THE FOURIER-BESSEL SERIES REPRESENTATION OF THE PSEUDO-DIFFERENTIAL OPERATOR $\left(-x^{-1} D\right)^{\nu}$

O. P. SINGH AND J. N. PANDEY
(Communicated by Andrew M. Bruckner)

Abstract

For a certain Fréchet space F consisting of complex-valued C^{∞} functions defined on $I=(0, \infty)$ and characterized by their asymptotic behaviour near the boundaries, we show that: (I) The pseudo-differential operator $\left(-x^{-1} D\right)^{\nu}, \nu \in \mathbb{R}, D=d / d x$, is an automorphism (in the topological sense) on F; (II) $\left(-x^{-1} D\right)^{\nu}$ is almost an inverse of the Hankel transform h_{ν} in the sense that $$
h_{\nu} \circ\left(x^{-1} D\right)^{\nu}(\varphi)=h_{0}(\varphi), \quad \forall \varphi \in F, \forall \nu \in \mathbb{R} ;
$$ (III) $\left(-x^{-1} D\right)^{\nu}$ has a Fourier-Bessel series representation on a subspace $F_{b} \subset F$ and also on its dual F_{b}^{\prime}.

1. Introduction

Let F be the space of all C^{∞} complex-valued function $\varphi(x)$ defined on $I=(0, \infty)$ such that

$$
\begin{equation*}
\varphi(x)=\sum_{i=0}^{k} a_{i} x^{2 i}+o\left(x^{2 k}\right) \tag{1.1}
\end{equation*}
$$

near the origin and is rapidly decreasing as $\mathbf{x} \rightarrow \infty$.
For $\nu>-\frac{1}{2}$, we define a ν th order Hankel transform h_{ν} on F by

$$
\begin{equation*}
\Phi(y)=\left[h_{\nu} \varphi(x)\right](y)=\int_{0}^{\infty} \varphi(x) \mathscr{J}_{\nu}(x y) d m(x) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
d m(x) & =m^{\prime}(x) d x=\left[2^{\nu} \Gamma(\nu+1)\right]^{-1} x^{2 \nu+1} d x \\
\mathscr{I}_{\nu}(x) & =2^{\nu} \Gamma(\nu+1) x^{-\nu} J_{\nu}(x)
\end{aligned}
$$

and $J_{\nu}(x)$ is the Bessel function of order ν. The inversion formula for (1.2) is given by [1, 3, 4],

$$
\begin{equation*}
\varphi(x)=\int_{0}^{\infty} \Phi(y) \mathscr{F}_{\nu}(x y) d m(y) . \tag{1.3}
\end{equation*}
$$

[^0]In this paper we will show that for every real ν :
(I) The pseudodifferential operator $\left(-x^{-1} D\right)^{\nu}$ is a topological automorphism on F.
(II) The Hankel transform h_{ν} is also an automorphism on F.
(III) On $F,\left(-x^{-1} D\right)^{\nu}$ is almost an inverse of h_{ν} in the sense that

$$
\left[h_{\nu} \circ\left(-x^{-1} D\right)^{\nu}\right](\varphi)=h_{0}(\varphi), \quad \varphi \in F
$$

(IV) On a certain subspace $F_{b} \subset F$ and on its dual $F_{b}^{\prime},\left(-x^{-1} D\right)^{\nu}$ has Fourier-Bessel series representations.
In the sequel all automorphisms are topological automorphisms.

2. Preliminaries

For any real $\nu \neq-\frac{1}{2}, F_{\nu}$ is the space of all C^{∞} complex-valued function $\varphi(x)$ defined on I such that

$$
\begin{equation*}
\gamma_{m, k}^{\nu}(\varphi)=\sup _{x \in I}\left|x^{m} \Delta_{\nu, x}^{k} \varphi(x)\right|<\infty \tag{2.1}
\end{equation*}
$$

for each $m, k=0,1,2 \ldots$, where

$$
\Delta_{\nu, x}=D^{2}+x^{-1}(2 \nu+1) D .
$$

F_{ν} is a Fréchet space. Its topology is generated by the countable family of separating seminorms $\left\{\gamma_{m, k}^{\nu}\right\}_{m, k=0,1,2, \ldots,}$ [5; 7, p. 8].

