F_b, \ \nu \in \mathbb{R}.$ From equations (2.9), (3.8), and (3.11), it follows that

$$\begin{array}{l} \langle (-x^{-1}D)^{\nu}f, \, \varphi \rangle = \langle f, \, (-x^{-1}D)^{\nu}\varphi \rangle \\ &= \langle h_0^{-1}h_{\nu}f, \, \varphi \rangle, \qquad f \in F_b', \ \varphi \in F_b. \end{array}$$

Hence

(3.12)
$$(-x^{-1}D)^{\nu}f = h_0^{-1}h_{\nu}f \quad \text{on } F_b'.$$

Applying Theorem 3.7 to equation (3.12) we get

Theorem 3.10 (The Fourier-Bessel Series). Let $f \in F'_b$ and $\hat{f} = h_{\nu}f$. Then in the sense of convergence in F'_b , we have

(3.13)
$$(-x^{-1}D)^{\nu}f(x) = \lim_{N \to \infty} \frac{2}{b^2} \sum_{n=1}^{N} \frac{x}{\sqrt{\lambda_n}} [J_0(x\lambda_n)/J_1^2(b\lambda_n)]\hat{f}(\lambda_n).$$

ACKNOWLEDGMENT

This work was done while the first author was a visiting scientist in the Department of Mathematics and Statistics, Carleton University, Ottawa, Canada. The authors are grateful to the referee for his helpful comments.

References

- 1. L. S. Dube and J. N. Pandey, On the Hankel transformation of distributions, Tohoku Math. J. 27 (1975), 337-354.
- 2. J. L. Griffith, Hankel Transforms of functions zero out-side a finite interval, J. Proc. Roy. Soc., New South Wales 89 (1955), 109-115.
- W. Y. Lee, On Schwartz's Hankel transformation of certain spaces of distributions, SIAM J. Math. Anal. 6 (1975), 427-432.
- 4. A. L. Schwartz, An inversion theorem for Hankel transforms, Proc. Amer. Math. Soc. 22 (1969), 713-717.
- 5. O. P. Singh, On distributional finite Hankel transform, Appl. Anal. 21 (1986), 245-260.
- 6. F. Treves, *Topological vector spaces, distributions and kernels*, Academic Press, New York and London, 1967.
- 7. A. H. Zemanian, Generalized integral transformations, Interscience, New York, 1968.
- 8. ____, A distributional Hankel transform, J. SIAM Appl. Math. 14 (1966), 561-576.
- 9. ____, The Hankel transformations of certain distributions of rapid growth, J. SIAM Appl. Math. 14 (1966), 678-690.

Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi-221005, India

DEPARTMENT OF MATHEMATICS AND STATISTICS, CARLETON UNIVERSITY, OTTAWA K1S 5B6, CANADA

976