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A class of multiobjective fractional variational problems is considered and duals
are formulated. Under concavity assumptions on the functions involved, duality
theorems are proved through a parametric approach to relate efficient solutions
of the primal and dual problems. We generalize those results for control problems
also. € 1994 Academic Press. Inc.

I. INTRODUCTION

Duality for multiobjective variational problems has been of much inter-
est in recent years, and contributions have been made to its development
(Bector et al. [2]). Using parametric equivalence, Bector and Husain [1]
formulated a dual program for a multiobjective fractional program having
continuously differentiable convex functions.

The purpose of the present paper is to consider the duality of multiobjec-
tive fractional variational problems by relating the primal problem to a
parametric multiobjective variational problem.

2. NOTATIONS AND PRELIMINARIES

Let I = [a, b] be areal interval and f: { X R" X R"— RP g: I X
R" x R"— RP,and h: I X R" X R"— R™ be continuously differentiable
functions. For x, y € R" by x < y we mean x; < y,, V i. All vectors will
be taken as column vectors. The symbol ( )T will stand for the transpose.
x:I— R",
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Let C(I, R") denote the space of piecewise smooth functions x with
norm |jx|| = |lx|l. + ||{Dx]|., where the differential operator D is given by

t
u=Dxox(t) =a+ f u(s)ds,

where a is a given boundary value. Therefore D = d/dt except at disconti-
nuities. Let § C R” be open.

We now consider the multiobjective fractional variational primal prob-
lem as

b

[ e xto. 50y di

(P) Minimize -5
g(t, x(t), x(¢)) dt

b b
[ freswo.xenar [ e, ww)a

- B LIEREY ey N
[“gtu xo iandr [ gt xe), ko) de
subject to
xa)=a x(b)=8 (N
hit, x(t), x(1)) < 0, Viel, Jj=1,...m,
xe s, XECU,RY. (2
We assume that g'(¢, x(¢), x(¢)) > 0 and fi(z, x(¢), x(¢)) = 0 whenever gi(x)

is not linear for alli = 1, ..., p.
Let X denote the set of all feasible solutions of (P) and

o1, x(1), x(1)) = (P'(1, x(1), x(1), ..., d7(1, x(1), x(r)),

where

| ’ fite, ). 5y dr
b'(r, x(1), X(1) = —5— ,
[ gt x), xey dr

i=1,..,p.



MULTIOBJECTIVE VARIATIONAL PROBLEMS 713

DEFINITION 1. A point x* € X is said to be an efficient solution of
P)ifforall x € X

b
ff"(t,x*(t),fc*(r))dt fbf"(:,x(z),x(z))dz

b ; . =k ; . ’
[ gt xrmixande [ gl 5@, 1) di

fbf"(t. x*(t), x*(1)) dt fbf"(t, x(1), x(1)) dt
é u _ ‘a

T =T )
fg'(z,x*(x),fc*(z)dr fg'(t,x(z),x(t))dt

Let D = {d € R*; k. (¢, x*(1), x(£))d < 0}, where J is the set of all active
constraints at x*, i.e.,

J =W, x*@),x*0) =0,j=1,2,....n}.

For details, see Bector et al. [1].

3. DuaL PrOBLEM: FORMULATION AND MOTIVATION

We consider the following parametric vector variational problem (Py)
for each v € R”., where R”. denotes the non-negative orthant of R”.

(Py) Minimize

(J'b {f‘(z,x(t),jc(t)) — v,g‘(t,x(t),jc(t))} dt, ...,

f ’ {f”(t. x(2), x(1)) — v, g7(t, x(1), x(1)) dt} dt) ,

subject to

x{a) = a, x(b) = B,
R, x(1), x(1) <0, j=1,...mxES xEC.

We now prove the following.