Theorem 2.1(i) of Lee [3, p. 429] shows that $F_{\nu}=F_{\mu}=F$ (as a set) for each $\nu, \mu\left(\neq-\frac{1}{2}\right) \in \mathbb{R}$. Hence for each $\nu \neq-\frac{1}{2}$, we have a topology T_{ν} on F generated by the countable family of seminorms $\gamma_{m, k}^{\nu}$. Hence $\left(F, T_{\nu}\right)$ is a Fréchet space. When $\nu=-\frac{1}{2}, F_{-1 / 2} \neq F$, since the factor $x^{-1}(2 \nu+1) D$ in $\Delta_{\nu, x}$, responsible for the even nature of $\varphi(x) \in F_{\nu}(x)$ near the origin, vanishes. For example $e^{-x} \in F_{-1 / 2}$ but $e^{-x} \notin F_{\nu} ; \nu \neq-\frac{1}{2}$.

Definition. Zemanian [7, 8] defined a Hankel transform $\bar{h}_{\nu}\left(\nu \geq-\frac{1}{2}\right)$ by

$$
\begin{equation*}
\Psi(y)=\left[\bar{h}_{\nu} \psi(x)\right](y)=\int_{0}^{\infty} \psi(x) \sqrt{x y} J_{\nu}(x y) d x \tag{2.2}
\end{equation*}
$$

He proved that \bar{h}_{ν} is an automorphism on the space H_{ν} that consists of complex-valued C^{∞} functions defined on I and satisfies the relation

$$
\begin{equation*}
\bar{\gamma}_{m, k}^{\nu}(\psi)=\sup _{x \in I}\left|x^{m}\left(x^{-1} D\right)^{k}\left[x^{-\nu-1 / 2} \psi(x)\right]\right|<\infty \tag{2.3}
\end{equation*}
$$

for each $m, k=0,1,2, \ldots$, where $D=d / d x$.
The following theorem is a key result for the latter development of our theory.
Theorem 2.1. Let ν, μ be real number $\neq-\frac{1}{2}$. Then
(I) The operation $\varphi \rightarrow x^{\nu+1 / 2} \varphi$ is an homeomorphism from F onto H_{ν}.
(II) $\left(x^{-1} D\right)^{n}: F \rightarrow F$ is an automorphism on F.
(III) $\left(F, T_{\nu}\right)$ and (F, T_{μ}) are equivalent topological spaces.
(IV) $h_{\nu}(\varphi)=(-1)^{n}\left[h_{\nu+n}\left(x^{-1} D\right)^{n}\right] \varphi$, for $\varphi \in F, \nu \geq-\frac{1}{2}$, and $n=0,1$, $2, \ldots$.

Notation. In view of the Theorem 2.1(I, III), we will always write $x^{\nu+1 / 2} \varphi(x)=$ $\bar{\varphi}(x) \in H_{\nu}$ for $\varphi \in F$ and drop the suffix ν from T_{ν}. So henceforth the topological linear space (F, T) will be denoted by F.
Proof. (I) By induction on n and noting that

$$
\begin{equation*}
\Delta_{\nu, x}=x^{2}\left(x^{-1} D\right)^{2}+2(\nu+1)\left(x^{-1} D\right), \tag{2.4}
\end{equation*}
$$

it can be proved that

$$
\begin{equation*}
\Delta_{\nu, x}^{n}=x^{2 n}\left(x^{-1} D\right)^{2 n}+a_{1} x^{2(n-1)}\left(x^{-1} D\right)^{2 n-1}+\cdots+a_{n}\left(x^{-1} D\right)^{n} \tag{2.5}
\end{equation*}
$$

where a_{i} 's are the constants depending on ν. Now $\varphi \in F$ iff $\bar{\varphi} \in H_{\nu}$ (follows from Remark II of Lee [3]) and taking $a_{0}=1$, it follows from (2.5) that

$$
\begin{equation*}
\gamma_{m, k}^{\nu}(\varphi) \leq \sum_{i=k}^{2 k} a_{2 k-i} \bar{\gamma}_{m+2(i-k), i}^{\nu}(\bar{\varphi}) \tag{2.6}
\end{equation*}
$$

