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1. INTRODUCTION

It is a fairly difficult problem to characterize the functions in L?(R")
whose Fourier transform vanishes in some orthants of R". Very little is
known concerning this problem except the classical Paley-Wiener Theorem
in one dimension which characterizes the functions in L2(R) having their
Fourier transforms vanish for negative values of the variable [14, p. 175].
Later some results for the space L?(R") were obtained by Stein and Weiss
[29, p. 112].

Concerning the Fourier transform of a distribution with compact
support, it was shown that the Fourier transform of a distribution /" with
bounded support is a function F(z)= f(exp(—2miz-x)), which may be
continued to all complex numbers z as an entire function of exponential
growth. The converse is also true [32, p. 15]. For further references see
[1,3,4,5,7,8]. But none of those give the explicit characterization of
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functions in L”(R”) and distributions in the Schwartz space D}.(R"),
whose Fourier transforms are supported on a given number of orthants in
R”. The aim of the present paper is to give a complete answer to the
problem for functions in L?(R") and distributions in D} ,(R"), 1 < p < o0.

For fe L?(R"), 1 < p< o0, we construct the holomorphic function F(z),
zeC", as

F(z)=

1 1
o )= dl, (1.1

G e OG5 )
where z;=x;+iy; and y;#0 Vj=1, 2, .., n. For a distribution fe D},(R")
the corresponding function F(z) is defined as

1
Fe) = o {00, y#0Y.  (12)

B 1
T (2ni)y " (:,—z,.)>’

There are 2" different ways in which y — 0 depending upon the way the
various components y; of y tend to either 0, or 0_. Thus we get 2"
different boundary values of F(z) as y — 0. To denote them we adopt the
following notation:

Let o, = {64(1),04(2),..,0,(n)} be a sequence of length n whose
elements are + and — for 1 <k <2" Then 2" orthants of R” are denoted
by S,,, 1<k<2", where

S, ={xeR"|x;>0if 6,(j)=+ and x;<0if 6, (j)=—, j=1,2, .., n}.
(1.3)

For example, when n =2 the various quadrants of R? are denoted by S, .,
S_,,8,_,and S__, where

S, _={xeR?|x,>0and x,<0}, etc.
Similarly the various limits of F(z) as y — 0 are denoted by

F, (x)= lim F(z), (14)

B4 s Onk(l), s Yu > Ugy ()

where 0, ,, =0, if 6,(j)= +; otherwise it is 0_.
For fe D;,(R") or L7(R"), with the limits taken in the respective spaces,
we have proved that

o
f=Y (=1)™F, in D(R") (or L”(R")), l<p<oo (L5)
k=1

and

flg)  for ¢es,,

0 elsewhere, (1.6)

(—1)’"*13,,*(5)={
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where
m, is the number of minus signs in the sequence g,

and £ is the Fourier transform of f in the following sense,

Fod>=<fo>
= <[R"fq3 i fe L”(R”)), Yo S(R”), (1.7)
where ¢ is the classical Fourier transform of ¢ defined as
@ =jm o(r)e *dt  [20,29,34].

The space S(R") is the testing function space of rapid descent [20, 26].
From (1.6), we are able to prove the following Paley~Wiener Theorem
for D',(R") (or L?(R") (1< p< x):

THEOREM. For fe D} ,(R"),

!
f(&)y=0  for tel) S,, 1<I<2"
k=1

i~

I
(—1)y™F,(£)=0  for (e S,,, in some space S;(R").
k=1

k=1

The space S,(R") is a subspace of S(R”) which is closed with respect to
the multiplication by the function sgn x. The sgn is defined as

n

sgn(x) = [] sgn(x,). (1.8)

i=1

In the process we proved the M. Riesz and Titchmarsh Inequality and
many related classical results for L7(R").

As an application of our theory, we characterize the solution space of the
following Dirichlet boundary value problem:

n 62 62
Au=0, where 4= (—-+——> (1.9)
jljx 5.\7} ayj?
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with boundary conditions

lim u=F, in Dj,(R") (or LP(R")) (1<k<2). (1.10)

¥ = 0Ogy

Here F,,, 1 <k <2" are arbitrary elements of D) ,(R"). Incidently for fixed
F, (1<k<2")in D(R") (or L?(R")), the system (1.9) and (1.10) has

1 2 1
F(z)=—— —1yY*F S —— I z.#0Vj
) (27ri)"<k§1( ) "*“)’H;=,(t,-z,-)> (L z;#0°%)
(1.11)

as a unique solution.