LEMMA 1. Let x* be efficient for (P). Then there exists v* € R such
that x* is also efficient for (Py).
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Proof. Fori =1, ..., plet

[ i, e, =y

Ui

b
f g, x* (1), ¥*(1) dt

and

Let x* be inefficient for (Py.). This implies that there is an x feasible for
(Py+) such that

Lb {fit, x(0), x(0)) — vF '(t, x(2), X ()} dt
= Lb [file, x* (1), X*(1)) — vf gi(e, x* (1), XX} dt, i=1,...p,
and
Lb {flo(t, x(1), x(8)) — v¥ gh(t, x(1), X(1))} dt
< Lh {fio(t, x* (1), X*(1)) — v gh(r, x*(1), X*(1))} dt
for at least one i.

[*fitt.xv . iexay ar

vf =

b ]
[ g, 2. v e
therefore,
b . .
[ x5 - vp gl 1), k@) dr = 0

fori =1,..,p.
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Hence from the above we have

b
fbf"(t,x(t),fc(t)) dt f fite, x*(@), x*(1)) dt

=

Vi,

b Vi = 25 ,
[ gt xto, e ar [ g iy dr

and

fbf"o(t, X*(t), X*(0)) dt

d

f ’ fitt, x(0), (1)
a < U;: _ 1
f glo(t, x* (1), k*(1)) dt

f " giot, x(0), ¥(0)) di

for at least one i(say i = i),
This contradicts that x* is efficient for (P). Hence we are done.

Remark 1. The converse of Lemma 1 also holds provided we assume

f,[,fi(f,x*(l),k*(t))dt
x _ ‘@

Ui =73 ,
[ gl xr @), i wy dr

b
f {Fi(e, x* (1), X*(1)) — v} gi(r, x* (1), X*(1)}dt = 0

fori =1,2, .., p.

Now, in view of Lemma 1 above and in analogy with the traditions in
fractional duality, we introduce the following problem (D) as the dual
of (P).

(D) Maximize

b
f {(fF@, x(2), x(2)) — vg(t, x(1), x(0)) + uT h(t, x(1), X(1))} dt,

ie.,

409/186/3-7
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b
([ {F'(, x(2), x(1)) — v, g'(t, x(2), x(t)) + nT h (¢, x(1), X()} dt, ...,

b
f {f7 (t, x(0), x()) — v, g7 (t, x(1), x(1)) + uT h (2, x(1), x(¢))} dt).

subject to
x(@)=a, x(b)=p (3)
filt, x(0), (1)) — v g (8, x(1), x(t)) + " A (2, x(1), X(1)) @
= D[f.(t, x(1), x(t)) — vg(t, x(1), x(1)) + uT hy(t, x(0), X(£))]
w()=0, &)
where
LG, x(@), X)) = (f1(t, x(0), X(1)), ..., f7(t, x(2), X(1)))
and

h(t, x(1), x(2)) = (B'(t, x(), X)), ..., hP(t, x(1), x(1))).

Let Z be the set of feasible solutions of (D).

4. DUALITY THEOREMS

We shall now prove that problems (P) and (D) are a dual pair subject
to concavity conditions on the objective and constraint functions.

THEOREM 1 (Weak Duality). If

j ? Fe, x (). k() i, f " vt (), k(1) dt

a

and

b
[ uTh, x50t forany ) €R, =0,

are all convex with respect to the same function n, then inf(P) = sup(D).
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Proof. Let (x*, x*) satisfy (1) and (2) and let (x, x, u, v) satisfy
(3)-(5). Then

b
[ 45 x), 50)) = vgte, x(0), 50} di

b
~ [ U@, 0 - vett, x* 1), )

+ wh(t, x*(1), x*(21)} dt
b

= {n(t,X(t),Jr*(t)) (fult, X(0), (4)) = vg, (8, x(4), £(0)

+ dg?-(t, x(8), x*()(f (1, x(2), x(2)) — vg (¢, x(1), fc(t)))} dt
b
—f w B, x* (1), $*()) dt
by concavity of
b b
f fl, x(t), k() dt and j [~ vglt, x(D), (1)} dt.