proving the continuity of the inverse operation $\bar{\varphi} \rightarrow x^{-\nu-1 / 2} \varphi$. Invoking the Open Mapping Theorem [6, p. 172], F being Fréchet space, we complete the proof.
(II) Let φ_{j} be a sequence tending to zero in F. Then $\bar{\varphi}_{j} \rightarrow 0$ in H_{ν} for arbitrary $\nu \neq-\frac{1}{2}$. Hence

$$
\begin{aligned}
\gamma_{m, k}^{\nu}\left[\left(x^{-1} D\right)^{n} \varphi_{j}(x)\right] & \leq \sum_{i=k}^{2 k} a_{2 k-i} \bar{\gamma}_{m+2(i-k), i+n}^{\nu}\left(\bar{\varphi}_{j}\right) \quad(\text { from (2.6)) } \\
& \rightarrow 0 \quad \text { as } j \rightarrow \infty
\end{aligned}
$$

It remains to be shown that $\left(x^{-1} D\right)^{n}$ is bijective. It is enough to prove this for $n=1$. So, let $x^{-1} D \varphi_{1}(x)=x^{-1} D \varphi_{2}(x)$ for $\varphi_{1}, \varphi_{2} \in F$. Hence $\varphi_{1}(x)-\varphi_{2}(x)=$ constant. But $\varphi_{1}(x)$ and $\varphi_{2}(x)$ are of rapid descent as $x \rightarrow$ $\infty \Rightarrow \varphi_{1}(x)=\varphi_{2}(x)$. Now let $\psi(x) \in F$. Then $\varphi(x)=-\int_{x}^{\infty} t \psi(t) d t$, defined uniquely (since ψ is of rapid descent as $x \rightarrow \infty$) in F, is such that $x^{-1} D \varphi(x)=\psi(x)$. So we see that $\left(x^{-1} D\right)^{n}$ is a continuous bijection on F. The space F being a Fréchet space, the Open Mapping Theorem shows that $\left(x^{-1} D\right)^{n}$ is a bicontinuous bijection on $\left(F, T_{\nu}\right)$ for each $\nu \in \mathbb{R}-\left\{\frac{1}{2}\right\}$.
(III) Let $\nu=\mu+a, a \in \mathbb{R}$, and φ_{n} be a sequence tending to zero in (F, T_{μ}). Then

$$
\left.\begin{array}{rl}
\gamma_{m, k}^{\nu}\left(\varphi_{n}\right)= & \sup _{x \in I}\left|x^{m}\left[\Delta_{\mu, x}+2 a\left(x^{-1} D\right)\right]^{k} \varphi_{n}(x)\right| \\
\leq & \sup _{x \in I} x^{m}[\mid
\end{array} \begin{array}{l}
{\left[\sum_{i=0}^{k} \Delta_{\mu, x}^{k-i}\left(2 a x^{-1} D\right)^{i} \varphi_{n}(x)\left|+\sum_{i=0}^{k}\right|\left(2 a x^{-1} D\right)^{k-i} \Delta_{\mu, x}^{i} \varphi_{n}(x) \mid\right.} \\
\\
\quad+\text { terms of the type }\left|\Delta_{\mu, x}^{i_{1}}\left(2 a x^{-1} D\right)^{i_{2}} \Delta_{\mu, x}^{i_{3}} \cdots \varphi_{n}(x)\right|
\end{array}\right] \begin{aligned}
& \text { and } \left.\left|\left(2 a x^{-1} D\right)^{j_{1}} \Delta_{\mu, x}^{j_{2}}\left(2 a x^{-1} D\right)^{j_{3}} \cdots \varphi_{n}(x)\right|\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty, \text { for each } m, k=0,1,2 \ldots,
\end{aligned}
$$

since $\Delta_{\mu, x}^{i}$ and $\left(x^{-1} D\right)^{i}$ are continuous on $\left(F, T_{\mu}\right)$.
(IV) follows from integration by parts and induction on n.