2. THE SCHWARTZ DISTRIBUTION SPACE D ,(R")

A C* complex valued function ¢(x) on R" belongs to the space
D,,(R") iff 0*¢(x) belongs to L”(R") for each |a|=0, 1,2, .. where
o=(a,, &y, .., %,), /S are non-negative integers, and |a|=3>"_, a;. The
topology over D,,(R") is generated by the countable family of separating
seminorms [ 20, 26, 37]

nio)=| [ ot ax| "

The space D,.(R") is a sequentially complete, locally convex, Hausdorff
topological linear space.

In conformity with the notation used by Laurent Schwartz {267, we will
denote D} ,(R"), p> 1, as the dual space of D,,(R") where 1/p+ 1/g=1.1Tt
can be shown [20, p.173] that for fe D} ,(R"), there exist measurable
functions f, in L?(R") and a k € N such that

=Y o f,. (2.1)
lal Sk

Let S'(R") denote the space of tempered distributions and S(R")
the corresponding testing function space of rapid descent [20]. One can
see that S(R")< D,,(R") and is dense in Z,,(R") [20]. Therefore the
restriction of fe D},(R") to S(R") is in S’(R") and each element of
D ,(R”) can be identified with an element of S’(R") in a one-to-one way
and hence with this kind of identification D} ,(R") = §’(R"). Therefore the

Fourier transform f of fin D’ ,(R”) can be defined by

Frod=Lf¢), VYoeSR).

409/185,2-15
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THEOREM 2.1. Let fe LP(R"), 1 < p < ov. Define

5 dt, (2.2)

n=[ A0l

j_]([—x) +y1

where x = (x,, Xy ey Xp)s V=AYV 1s Yoy ooy Yu)s t=(24, 5, .., [,,) are in R" and
y;#0 (j=1,2, .., n). Then we have

02 9% Flx, )= f(z)a;a_f;[f] (-—’L"—x—-—]dt (2.3)

=1 =X )+ yJ
where
a¥ g% o%n L of
, =0,1,2,.,0%= = =
|a| |ﬁ| x = 6x116x12 ax:,, ¥ 5)/?‘ aygn

and the ;s and Bs are non-negative integers. Also F(x, y) and o* 6” F(x, y)
are continuous functions of x, y€ R". Thus F(x, y)e C*(R>").

Proof. Set

wa-ijW“H[U—xKU—xV+nﬂm

_j f(t+x)( )ﬂ[r/t+y2)]dz

Thus by Holder’s inequality we have

M),

Hence the integral representing u(x, y) is uniformly convergent ¥x in R"
and a fixed ye R" having all non-zero components. By using the mean
value theorem, we can prove the continuity of F(x, y) and u(x, y) with
respect to both x and y. These results are true for arbitrary . Hence, using
a standard classical theorem [31, p. 59], it follows that

lu(x, I <IfI,

n
t,—x

J% Flx, y)=JR"f(t) GZ[H (‘,j—_‘;j‘)i’:‘v?] dt.

J=1

i (t+y,>

Also we have

|08 F(x, y)| <
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Using the fact that

4 q

¥; < a;,+9;

i+ 1+ (a;,—8))’
Vy,e(a;—9;,a,+48;), we can see that for arbitrary B, the integral
representing (?f, F(x, y) is uniformly convergent in an appropriately chosen
rectangle lying in the region

{yeR"||y,|>0,;=1,2,..,n}.

Therefore we have

n

af,F(x,y)=jwf(z ﬂmm [31, p.59]. QED.

Lemma 2.1. Let x, y,teR" be such that y,#0, Vj=1,2,..,n For
fe D7, (R") (1 < p< o) define a function

Fix <f(t) 11 [0, —x) 1 (1, - x,)? +y})]>. (24)

J=1

Then

o2 Fix, )= (70,2003 TT L =) (=5 + 370 ). (29)
j=1

Proof. Since TT7_, ((t;— x,)/({t;— x,)*+ y})) € L*(R") as a function of 1
for a fixed x and y, and feD (R”) the dual of LYR") (1/p+1/g=1),
F(x, y) is well defined for each x, yeR” with y having all non-zero
components. Using the structure formula (2.1) for fe D},(R"), we see that

-— _ 17l Av __._tj____.{cj____
F(x, )’)—wék <f(t) (=1)7"o; 11—11 (t,— xj)2+ng>
b4 - [f—xf 123 X4
=Wék<f,,(:),a ,1:[1 T +y,> f,e LP(R"),

Then, using Theorem 2.1, we obtain

08 0% Flx, y)= ¥ <,ﬂ(t),6f@i*" TT T0, =)0 — x,)2+ y?)]>

vl <k J=t
=X <f-,(t), (-1 a7 08 0%
vl <k

X f[ [(tj_xj)/((tj_xj)2+ sz)]>
j=1

= <f(t), 6f, & [ ;= x5, — x;)* + yf)]>. Q.ED.

