List of Figures

		Page No.
Figure 1.1	Schematic representation of novel photo-induced living graft polymerization method	11
Figure 1.2	Schematic representation for multistep strategy for deposition of antibacterial agent on PVC surface in physiochemical approach (a), carboxyl group activation mechanism by EDAC (b), and enamine formation following secondary amine and glutaraldehyde reaction	12
Figure 1.3	Modification of PVC by atom transfer radical polymerization	13
Figure 1.4	The structure of a 2:1 layered silicates	18
Figure 1.5	Schematic picture of ion-exchange reaction in layer structured silicates	21
Figure 1.6	Different types of CNT structure	22
Figure 1.7	Atomic structure of layered double hydroxides (LDH)	26
Figure 1.8	Diagrammatically model of anion exchange for layered compounds	28
Figure 1.9	Various biomolecule–LDH hybrids obtained by intercalation reaction (a) the pristine MgAl–LDH, (b) CMP–LDH hybrid, (c) AMP–LDH hybrid, (d) GMP–LDH hybrid, and (e) DNA– LDH hybrid	29
Figure 1.10	Hybridization of bio-LDH molecule and their expected transfer mechanism	30
Figure 1.11	Thermal behaviour of PVC and its nanocomposites	35
Figure 1.12	Thermal behaviour of PVC and its nanocomposites	37
Figure 1.13	SEM micrographs of PVC surface after being contacted with fresh platelet enriched plasma: (a) control PVC, (b) CTAB/Hep/(Fe3+ /Hep)7coated PVC and (c) CTAB/DS/Fe3+/Hep(Fe3+/DS/Fe3+/Hep)3coated PVC	43
Figure 2.1	Photograph of FTIR used in material analysis	55
Figure 2.2	Photograph of UV-Visble used in material analysis (Shimadzu (UV-1700), Pharma Speck)	57
Figure 2.3 Figure 2.4	Geometrical derivation of Bragg's law Photograph of XRD used in material analysis (Brucker D8 Advance with Cu Ka radiation and a graphite monochromator)	59 60

Figure 2.5	Photograph of TGA used in material analysis	61
Figure 2.6	Contact angles formed by sessile liquid drops on a smooth homogeneoussolid surface	62
Figure 2.7	Photograph of Tensiometer used in identified wettability of different material analysis (Kruss F-100 tensiometer system)	63
Figure 2.8	Photograph of SEM used in identified morphology of different polymer analysis	65
Figure 2.9	Photograph of TEM used in identified morphology of different polymer composites analysis	66
Figure 3.1	¹ H-NMR spectra of PVC and functionalized PVC with thiosulphate (PVC- TS), thiourea (PVC-TU) and sulphite (PVC-S)	75
Figure 3.2	FTIR spectra of pure and functionalized forms of PVC	76
Figure 3.3	UV-Vis spectra of PVC and its derivatives	78
Figure 3.4	Thermogram of pure and functionalized PVC analyzed in a nitrogen atmosphere	79
Figure 3.5	(a) Contact angle measurements of pure PVC and functionalized PVC resins and (b) Hemolysis percentage of pure PVC and functionalized PVC polymers	80
Figure 3.6	Scanning Electron Micrographs of PVC and the derivatives of PVC resin after the chemical modification. (a) & (b) PVC, (c) &(d) PVC-TS, (e) & (f) PVC-TU and (g) & (h) PVC-S	81
Figure 3.7	Antibacterial activity of PVC and its functionalized polymer; colonies of E. coli grown on (a) PVC, (b) PVC-TS, (c) PVC-TU and (d) PVC-S	83
Figure 3.8:	Biocompatibility evolution of PVC and its derivatives. (a) The percentage value of mesenchymal stem cell adhesion on PVC and its functionalized forms was evaluated using crystal violet. The absorption values were taken at the wavelength of 544nm	84
Figure 3.9:	Cell viability of mouse mesenchymal stem cell seeded on PVC, PVC-TS, PVC-TU and PVC-S surface. Cells were plated directly on the polymeric biomaterial surface and cultured for 1, 3 and 5 days in a growth medium	85
Figure 3.10	Nuclear morphology of mMSC cells grown on different polymeric surfaces for 24 h. Cells were cultured in direct contact with various samples and analyzed with a fluorescence microscopy. (a) PVC; (b) PVC-TS; (c) PVC-TU; (d) PVC-S	86