Remark 1. It can be shown that on F

$$
\Delta_{\nu, x}^{k} \circ\left(x^{-1} D\right)^{n}=\left(x^{-1} D\right)^{n} \circ \Delta_{\nu-n, x}^{k}
$$

The proof follows by induction on k.
Definition. In view of Theorem 2.1(IV), we define the Hankel transform h_{ν} formally for any $\nu \in \mathbb{R}$, as

$$
\begin{equation*}
h_{\nu}(\varphi)=h_{\nu+n} \circ\left(-x^{-1} D\right)^{n} \varphi, \quad \varphi \in F \tag{2.7}
\end{equation*}
$$

where n is so chosen that $\nu+n>-\frac{1}{2}$.
This is a well-defined definition as $\left(x^{-1} D\right)^{n}$ is an automorphism.
Definition. Let F^{\prime} be the dual space of F. Then for $f \in F^{\prime}$, define the generalized Hankel transform $h_{\nu} f(=\hat{f})$ of f by

$$
\left\langle h_{\nu} f, h_{\nu} \varphi\right\rangle=\langle f, \varphi\rangle \quad \forall \varphi \in F, \nu \in \mathbb{R} .
$$

Theorem 2.2. For $\nu \in \mathbb{R}, h_{\nu}$ is an automorphism on F and hence on F^{\prime}. Proof. Let $\varphi(x) \in F$. Then

$$
\begin{align*}
h_{\nu}(\varphi)=\Phi(y) & =\int_{0}^{\infty}\left(x^{-1} D\right)^{2 n} \varphi(x) \mathscr{J}_{\nu+2 n}(x y) d m(x) \\
& =y^{-\mu-1 / 2} \bar{h}_{\mu}(\bar{\psi}(x))(y), \quad \text { where } \mu=\nu+2 n>-\frac{1}{2} \tag{2.8}
\end{align*}
$$

where

$$
\bar{\psi}(x)=x^{\mu+1 / 2} \psi(x)=x^{\mu+1 / 2}\left(x^{-1} D\right)^{2 n} \varphi(x)
$$

Let

$$
\begin{aligned}
\varphi_{m}(x) \rightarrow 0 \text { in } F & \Rightarrow \quad \bar{\psi}_{m}(x) \rightarrow 0 \quad \text { in } H_{\mu} \quad(\text { Theorem 2.1(I)) } \\
& \Rightarrow \bar{h}_{\mu}\left(\bar{\psi}_{m}\right) \rightarrow 0 \quad \text { in } H_{\mu} \\
& \Rightarrow h_{\nu}\left(\varphi_{m}\right) \rightarrow 0 \quad \text { in } F .
\end{aligned}
$$

Now \bar{h}_{μ}, the Zemanian Hankel transform, being bijective, (2.8) shows that h_{ν} is a bijection. Hence use of the Open Mapping Theorem completes the proof.

Writing $\nu=0$ in (2.7) we get

$$
h_{0}(\varphi)=h_{n} \circ\left(-x^{-1} D\right)^{n}(\varphi), \quad \varphi \in F
$$

The above equation motivates us to propose the following
Definition. For $\nu \in \mathbb{R}$, define $\left(-x^{-1} D\right)^{\nu}$ by

$$
\begin{equation*}
\left(-x^{-1} D\right)^{\nu}(\varphi)=h_{\nu}^{-1} \circ h_{0}(\varphi), \quad \varphi \in F \tag{2.9}
\end{equation*}
$$

Then $\left(-x^{-1} D\right)^{\nu}$ is clearly an automorphism on F for each real ν. From equation (2.9) we get

$$
\begin{equation*}
\left(-x^{-1} D\right)^{\nu} \varphi(x)=\int_{0}^{\infty} d m(y) \mathscr{J}_{\nu}(x y) \int_{0}^{\infty} d m(x) \varphi(x) \mathscr{J}_{0}(x y) \tag{2.10}
\end{equation*}
$$

For distributions $f \in F^{\prime}$, define $\left(-x^{-1} D\right)^{\nu}$ by

$$
\begin{equation*}
\left\langle\left(-x^{-1} D\right)^{\nu} f, \varphi\right\rangle=\left\langle f,\left(-x^{-1} D\right)^{\nu} \varphi\right\rangle, \quad \varphi \in F \tag{2.11}
\end{equation*}
$$

So we modify Theorem 2.1 (II) to give our main result.
Theorem 2.3. The pseudodifferential operator $\left(-x^{-1} D\right)^{\nu}$ is an automorphism on F and hence on F^{\prime} for each $\nu \in \mathbb{R}$.