J=1
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3. AN APPROXIMATE HILBERT TRANSFORM AND ITs LimMiTs IN L?(R")

The authors acknowledge the facts that the results proved by them in
Sections 3,4, and 5 are not entirely new. Some of their results proved
in Sections 3,4, and 5 are proved by Tillmann [33] and Vladimirov
[35, Chap. 5]. However, our techniques are different in that we make an
extended use of the results proved by Riesz and Titchmarsh [30], thereby
making our treatment simpler. Our main results proved in Section 6 are
new and are not proved anywhere else. In our analysis we heavily rely
upon the result that

n

F(Hf)=i"[] sgn(x,}(Ff)  Vfe(D.(R"))? p>1

i=1

in the weak topology of S,(R”). The space S,(R") is a subspace of the
Schwartz testing function space S(R”) such that every element of S,(R")
vanishes at the origin along with all its derivatives. The topology of S,(R")
is the same as that induced on S;(R") by S(R").

Let H be the operator of the classical Hilbert transform from L?(R"),
p>1, into itself defined by

o1 __JSu
(Hf)(x) - n}ai‘ljlrz_,no n” 1t — x| > ¢ H:: 1 (tj - xj) “
e SO L (3.

" R" I—U=1 (tj_xj)
It is a known fact that the limit exists a.e. [15] and that (Hf)(x)e L?(R").
Also
VHf N, <C /N,  [5,15,27,39], (3.2)

where C, is a constant independent of f [15, 28].
Titchmarsh [30] proved that if fe L?(R), p> 1, then its approximate
Hilbert transform

e f@)-(t—x)
N =] e v#0 (33)
exists a.e. and
Jim L X foydi=(Hf)x)  in L7(R). (3.4)

yoomig (1—x)*+y
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It is also known that
ICH, ), < Cpll 1l (3:5)
where C, is a constant independent of fand y. Stein and Weiss [29, p. 218]

proved similar result for L?(R) over the Lebesgue set of £ We extend the
above results to n-dimensions.

DerFINITION. The n-dimensional approximate Hilbert transform
(H,f)x) of fe L°(R") (p>1) is defined by

n

1 L—X;
H, =— —t T (1) dr, #0Vi=1,2,3 ., n
H =5 [ s 0dn 520 n
(3.6)

THEOREM 3.1. The operator H, as defined by (3.6) is a bounded linear
operator from LP?(R") into itself.

Proof. We will first prove the result for n=2. Let fe L?(R?). Then we
have

l/p oo 20 1/p
= ([ uraca) " =([7 @[ aseonr)
=<f Y dx [ T Bl y)|P>W (by Fubini’s theorem [12])

so that
1Al = 1SCs yM o, =106 1, oo (3.7)

where

e, =([ 107 )

p
1= ([ 1k 90 a)
R
I£(X, Py, p:2. ,=LP norm of || f(-, »)ll,,, as a function of y

and

I £, ¥ 2, pi1, = L7 norm of || f(x,-)ll,,, as a function of x.
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If one of the expressions in (3.7) exists, the remaining two also exist. Now,

2
(H, s )= |10 TL L=/ =)+ D) de
Therefore, by (3.5), we have
ICH, f)(x1s x2)ll, = I (H, ) x) pa.

<C,

bl
Lp:2,p

t,
fR—————(tz s /(o) di

where C, is a constant independent of f and y [30]. But

t
22 f(, ty) dt,

— 3 <C - .
R(tz_‘xz +y2 p”f(l )||2,p.1,p

2,p5Lp

<GS,

Therefore, in view of Fubini’s theorem [12]

1H, fll,<ColIS,

Thus the theorem is proved for n=2. Using similar techniques and
induction on n, it can be shown that for fe L(R"),

IH,fl, <CIfll,. QED. (38)

DeFINITION.  The space X(R") is defined to be the collection of
@ € D(R") which are finite sums of the form

(p(x):Z (Pml(xl) (PmZ(XZ) tet (»Dmn(xn)»

where

©.;(x;) € D(R), I<j<gn

The space X(R") is dense in L?(R") [36, p. 71].

THEOREM 3.2. For fe L?(R"), define (Hf )(x) (the Hilbert transform of
J) and (H,f)(x) (the approximate Hilbert transform of f) as in (3.1) and
(3.6), respectively. Then

lim . (H,f)(x)=(Hf )(x) in L*(R") norm.