Using integration by parts, concavity of [ u” A, and boundary conditions
(3), we obtain

fab {f(t, x(0), x(2) — vg(t, x(2), X()) + T h(z, x(2), (1))} dt
- fab {f@, x* (), x*(1) — vg(t, x* (1), X*(1)) + " h(t, x*(1), X*(1)} dr = 0,
which in view of (2) and (5) yields

| "L 0, 1) = vglt, x(0), K1)} di

b
= [ {1, x40, 740) - vt x*(1), ¥ (1)
+ wTh(t, x*(t), x*(1)} dt,

i.e., inf (P) = sup (D).
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Assuming the constraint conditions for the existence of multiplier w(¢)
at extrema of (P) hold, the necessary conditions for (x*) to be optimal for
(P) are:

There exists a piecewise smooth
mo:I— R”, p(t) s.t.

F = po(f(e, x(0), x(1)) — vg(t, x(t), x(t)) — wT (AU, x(1), X(1))
satisfies
£t x(), x(0)) — ve (¢, x(1), x(1) — pTh (¢, x(1), x(1))

= Ed;[f,i(t, x(2), x(1)) — vg (&, x(8), x(4)) — T h (1, x(1), X(1))]

pih; =0, j=1,...,m 7
n=0. (8)

It is assumed from now on that the minimizing solution x* of (P) is normal,
that is, u, is non-zero, so that without loss of generality, we can take
po = 1.

THEOREM 2 (Strong Duality). Under the concavity conditions of Theo-
rem 1, if the function x*(1) is an efficient solution for (P), then there exists
a piecewise smooth u(t): I — R™ such that (x*(t), u(t), v) is an efficient
solution of (D) and the extreme values of (P) and (D) are equal.

Proof. Since x* is an efficient solution of (P) and concavity conditions
of Theorem 1 are satisfied, 3a, w: I — R” such that for t € I,
Ll x* (), K¥(0) — vg (6, x*(1), x*(1)) + w(@)Th (1, x*(1), X*(1))

= D{fi(t, x*(t), x*(1)) — vg (6, x* (1), X*(1)) + )T h (6, x* @), *@)] ©)

p(OTh(t, x*(1), x*(1)) = 0 (10)
w(1) = 0. (11)

From (9) and (11) it follows that (x*, v, u) € Z; (10) and Lemma 1 imply
that (x*, v, u) is efficient for (D).

For the converse duality theorem (Theorem 3), we make the assumption
that X, denotes the space of the piecewise differentiable function x: / —
R* for which x(a) = 0 = x(b) equipped with the norm |x|| = |x[. +
[Dxfl. + [[D*x

x
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Problem (D) may be rewritten in the form
Minimize — ¢(x, v, ) = (—¢'(x, v, @), ..., —d?(x, v, u)), subject to

x(a) = a, x(b) = 8
o(t, x(1), x(), x (1), v, (1), n(1)) = 0, tel
n(t) =0, tel,

where

b
&'(x,v.0) = [ [(fe, X0, K(1)) = v,g(e, x(), K(1))

+ pf hy(t, x(0), x(1)] dt, i=1,..pj=L...,m

and
0 = 0(t, x(1), x(1), X (), v, (1), p(1))
= f(t, x(t), (1)) + vg (t, x(2), (1)) + uTh(t, x(1), x(1))
— D[f(t, x(1), x(2)) — vg(t, x(1), x(2))
+ uTh (6, x(), x(0)], (€1,
with

X(t) = DXx(1).
Following Bector et al. [1], we are in position to state the converse

duality theorem as follows:

THEOREM 3 (Converse Duality).
of (D) and if

() ¢’ have a (weak™) closed range,
() f, g, and h are twice continuously differentiable,
(M) [{fi - vigd) — D(fi —vigh}dt,i=1,...p

is linearly independent, and

If (x*, @, v) is an efficient solution

(V) (B(1)T8, — DB(1)T6, + D*B(1)T6,)B() = 0
> B(z) = 0, tel,

then x* is an efficient solution of (P) and the corresponding objective
values are equal.

Proof. See Bector and Husain [2]. |
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S. FORMULATION OF CONTROL PROBLEM

Now we are in position to propose duality for multiobjective fractional
variational control problems. Following Mishra and Mukherjee [3], we

give the multiobjective fractional control problem as

P (Primal) Minimize

b
[ 1. x), 50, u@, i) de

b
[ gt x@, 0y, wtt), ey

b
ff'(t,x(t),fc(t),u(t),il(t))dt

.....