3. The Fourier-Bessel series expansion of $\left(-x^{-1} D\right)^{\nu}$

Equation (2.10) gives the integral representation of the operator $\left(-x^{-1} D\right)^{\nu}$. To get the Fourier-Bessel series expansion, we modify our leading function space F suitably as follows (similar to the ones as in Zemanian [7, 9]).

For $b>0$, define

$$
\begin{equation*}
F_{b}=\{\varphi \in F \mid \varphi \equiv 0 \text { for } x>b\} \tag{3.1}
\end{equation*}
$$

The topology of F_{b} is generated by a countable family of seminorms

$$
\begin{equation*}
\gamma_{k}^{\nu}(\varphi)=\sup _{0<x<b}\left|\Delta_{\nu, x}^{k} \varphi(x)\right|<\infty, \quad k=0,1,2, \ldots \tag{3.2}
\end{equation*}
$$

Clearly all the topologies obtained by choosing different ν 's are equivalent.
Remark 2. Without loss of generality, we may take $\nu>-\frac{1}{2}$.
Definition. We define finite Hankel transform h_{ν} by

$$
\begin{equation*}
\Phi(z)=\left[h_{\nu} \varphi\right](z)=\int_{0}^{b} \varphi(x) \mathscr{I}_{\nu}(x z) d m(x) \tag{3.3}
\end{equation*}
$$

Then $\Phi(z)$ is an even entire function by Griffith's Theorem [2, 9]. Let $z=y+i w$ and $G_{b}=\{\Phi(z) \mid \Phi(z)$ is an even entire function satisfying (3.4) $\}$.

$$
\begin{equation*}
\alpha_{b}^{k}(\Phi)=\sup _{z \in \mathbb{C}}\left|e^{-b|w|} z^{2 k} \Phi(z)\right|<\infty \tag{3.4}
\end{equation*}
$$

for $k=0,1,2, \ldots$ Then G_{b} is a linear topological space with α_{b}^{k} as seminorms.

Both the spaces F_{b} and G_{b} are Hausdorff, locally convex topological linear spaces satisfying the axiom of first countability. They are sequentially complete spaces.
Theorem 3.1. h_{ν} is an homeomorphism from F_{b} onto G_{b}.
Proof. Let $\varphi \in F_{b}$. Then

$$
\Phi(z)=h_{\nu+2 m}\left[\left(x^{-1} D\right)^{2 m} \varphi(x)\right], \quad \text { for } m \in \mathbb{N}
$$

Hence

$$
z^{2 m} \Phi(z)=\int_{0}^{b} x^{2 \nu+2 m+1}\left[\left(x^{-1} D\right)^{2 m} \varphi(x)\right](x z)^{-\nu} J_{\nu+2 m}(x z) d z
$$

From the asymptotic formula

$$
J_{\nu}(z) \sim \sqrt{2 / \pi z} \cos \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right), \quad|z| \rightarrow \infty,|\arg z|<\pi
$$

and from the fact that $z^{-\nu} J_{\nu+m}(z)$ is an entire function, it follows that for all x and z,

$$
\left|e^{-b|w|}(x z)^{-\nu} J_{\nu+2 m}(x z)\right|<C_{m \nu} \quad \text { (a constant). }
$$

Hence

$$
\begin{equation*}
\alpha_{b}^{m}(\Phi) \leq C_{m \nu} b^{2(m+\nu+1)} \gamma_{0}^{\nu}\left[\left(x^{-1} D\right)^{2 m} \varphi(x)\right]<\infty . \tag{3.5}
\end{equation*}
$$