Y15 Y2soes Yu—
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Proof. Let ¢, be a sequence in X(R") converging to fin L?(R”"). Then
lilrlw 1/(x) = @ (x)ll,=0.

Now
H,f-Hf=H,f-H,0,+H,9,—Hgp,+ (Hp, — Hf).
So,
IH,f—Hf |, <|H,(f = @), + 1H, 0, — Hppll , + | H(¢p — I,
SCSf = @ml, + 1H, 00— Hppll, + Coll @0y — fl -

It is a simple exercise to show that |H,¢,—He,l,—>0 as y—0.
Letting y — 0, we deduce

lim |H,f — Hf 1, <2C;1.f = @ml-
Y
Now letting m — oo, we obtain
lvimO \H,f—Hf|,=0. Q.E.D.

THEOREM 3.3. Let fe L’(R") (1< p< ) and let y,, y,, ..., ¥, be non-
zero real numbers. Then

1 n
(i) (ny)(X)=;,-,fRnf(t) [T [/, = x)* + y7) 1 at, (39)
i=1

which, as a function of x, belongs to L¥(R"),
(i) LA, <CHIf,, where C, is a constant independent of f and y,
(1“) ”Ivf_f“p'-’o as y_’0+9i-e" Yis Yas o yn__)o-f—'

Proof. The proof is very similar to that given for Theorem 3.1. One can
use the fact that for ge L?(R),

1 yg(t) »
(Iyg)(x)=;fn(t—_m—2dteL(R), y#0
ylijg (1,g)(x)=g(x)  in L”(R)
and [30]

11,8l <C,lgll,
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The result (i) can also be proved by using [12, p. 400]. It is easy to see that
if fe L?(R")

LA, <Cplfl,,  VfeL?(R"). Q.E.D.
THEOREM 3.4. For fe L*(R") (p>1) and x, y e R" define

L m—e=s M —2—
(T7)(x) = ",[ /1 [ (4 —x;) +yf}[k=l;.[+1(’k—xk)2+y/2(]dt’
(3.10)

where 0<m<n. Then T is a bounded linear operator from L?(R") into
itself,

VT, < ColLf D s (3.11)

and

hm (Tf)(x)=(HlH2 Hm1m+l Inf)(x)

Pls ¥250m ¥n— 0F

=(H H;---H,f)x), (3.12)

where I, 1,,..,1, are all one dimensional identity operators and
H,, H,,.. H, are all one dimensional Hilbert transform operators.

Proof. The proof of (3.11) can be given by using the technique followed
in Theorems 3.2 and 3.3 and then (3.12) can be proved by using (3.11) and
the density of X(R")in L?(R") [36, p. 71]. Q.ED.

4. CoMmPLEX HILBERT TRANSFORM

Let fe L’(R"), 1<p<oo, and z=(z,,2;,..,2,)€C" st. I,z;=y;#0
Vji=1,2, .., n. We define the complex Hilbert transform (Hf)(z) of f by

! o)
(Hf)(z)=§ J.. (;,._z,.)
. (4.1)

Then we have the following
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THEOREM 4.1. For fe L?(R"), 1 < p< 0, its complex Hilbert transform
(Hf )(z) as a function of x belongs to L*(R") for a fixed y with all non-zero
components. Also

1HA, < RC) IS, (Titchmarsh and Riesz inequality)  (4.2)

and

lim , (Hf){(2) =<[n-[ H-+i1j)) f(x) in LP(R"), (4.3)

Y1 F2aen ¥n =0y —1

where

(H,f)(x __PJ‘ FAC ST l’t”x’“""’x”)dtj (4.4)

Li—x;

and

(LINX) =L (X0 ey X5 g Uy Xy 1y ey X)) = f(X). (4.5)
Similarly

lim (HfWz)=(---(H;+il}})---(H—il)---) f(x).  (4.6)

¥ 0 e — 0,

Proof. The proof can be given by using the technique followed in
Theorems 3.1, 3.2, and 3.3. Q.E.D.

THEOREM 4.2. For fe L?(R"), p> 1, define

1—X; .
1 —LtF-—a #0 V). 4.7
,_l(t—x)2+y, s y#E0V) (4.7)

== s
Then
0°F(x)e L?(R").