- b
[ &' x0, ko), uto), o)) de

b
f Fo(t, x(), %O ule), il(0)) di

b ,
j @P(t, x(1), x(0), u(t), (1)) dt

subject to

x(a) = a, x(b) =B
hi(t, x(2), x(t), u(r), u(r)) = X, j=1,...,m
k)(t, x(t), x(t), u(t), (1)) = 0, =1,

The equivalent parametric form of the problem is

(Py) Minimize

b
[ 1 x0), 5@, w @), 1) = vt x(0), 50), ut), e} di

(12)
(13)
(14)

b
= (f {FYa, x(2), k() u(), a(t)) — v,g'(t, x(t), x(t), u(t), u(t)} dt, ...,

b
f {fP(e, x(2), x(0), u(1), (1)) — v,g7(t, x(t), X(1), u(t), i(1))} dt>,
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subject to
x(a) = «a, x(b) =8 (15)
R, x(0), x(), u(t), ut)) = x, j=1,....m (16)
ke, x(1), x(1), u(t), u(t)) = 0, [=1,...,m. (17)

D (Dual) Maximize
b
[ 1 @, i), ), i) = vg(e, x(0), i), utt), i)

— A [h(t, x(0), x(0), u(t), i(t)) — x]
= () k(t, x(t), x(1), u(t), u())} dt,

subject to

x(a) = «a, x(b) = B, (18)

[f_‘(t, x(8), x(2), u(t), u(t)) — vg (¢, x(t), x(t), u(t), u(t))

= MO h (8, x(1), x(1), u(t), (1))

— (O (8, x(0), x(2), u(t), ()]
d (19)
== [{f_e(t, x(1), (1), u(t), (1)) — vg, (1, x(£), x(1), u(?), (1))}

= MO (1, x(2), X()u(t), u(1))

= w( ko (2, x(t), x(2), u(t), a(r))],

S, x (1), x(2), u(r), u(t)) — vg (¢, x(2), x(¢), u(z), ()
— MO (1, x(8), x(1), u(t), ie(t) (20)
— w2k, (2, x(2), x(1), u(t), u(t)) = 0

w(t)=0. @n

6. DUALITY THEOREMS (CONTROL)

Now we are ready to state analogous results of [4] for the control case.
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THEOREM 4 (Weak Duality). [If

fhf(f,',',‘,‘)dt, fb—Ug(f,‘,',',')dt,

a

b b
j AT, -, L, 0) dt, andj —WTk(t, e ) dE,

a

forany N E R?, u € R™, u = 0, are all convex with respect to the same
function n and , then

jb Fie, x (1), k(). ult), i(1)) dt

Jb g, x(), x(1), u(), (1)) dt

fb {FiCe, x*(e), x* (1), u*(1), i* (1)) — NVh(t, x*(1), x*(1), u*(t), i*(t)
— Tk, x*(t), x*(t), u*(t), i*(£)} dt
fb g, x* (1), X* (1), u* (1), u* (1)) dt

I

viell, ..., p}

and

jb Fite, x(t), x(), u(2), () dt

jb &, x(0), x(t), u(t), iu(t)) dt

fb {F90e, x*(0), x* (1), w* (1), * (1)) — NTh(e, x* (1), X*(1), u* (1), i*(1))
— uTk(e, x*(@), x* (1), u* (1), i* (1))} dt
fb g, x* (1), x*(1), u*(1), i* (1)) dt

a

<

cannot hold for at least one j.
Proof. See Bector and Husain [2] and Mishra and Mukherjee [3]. |

Once weak duality has been established, strong and converse duality
follow as in [3].

For completeness, we restate the results for strong and converse duality.