$\left(x^{-1} D\right)^{2 m}$ being an automorphism (also on F_{b}), (3.5) implies the continuity of $h_{\nu} . h_{\nu}$ is clearly injective. For any $\Phi(z) \in G_{b}$, take

$$
\varphi(x)=\int_{0}^{\infty} \Phi(y) \mathscr{S}_{\nu}(x y) d m(y) .
$$

Then it follows from Griffith's Theorem [2] that φ is zero almost everywhere for $x>b$. Also,

$$
\begin{aligned}
\gamma_{k}^{\nu}(\varphi) & =\sup _{0<x<b}\left|\Delta_{\nu, x}^{k} \int_{0}^{\infty} \Phi(y) \mathscr{S}_{\nu}(x y) d m(y)\right| \\
& =\sup _{0<x<b}\left|\int_{0}^{\infty} \Phi(y)(-1)^{k} y^{2 \nu+2 k+1}(x y)^{-\nu} J_{\nu}(x y) d y\right| \\
& <\infty, \quad \text { for each } k=0,1,2, \ldots,
\end{aligned}
$$

since $\Delta_{\nu, x}^{k}\left[(x y)^{-\nu} J_{\nu}(x y)\right]=(-1)^{k} y^{2 k}(x y)^{-\nu} J_{\nu}(x y), \Phi(y)$ is of rapid descent as $y \rightarrow \infty$, and $(x y)^{-\nu} J_{\nu}(x y)$ is bounded for $0<y<\infty$. Therefore, $\varphi \in F_{b}$. Hence h_{ν} is surjective. Now the Open Mapping Theorem completes the proof.
Theorem 3.2. Let $\varphi \in F_{b}$. Then

$$
\begin{equation*}
\varphi(x)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{2}{b^{2}} \sum_{n=1}^{\infty} \lambda_{\varepsilon}(x)\left(\frac{\lambda_{n}}{x}\right)^{\nu} \frac{J_{\nu}\left(x \lambda_{n}\right)}{J_{\nu+1}^{2}\left(b \lambda_{n}\right)} \Phi\left(\lambda_{n}\right), \tag{3.6}
\end{equation*}
$$

where the λ_{n} 's are the positive roots of $J_{\nu}(b z)=0$ arranged in the ascending order and for $0<\varepsilon<b / 4$,

$$
\lambda_{\varepsilon}(x)= \begin{cases}E(x / 2 \varepsilon), & 0<x<2 \varepsilon \\ 1, & 2 \varepsilon \leq x \leq b-2 \varepsilon \\ 1-E\left(\frac{x-b+2 \varepsilon}{2 \varepsilon}\right), & b-2 \varepsilon<x<b \\ 0, & x \geq b,\end{cases}
$$

and $E(u)=\int_{0}^{u} \exp [1 / x(x-1)] d x / \int_{0}^{1} \exp [1 / x(x-1)] d x$.
Proof. Trivial. See also [5].
Theorem 3.2 gives the required Fourier-Bessel Series expansion for the pseudo-differential operator $\left(-x^{-1} D\right)^{\nu}$, which we obtain in the following
Theorem 3.3 (The Fourier-Bessel Series). For $\varphi \in F_{b}$, we have

$$
\begin{equation*}
\left[\left(-x^{-1} D\right)^{\nu}\right] \varphi(x)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{2}{b^{2}} \sum_{n=1}^{\infty} \lambda_{\varepsilon}(x)\left(\frac{\lambda_{n}}{x}\right)^{\nu} \frac{J_{\nu}\left(x \lambda_{n}\right)}{J_{\nu+1}^{2}\left(b \lambda_{n}\right)} \boldsymbol{\Phi}_{0}\left(\lambda_{n}\right), \tag{3.7}
\end{equation*}
$$

where $\Phi_{0}(y)=h_{0}[\varphi(x)](y)$.

Proof. Equation (2.9) along with Theorem 3.2 gives the required proof.
Note that

$$
\left|\lambda_{n}^{\nu+1 / 2} \Phi_{0}\left(\lambda_{n}\right)\right| \leq A_{k \nu} \lambda_{n}^{(\nu+1 / 2)-2 k}
$$

$A_{k \nu}$ constants and $\left[J_{\nu}\left(x \lambda_{n}\right) / x^{\nu} \lambda_{n}^{1 / 2} J_{\nu+1}^{2}\left(b \lambda_{n}\right)\right]$ is smooth and bounded on $0<$ $x<b, 0<\lambda_{n}<\infty$.