Proof. We will prove the result for the simple case when 0% = §/dx, and
the general result will follow by induction. Now

2

0 1 (t,—x,)?
_...F(xl,xz,...,xn)z_nj 1 1) dl
n"Jr [

Ox, (11_x1)2+y1]2

) dt;
S SO NG
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Therefore,
0 t2— y2
__.F(X) < n—1 1 1 ”f(t ’ )H . [12, 101
0x,4 LP(R"-1) ? (t% +y3)? LY(R) ! LAR"-1) p ]
SC'P , 1, ”f“[p(kn 1y
)| < 111 QED
0x, p\ p | 1| ” L

COROLLARY 4.1. For feD,,(R"), p>1, and fixed real numbers
Vi Va» = Va different from zero, define

1
F(x)=—n< H[(x ) x)2+y,)]> (48)

Then F(x)e LP(R").

Proof. Using the structure formula (2.1)

f=Y 0%,  whereeach f,e L?(R"),

{e] <k
and Lemma 2.1, we have
k n
Fx)= Y o2 <fa(z), 1T [, =), x)2+y,)]>
2| =0 Jj=1

The result now follows in view of Theorems 3.1 and 4.2. QED.

THEOREM 4.3. For fe D,(R"), p>1, and y;#0, 1 < j<n, define

(H,f)(x)=F(x), as defined in (4.8).
Then

lim (H, f)(x)=(H, - H,/}x)=(Hf }x), (4.9)

[yl =0

where the limit is interpreted as the weak limit on D ,(R").

Proof. In view of Theorem4.2 and Corollary 4.1, (H,f)(x) can be
interpreted as a regular distribution on D, ,(R"). Therefore, for each
pe D (RY),
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({ro.TI [(z,--x,-)/((r,—x,>2+yﬁ)]>, o(x)

i=1

<< NAAD) n (e~ x,»)/((t,—x,»)2+y})3>,<o(x)>

{2 =0

[20, p. 175]

- io (At 22 TT L= =52+ 5111 ). 0t

j=1

-y <a_°:<f(z H =X = 5 + DT 0t

x| =0

[Lemma 2.1]

_ §0<<fm(z ﬁ [ =)0t =%+ ¥ ) (8. 0(x))

= 3 0 (L] @et)

X f[ [(;—x)/((;—x,)*+ yf)] dx>. (4.10)

j=1
Since
f.€L?(R") and  3%e(x)eD(R"),

by using the duality theorems and the limiting processes, the switch in the
order of integration is justified. Now letting | y| — 0 in (4.10), we obtain

llm C(H f)(x), o(x)) = Z (=)L), (1) H(@%p(1))). (4.11)
la] =0

The steps in (4.11) can easily be justified in view of Theorem 3.2. Now
using the commutativity of the distributional differentiation 0* and H
[22,27], we deduce

lim <H N, 00> =(H 3 310 00))

x| =0
= Hf, ¢).
Therefore,

lim H,f=Hf in D,(R") Q.ED.

Iyl =0
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CoOROLLARY 4.2. For fe D} ,(R"), define the complex Hilbert transform

of f by

1 1
F(z)=;;<f(t), —-—(7~_7)> L,z;=y,#0Vj. (4.12)

Then
N
lim . F(z)=]] (H,+il) f. (4.13)
Py yn— 0OF j=1
Proof. The proof is similar to the proof of (4.3). Q.E.D.

5. DISTRIBUTIONAL REPRESENTATION OF HOLOMORPHIC FUNCTIONS

The holomorphic function F(z) given by (4.12) satisfies the uniform
asymptotic orders (uniformity with respect to x is assumed here)

1
((ylyz ey IR

Let us now reverse the problem. Let F(z) be holomorphic in y;>0
(j=1,2,..,n) 1e,0on S, . and let it satisfy the relation

[F(z)| =0

)a as y19 st-"a yn_}w'

sup  |F(x+iy)| <A< oo, (5.1)
xjeR, ;28>0
1<j<n

and the uniform asymptotic order (w.r.t. x)
[Fix+iy)l=o(1), y-o0. (5.2)
Assume also that

lim  Fz)=F,, ,(x) inDy(R"). (5.3)

Y15 P2oes ¥n =07

Then by using the technique of [22], it can be shown that

1 1 _(F(z), for yeS,., .,
G (Feen (0 }'=1(tj—zj)>—{0, e (5:4)

where the positive orthant S, , , ={yeR"|y;>0, j=1,2, .., n}. Results
similar to (5.4) can be obtained by taking F(z) holomorphic in other of the
2" — 1 orthants and evaluating the corresponding limits of F(z). Let

Q={zeC"I,z;=y,#0Yj=1,2,..,n}. (5.5)
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For F(z)e Hol(£2), there are 2" different ways of evaluating lim, _ , F(z)
depending upon the various components of y going to either 0% or 0.
These limits are denoted by F, (x).