Figure 4.1	(a) FTIR and (b) XRD patterns of MgAl-CO ₃ LDH with Mg/Al Molar ratio 2:1	91
Figure 4.2	 (a) FTIR spectra of PVC, PVC-TS, PVC-TS and PVC-S functionalized PVC, (b) PVC-1, 1.5 & 2%, (c) PVC-TS-1, 1.5 & 2%, (d) PVC-TU-1, 1.5 & 2% and (e) PVC-S-1, 1.5 & 2% 	93
Figure 4.3	a) UV-visible spectra of PVC and its nanocomposites, (b) PVC-TS and its nanocomposites, (c) PVC-TU and its nanocomposites, (e) PVC-S and its nanocomposites	94
Figure 4.4	(a) XRD of PVC-1, 1.5 & 2%, (b) PVC-TS-1, 1.5 & 2%,(c) PVC-TU-1, 1.5 & 2% and (d) PVC-S-1, 1.5 & 2%	95
Figure 4.5	Wettability graph of different polymer composite (a) PVC-1, 1.5 & 2%, (b) PVC-TS-1, 1.5 & 2 %,(c) PVC-TU-1, 1.5 & 2% and (d) PVC-S-1, 1.5 & 2%	96
Figure 4.6	TEM images of different polymer composite (a) PVC - 2%, (b) PVC-TU- 2%	97
Figure 4.7:	Thermograph of polymer composite (a) PVC-1%, PVC-1.5% & PVC-2% (b) PVC-TS-1, PVC-TS-1.5 & PVC-TS-2% (c) PVC-TU-1, 1.5 & 2% (d) PVC-S-1, 1.5 & 2%	99
Figure 4.8	Stress strain curve of PVC with functionalized PVC with thiosulphate (PVC-TS), thiourea (PVC-TU) and sulphite (PVC-S)	100
Figure 4.9	Stress strain curve of (a) PVC and its different wt% of LDH nanocomposites; (b) PVC-TS and its different wt% of LDH nanocomposite	101
Figure 4.10	Stress strain curve of (a) PVC-TU and its different wt% of LDH nanocomposites; (b) PVC-S and its different wt% of LDH nanocomposite	103
Figure 5.1	Hemolysis activities of different polymer functionalized PVC composites, (a) PVC and its composites with different wt% of LDH; (b) PVC-TS and its composites with different wt% of LDH; (c) PVC-TU and its composites with different wt% of LDH; (d) PVC-S and its composites with different wt% of LDH	110
Figure 5.2	Cell adhesions of different polymer ionomers composites on mMSCs, (a) PVC and its composites with different wt% of LDH; (b) PVC-TS and its composites with different wt% of LDH; (c) PVC-TU and its composites with different wt% of LDH; (d) PVC-S and its composites with different wt% of LDH	112
Figure 5.3	Cell Proliferation of PVC and its composites with different	114

Figure 5.3Cell Proliferation of PVC and its composites with different114wt% of LDH on mMSCs

- Figure 5.4Cell Proliferation of PVC-TS and its composites with different115wt% of LDH on mMSCs
- Figure 5. 5Cell Proliferation of PVC-TU and its composites with different115wt% of LDH on mMSCs
- Figure 5.6Cell Proliferation of PVC-S and its composites with different116wt% of LDH on mMSCs
- Figure 5.7 Morphological observation of mMSCs grown on different 117 functionalized polymer nanocomposites surface for 24h. Cells were cultured direct in contact with various samples and analyzed with fluorescence microscope. (a) PVC; (b) PVC-1%; (c) PVC-1.5%; (d) PVC-2%
- Figure 5.8Morphological observation of mMSCs grown on different
functionalized polymer nanocomposites surface for 24h. Cells
were cultured direct in contact with various samples and
analyzed with fluorescence microscope. (a) PVC-TS; (b) PVC-
TS-1%; (c) PVC-TS-1.5%; (d) PVC-TS-2%118
- **Figure 5.9** Morphological observation of mMSCs grown on different functionalized polymer nanocomposites surface for 24h. Cells were cultured direct in contact with various samples and analyzed with fluorescence microscope. (a) PVC-TU; (b) PVC-TU-1%; (c) PVC-TU-1.5%; (d) PVC-TU-2%
- Figure 5.10 Morphological observation of mMSCs grown on different functionalized polymer nanocomposites surface for 24h. Cells were cultured direct in contact with various samples and analyzed with fluorescence microscope. (a) PVC-S; (b) PVC-S-1%; (c) PVC-S-1.5%; (d) PVC-S-2%