Hence the truncation error

$$
E_{N}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{2}{b^{2}} \sum_{n=N+1}^{\infty} \lambda_{\varepsilon}(x)\left(\frac{\lambda_{n}}{x}\right)^{\nu} \frac{J_{\nu}\left(x \lambda_{n}\right)}{J_{\nu+1}^{2}\left(b \lambda_{n}\right)} \Phi_{0}\left(\lambda_{n}\right)
$$

has exponential decay for large N.
The Theorem 3.3 gives the Fourier-Bessel series representation of the operator $\left(-x^{-1} D\right)^{\nu}$ on the testing function space F_{b}. We wish to investigate the nature of the Fourier-Bessel series for the pseudodifferential operator $\left(-x^{-1} D\right)^{\nu}$ on the distribution space F_{b}^{\prime}.

The spaces F_{b}^{\prime} and G_{b}^{\prime} are dual spaces of F_{b} and G_{b}, respectively. They are assigned the weak topologies generated by the seminorms

$$
P_{\varphi}(f)=|\langle f, \varphi\rangle|, \quad \varphi \in F_{b}, f \in F_{b}^{\prime}
$$

and

$$
P_{\Phi}\left(h_{\nu} f\right)=\left|\left\langle h_{\nu} f, h_{\nu} \varphi\right\rangle\right|, \quad h_{\nu} \varphi \in G_{b}, h_{\nu} f \in G_{b}^{\prime}
$$

respectively.
Both the spaces are sequentially complete.
Definition. For $f \in F_{b}^{\prime}, \varphi \in F_{b}$, we define the generalized finite Hankel transform $h_{\nu} f$ by

$$
\begin{equation*}
\left\langle h_{\nu} f, h_{\nu} \varphi\right\rangle=\langle f, \varphi\rangle \tag{3.8}
\end{equation*}
$$

Theorem 3.4. For $\nu \in \mathbb{R}, h_{\nu}$ is an homeomorphism from F_{b}^{\prime} onto G_{b}^{\prime}.
Theorem 3.5. For every $\varepsilon \in(0, b / 4)$ and each $f \in F_{b}^{\prime}$, the function

$$
\begin{equation*}
\hat{f}_{\varepsilon}(y)=\left\langle f(x), y^{-\nu-1 / 2} \lambda_{\varepsilon}(x) m^{\prime}(y) \mathscr{I}_{\nu}(x y)\right\rangle \tag{3.9}
\end{equation*}
$$

where $\lambda_{\varepsilon}(x)$ is defined as in Theorem 3.2, is a smooth function of slow growth, and defines a regular generalized function in G_{b}^{\prime}.
Proof. Note that $\left(x^{-1} D\right)^{k} \lambda_{\varepsilon}(x)$ is bounded on $0<x<b$ for each k. Using (2.6), it is easy to see that $y^{-\nu-1 / 2} \lambda_{\varepsilon}(x) m^{\prime}(y) \mathscr{J}_{\nu}(x y) \in F_{b}$. Hence (3.9) is well defined. The rest of the proof is similar to that of Zemanian [8, Lemma 12].
Theorem 3.6. The finite Hankel transform $h_{\nu} f$ of a generalized function f in F_{b}^{\prime} is the distributional limit, as $\varepsilon \rightarrow 0^{+}$, of the family $\hat{f}_{\varepsilon}(z)$ defined by (3.9). Proof. Trivial.
Theorem 3.7. Let $f \in F_{b}^{\prime}$ and $\hat{f}=h_{\nu} f$. Then in the sense of convergence in F_{b}^{\prime}, we have

$$
\begin{equation*}
f(x)=\lim _{N \rightarrow \infty} \frac{2}{b^{2}} \sum_{n=1}^{N} \frac{x^{\nu+1}}{\sqrt{\lambda_{n}}}\left[J_{\nu}\left(x \lambda_{n}\right) / J_{\nu+1}^{2}\left(b \lambda_{n}\right)\right] \cdot \hat{f}\left(\lambda_{n}\right) . \tag{3.10}
\end{equation*}
$$

Proof. The proof follows easily from Theorems 3.2 and 3.6.