ExaMmpLE 1. When n=2, there are four quadrants S, ., S ., S, _,

and S__ and four different limits F_,, F__, F, _, F__, where for
example
S_,={yeR?’|y,<0and y,>0}
and
F__(x)= lim F(z).
1= 0_ y2—-0,
Let
M = {F(z)e Hol(R2)| F(z) satisfies the following conditions
(A), (B) and (C)}: (5.6)
sup [Fx+iy)l <A; <o, (A)
xjeR, [yl 28>0
l<j<n
|Fx+iy)l=o0(1), as [y, |y, —> (B)

independently of each other and the asymptotic order is valid uniformly
YxeR" and

lim F(z)=F,(x) in D/, (R"), k=1,2,.,2" (C)

¥ = Ogy

where y—0, means y;—0, ., 1<j<n Then we have the following
theorem.

THEOREM 5.1. For any F(z)e M, we have

Y EI. 1
o= ( & U B ) 6D

k=1

where m, = the number of minus signs present in the sequences o,. For
example, when n=2,

1
F(Z)=W<F+++(_1)F_++(—1)F+...

+(-1)2F,,,-_l———>
(t;—z M1, — z3)
1

1
=——((F,,—F_ ,—-F, +F__),———— ).
4n2<( T o * ) (tl_zl)(tz—"2)>l
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6. ACTION OF THE FOURIER TRANSFORM ON THE HILBERT TRANSFORM

If fe LX(R) then

A~ .
(Hf {x)=isgn(x) f(x) ae. [29, p.219], (6.1)

where the Fourier transform f of fis defined by

f(x)=jR f(1) expls - x) dt. (6.2)

Note that in the RHS expression of (6.1) Stein and Weiss use { —) in place
of i as their Hilbert transform differs from ours by a constant factor only.
The result (6.1) can easily be extended to L*(R") as follows:

The space X(R") consisting of finite linear combinations of functions
of the type ¢,(x,) @,(x;)..,(x,), where each ¢,(x;)e D(R), is dense in
L*(R") [36, p. 71]. Therefore for fe L*(R") we can find a sequence ¥, in
X(R™) s.t. ¢, (x)— f(x) in L*(R") as m — oc. Denoting by #, the Fourier
transform operator, we have

(F(HWY ))(x)=1" sgn(x)(F ¢,,)(x), (6.3)
where

n

sgn(x)= || sgn(x,).

i=1

Now letting m — o0 in (6.3) and interpreting the convergence in L*(R"),
we deduce

(FHf)(x)=1" sgn(x(F[)(x). (6.4)

The question now arises whether or not such a result can be proved for
the space L?(R"), p>1. We are able to prove the result (6.4) for p=2
because of the fact that the Fourier transform maps L*(R") into itself. But
such a result is not true in general for p>1, p#£2. If fe L?(R"), | < p < o0,
its Fourier transform can be defined, treating f as a regular tempered
distribution, as follows,

Fod=<fo>=| fodn VoeSR),
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where ¢(x} is the classical Fourier transform of ¢(¢) given by

o(x)=] o(exp(t-x) s,

where ¢ - x is now the inner product of ¢ and x [30, p.9]. For fe L?(R"),
let ,, be a sequence in X(R") tending to fin L?(R"), as m — oo. Then we
have

lim §,,=f in S'(R").

m— oo

Since the Hilbert transform H is a bounded linear operator from L?(R")
into itself [25], it follows that

lim F(H(Y,))=F(Hf).

m— o

As e L*(R"), from (6.4) we conclude that

n

lim i [T sen(x,) ¥,, = Z(H(f)), (6.5)

mooo

(FHf 9= lim (" sgn(x) i, (x), @(x))

= lim i"f sgn(x) ¥, @(x)dx,  VpeSR").

m—» oo R”
But still we cannot, in general, say that this limit (6.5) equals i" sgn(x) f
Vfe L?(R"), 1 < p< 0.

We now construct a testing function space S,(R") which is a sub-
space of S(R") closed with respect to multiplication by T]7_, sgn(x;).
The topology of S,(R”) is the same as that induced on it by S(R”").
So(R") is a non-empty subspace of S(R”). All functions in S(R") which
vanish at the origin along with all of their derivatives are in S,(R"). For
example

r_pexp(—x; —x;%), when each x;#0, Vj=1,2, .., n,
0, otherwise,

w(x)={
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and

1 > ,
exp| —— ) exp(—|x]|?), when |x| > 1,
sty {20 () ot

0, when |x| <1,

are members of S,(R"). The convergence of a sequence to zero in S,(R")
implies its convergence to zero in D,,(R”). Therefore, the restriction of
fe D, (R") to So(R") is in S5(R"). We express this fact by saying that