We assume that the necessary constraints for the existence of multipliers
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at an extremal of (P) are satisfied. Thus for every efficient (x*, u*) to (P)
there exists Ay, -

F=No(f(t, x(2), x(2), u(t), u(t)) — ve(t, x(2), x(r), u(t), we(1)))
= MOT[A, x(0), X(0), ult), (1)) — X]
— w(OTk(, x(2), X(0), u(), (1))

satisfying

Sot, x(8), x(2), u(t), u(t)) — vg (¢, x(t), x(1), u(t), (1))
= ATh (e, x(2), X(0), u(t), u(t))

— w1, x(t), x(2), u(2), (1))
- é’-t[{ Filt, x(0), %(0), u(2), (1)) (22)

—vgt, x(t), x(2), u(t), u(1))}
- AThj(t’ X(’), x(t)s u(t)v l.l([))
= wTk(t, x(t), x(1), u(t), ()],

Ju(t, x(@), x(8), u(t), a(t)) — vg,(t, x(2), x(2), u(t), (1))
= ATh,(t, x(1), x(1), u(t), (1)) (23)
— wTk, (8, x(2), x(), u(t), iu(t)) = 0

wTk=0, I=1..m (24)
(1) = 0. (25)

THEOREM 5 (Strong Duality). Under the concavity conditions of Theo-
rem 4, if the (x*(t), u*(t)) is an efficient solution for (P), then there exists
a piecewise smooth \(t): I — R™ such that (x*(t), u*(t), A(t), u(1), v),
p(t): I — R is an efficient solution of (D) and the extreme values of (P)
and (D) are equal.

Proof. Very similar to that of Theorem 2. |

For the converse duality theorem (Theorem 6), we make the assumption
as before (see Theorem 3), i.e., X, denotes the space of piecewise differ-
entiable functions x: I — R” for which x(a) = 0 = x(b) equipped with
the norm |x|| = |x[l. + [D,]= + [|[D*x|, and U, denotes the space of
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u: I - R™, with |u|]| = |u|.. The dual of the primal control problem may
be rewritten as

Minimize
_d)(x*9 u*a )\a ,Uv) = ('_d)](x*,ll*, }\’ "‘L)’ very _d)p(x*, u*, )\v “'))

subject to

x*(a) = a, x*(b) = B,
O, x*(1), x*(2), X *¥(1), A, w, u*(t), u*(1)) = 0, tel,

w(t) =0, tel,

where

b
S ut ) = [ {FUL X0, 540, . w* (1), (1)

- Uigi(t’ X*(t)s '.X*(t), )\w [ u*([)u ':4*(,))

— AU (R, XX () X*(), N, 1, w*(0), % (1) — &)

— T k(t, x*(0), X*(0), N, p, u*(1), i*(1)} dt,
i=1,....,p

and

6= 6(t, x*(1), x*(1), X*¥(2), A, ., u* (1), i*(1)
= (folt, x*(2), X*(1), u*(1), u*(1))

— vg [, x*(1), X*(1), u*(1), i*(1))

— Dflt, x* () 3*(0), u*(), i*(1))

= vg (1, x*(1), X* (1), u*(t), u*(t))

— MO Th (1, x* (1), X* (), u* (1), i*(1)

— () ke, x* (), XX (1), u*(2), i* (1))
Now, following Bector et al. [2] analogously for the control case, we are
in position to deal with the converse duality theorem.

THEOREM 6 (Converse Duality). If (x*, u*, N, u) is an efficient solution

of (D) and if

(1) ¢’ have a (weak*) closed range,
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(i) f, g, and h are twice continuously differentiable,

Wiy So{fL — vigh) = DL —vigdhdr i =1, .., p
is linearly independent, and

(iv) (BT, — DB()TH, + D*B(1)T6,)B(t) = 0
>B() =0 el

then x* is an efficient solution of (P) and the corresponding objective
values are equal.

Proof. Very similar to that of Theorem 3. |

SUFFICIENCY

Once duality results have been established in the presence of concavity,
sufficiency follows as in {3]. For the sake of completeness we state the
result without proof.

THEOREM 7. If there exists (x*, u*, \, w) such that conditions (22)-(24)
hold with (x*, u*) feasible for (P), and

["fdz,fb—vgdz, fb—xT(h—x)dz, and ["—,ﬂkd:

a

are all concave with respect to the same functions n and &, then (x*, u™)

is efficient for (P).
Proof. See Mishra and Mukherjee [3]. |
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