Remark 3. For $f \in F_{b}^{\prime}$, such that either f is regular or $\operatorname{supp} f \subset(0, b]$, the limit of $\hat{f}_{\varepsilon}(z)$ as $\varepsilon \rightarrow 0^{+}$exists as an ordinary function and is equivalent to the finite Hankel transform of f [5].

A consequence of the above theorem is the following
Theorem 3.8. Let $f, g \in F_{b}^{\prime}$. If $\left(h_{\nu} f\right)\left(\lambda_{n}\right)=\left(h_{\nu} g\right)\left(\lambda_{n}\right)$, for $n=1,2,3, \ldots$, then $f=g$ and $h_{\nu} f=h_{\nu} g$.
Definition. For $f \in F_{b}^{\prime}$, define $\left(-x^{-1} D\right)^{\nu} f$ by

$$
\begin{equation*}
\left\langle\left(-x^{-1} D\right)^{\nu} f, \varphi\right\rangle=\left\langle f,\left(-x^{-1} D\right)^{\nu} \varphi\right\rangle, \quad \varphi \in F_{b}, \nu \in \mathbb{R} \tag{3.11}
\end{equation*}
$$

From equations (2.9), (3.8), and (3.11), it follows that

$$
\begin{aligned}
\left\langle\left(-x^{-1} D\right)^{\nu} f, \varphi\right\rangle & =\left\langle f,\left(-x^{-1} D\right)^{\nu} \varphi\right\rangle \\
& =\left\langle h_{0}^{-1} h_{\nu} f, \varphi\right\rangle, \quad f \in F_{b}^{\prime}, \varphi \in F_{b}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(-x^{-1} D\right)^{\nu} f=h_{0}^{-1} h_{\nu} f \quad \text { on } F_{b}^{\prime} \tag{3.12}
\end{equation*}
$$

Applying Theorem 3.7 to equation (3.12) we get
Theorem 3.10 (The Fourier-Bessel Series). Let $f \in F_{b}^{\prime}$ and $\hat{f}=h_{\nu} f$. Then in the sense of convergence in F_{b}^{\prime}, we have

$$
\begin{equation*}
\left(-x^{-1} D\right)^{\nu} f(x)=\lim _{N \rightarrow \infty} \frac{2}{b^{2}} \sum_{n=1}^{N} \frac{x}{\sqrt{\lambda_{n}}}\left[J_{0}\left(x \lambda_{n}\right) / J_{1}^{2}\left(b \lambda_{n}\right)\right] \hat{f}\left(\lambda_{n}\right) \tag{3.13}
\end{equation*}
$$

Acknowledgment

This work was done while the first author was a visiting scientist in the Department of Mathematics and Statistics, Carleton University, Ottawa, Canada. The authors are grateful to the referee for his helpful comments.

References

1. L. S. Dube and J. N. Pandey, On the Hankel transformation of distributions, Tohoku Math. J. 27 (1975), 337-354.
2. J. L. Griffith, Hankel Transforms of functions zero out-side a finite interval, J. Proc. Roy. Soc., New South Wales 89 (1955), 109-115.
3. W. Y. Lee, On Schwartz's Hankel transformation of certain spaces of distributions, SIAM J. Math. Anal. 6 (1975), 427-432.
4. A. L. Schwartz, An inversion theorem for Hankel transforms, Proc. Amer. Math. Soc. 22 (1969), 713-717.
5. O. P. Singh, On distributional finite Hankel transform, Appl. Anal. 21 (1986), 245-260.
6. F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York and London, 1967.
7. A. H. Zemanian, Generalized integral transformations, Interscience, New York, 1968.
8. __, A distributional Hankel transform, J. SIAM Appl. Math. 14 (1966), 561-576.
9. , The Hankel transformations of certain distributions of rapid growth, J. SIAM Appl. Math. 14 (1966), 678-690.
Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi-221005, India

Department of Mathematics and Statistics, Carleton University, Ottawa K1S 5B6, Canada

[^0]: Received by the editors February 16, 1990.
 1991 Mathematics Subject Classification. Primary 47G30, 26A33; Secondary 46F12.
 Key words and phrases. Pseudo-differential operator, Hankel transform of distributions, open mapping theorem, almost inverse.

 This work was supported by NSERC grant A5298.