(R")Y = S5(R"). Elements of D7 ,(R") cannot be identified with the
elements of SL(R”) in a one-to-one manner as S,(R") is not dense in
%2, ,(R"). Therefore

F(Hf)=i" H sgn(x,) Zf  on Sy(R"), /e L?(R").  (6.6)
j=1

Because,

(F(HY ), 0> = <i"sgn(x)(FY,,)(x), (x)>  (from (6.4))
= (i, (x), sgn(x) @(x)), Vo e So(R"). (6.7)

Now taking the limit m — oo, we obtain

(F(HS), @) = i"f(x), sgn(x) @(x) >
=<i"sgn(x) f, 0(x)),  VYo(x)e€ So(R").

DeFmNITION 6.1. The Hilbert transform Hf of fe D) ,(R") is defined by
CHf, o) =<fi(=1)"Hp), VeoeDy(R"),

where (He)(x) is the Hilbert transform of ¢ € D,,(R"), given by (3.1).

DerFiNiTION 6.2. The Fourier transform 9'"f(=f) of feD},(R") is
defined by

ro>=<f8>, VoeSR". (6.8)
Then we have the following

THEOREM 6.1. Let fe D}, (R"), | < p<oo. Then

n

(Z(H)(x)=i"[] sen(x,) f(x)  on So(R"). (6.9)

Jj=1
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Proof. Let fe D;,(R"). Then for every ¢ € S4(R"), we have

<fHﬁ¢>=<ﬁH 2 %f;¢> (from (2.1))

lal <m

{5 %Hﬁ@& [25]

lxl < m

= Y (Hf. (=1)*0 ¢>

lal <m

= Y (FHf,, (-1 (ix)*@>  [32,p.9]

x| <m

= Y "sgn(x) f(x), (= 1) (ix)* o(x))

x| € m

= Y Y (=DM (F (sgn(t) (1)))(x)>

laf < m

=< 2 1"0Lfa(x), (9(Sgn(t)<p(t)))(X)>

faf <m

= (i"sgn(x) f(x), o(x)>  (from (2.1)). Q.E.D.
Another proof of this theorem is given in [24]. In [25] the result
F(Hf)(&)=i"sgn({)(Ff)  in SG(R7)

is made use to prove the fact that a bounded linear operator T from
L?(R") into itself which commutes with the operators of translation as well
as dilatation is a finite linear combination of the identity operator 7 and the
Hilbert transform type operator H,, H,,..,H,, H.H;, H.H,H,, .., H.

For fe D} ,(R"), define a holomorphic function

1
T Qmiy

1
F(z) <f(t),——,,——(7—_—z—)>, y,#0,j=1,2,..,n, (6.10)
J J

J=1

where y; is the imaginary part of z;,. Then we have the following decom-
position theorem.

THEOREM 6.2. For fe D, ,(R"), 1 < p< co, define F(z) as in (6.10). Then

f= (—1)™F,, in Dy (R"), (6.11)

k=1

N

409/185,/2-16
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and
g pr JJE),  for ZeS,
(=1) F"*(é)_{o, elsewhere, (6.12)
on S,(R”), where
F, = lim F(z). (6.13)

¥1 = O (1)ses ¥u > O ()

Here m,_ stands for the number of negative signs in the sequence a,.

Proof. Without loss of generality, we can take n=2. Then

1

1
F(z)= _ZP<f(t)’

PN R > #0'
(11_21)(f2_22)> Y b

Now

Fo,(x)= lim Fz)= —3((H +il\{(H,+il,) f)(x)  [Cor.42]

»1,y2 0%

F__(x)= lim Fz)=—3((H —i)(H,—il,) f)(x).

yi,¥y2—~ 0"

Similarly we have

Fo ()= —3((H +il\)(H,—il,) f)(x)

and
F_, (x)= —3((H,—il,)(H, + il) f}(x),
so that
[Fo,—F, —F +F_ _Jx)=—;[-4] flx)=f(x).
Also

F++(x)=—%[H+i(H,I2+H211)—I]f(x), (6.14)

where H=H, H, and I=1,1,. Taking the Fourier transform of Eq. (6.14),
we get

Fo (9= —3[i*sen(&,) sgn(&;) +i%(sgn & + sgn &) = 11 /()
= §[sgn(£,) sen(&:) +sgn(&,) +sgn(&a) + 11 /(%)
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Case 1. &,,&,>0:

Fo () =401+ 1+1+11 /)= f(&).
Case 2. &,,&,<0:

Fo@=ilt-1-1-11/&=0.
Case 3. £,>0, £, <0:

Fo @=4[-1+1-1+1]/(&)=0
Case 4. &£,<0, £,>0:

Fo ()=4[-1-1+1+11f(&)=0.

Hence

-

£ 1, for ¢eS,,={EeR*|&, >0},
*oo, elsewhere.

Thus we have proved the theorem for » = 2. Using induction the proof can
be given for any n> 1. Q.E.D.

Note that

. f(é), for éeS,,uS__,
FUE )= {O, elsewhere.

Similarly

f(é), for (eSS, , uS, _uS__,

Foo—F +F _)O)= {O, elsewhere.

Similar results hold for all the other possible combinations of #,,. Our
Theorem 6.2 is analogous to the result proved by Tillmann [33, p. 19] for
the space H'(R"). However, our technique is operator theoretic, ie., it is
based upon properties of the complex Hilbert transform and its limit
whereas the techniques used by Tillmann are essentially an outcome of
complex integration in C” on appropriately chosen Jordan arcs. The space
H(R") chosen by Tillman [33] is a subspace of D,,(R") and the
convergence of a sequence in H(R") to zero necessarily implies its
convergence to zero in the space D, ,(R") and as such the restriction of any
te(D,,R")) to HR") is in H'(R"), ie., [33, p. 19] (D.»(R")) = H'(R").
However, the advantage of our space (D,,(R"}) is that it is a Fourier as
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well as Hilbert transformable space so that using Theorem 6.1 of this
paper, we are able to prove a Paley-Wiener type Theorem 6.3. Some
special cases of our representation formulas are also proved by Viadimirov
[35, Chap. 5].

Analyzing in the same manner yields the following results for
fe Dy, (R").

LemMMA 6.1. For fe D) ,(R"), 1 < p< w0, and F(z) defined as in (6.10),
we have

‘ . _{f(é), if telUio,S (6.15)

1y =
X (=1 Fo(e) 0, elsewhere,

k=1
Jor 1 <1< 2" equality in the sense of S5(R”).

Suppose one of the summands, say, Fako(i), for some 1 <ko<2", is zero
vée S, Then, since /= ¥ (—=1)y™F,, Eq.(6.12) implies that f(¢) =
L44 €Sgy,- Conversely, suppose f 0 erS%. Then again Eq. (6.12) gives
us F, =0, ie,

kg
<F%,(P>=0, Yo e Sy,(RM).

So that
(Fpp ®9=0,  ¥peS,(R").

We can generalize the above argument to obtain the following

THEOREM 6.3 (Paley—Wiener Theorem for D},(R"}). Let fe D},(R"),
1 < p < 0. Define F(z) by

1 -
F(z)= G )n<f( s ,)> 1,2;#0 (j=1,2, .., n).
Then we have
!
f(&)=0  for e |) S, in SH(R")
k=1
if

! i
Y (—1)y™F,=0 veée |J S, in F(So(RY)Y,

k=1 k=1
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Le.,

<§I: (—1)’"‘Fak,q‘)>=0,

k=1
!
Vo € Sy (R”) with support contained in | | S,,.
k=1
Remark. Lemma 6.1, Theorems 6.2 and 6.3 are aiso true when we
replace D, (R”} by L?(R”) and F(z) by

1 1
—— ) —————dt, 1,z,=0(j=1,2,..,n),
(an),,j"f() =) =0 (j )

and treating L#(R") as a subspace of D7 ,(R").

7. THE DIRICHLET BOUNDARY VALUE PROBLEM

Let F(z)e M (defined by (5.6}). Then, by (5.7), we have

1\"/ Z 1
AF(Z)=A (’5;[‘;) <k§1 (—1) Fak(t), m>, (71)

where

82 82
A= ———+—-). (7.2)
i <0xf ay;

J
Using a method similar to that used in proving Lemma 2.1, we see that
AF(z)=0.

So we have proved

THEOREM 7.1. AF(z)=0, VF(z)e M.

Consider the operator equation

with the following boundary conditions

lim u=F in D7, (R"), 1<k<2, (74)

Tk
y —0q,
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Then
F(z) 1 <i (=)™ F, (1) : >
Z)= S\ - o, > T (. 1 /?
(2ri)” \ 7, * i —z)
1,2;#0,j=012,.,n, (7.5)
is in M (from Theorem 5.1) and it is also a solution of (7.3) with (7.4)

as the boundary condition. The fact that F(z) given by (7.5) is

a
fo

13.

14.
15.

16.

17.

unique solution in M of (7.3) and (7.4) follows from the representation
rmula (7.5).
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