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The influence of magnetic field on the process of steepening or flattening of the 
characteristic wave fronts in a plane and cylindrically symmetric motion of an ideal 
plasma is investigated. This aspect of the problem has not been considered until 
now. Remarkable differences between plane, cylindrical diverging, and cylindrical 
converging waves are discovered. For instance, when the adiabatic index y  is 2, the 
magnetic field does not affect the behaviour of plane waves, but does affect cylin- 
drical waves. As the field strength increases, the time t, taken for the shock 
formation varies monotonically for plane waves, while for cylindrical waves, in 
some situations t, exhibits a unique minimum for diverging waves and a unique 
maximum for converging waves. For cylindrical converging waves, a shock 
formation takes place if and only if, y  and the field strength are restricted to certain 
finite intervals. Moreover, t, is bounded in all cases except for cylindrical diverging 
waves. The discontinuity in the velocity gradient at the wave front is shown to 
satisfy a Bernoulli-type equation. The discussion of the solutions of such equations 
reported in the literature is shown to be incomplete, and three general theorems are 
established. 

1. INTRODUCTION 

A number of problems relating to wave propagation in magnetohydro- 
dynamics and in collisionless plasma have been studied previously, in 
particular by Ludford [l], Bohachevsky [2], Jeffrey and Taniuti [3], Kato 
et al. [4], and Gopalkrishna [5] among others. However, the effect of 
magnetic field strength on the steepening or flattening tendencies of the wave 
fronts has not been investigated until now. 

The purpose of this paper is to study the effects of magnetic field strength, 
the initial value of the discontinuity associated with the wave front, the 
adiabatic index y, and the initial wave-front curvature (in case of cylindrical 
waves) on the growth and decay properties of the characteristic wave fronts 
in plane and in cylindrically symmetric motions of a uniform plasma. The 
plasma is assumed to be an ideal gas with infinite electrical conductivity, and 
to be permeated by a magnetic field orthogonal to the trajectories of gas par- 
ticles. 
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Let y denote the adiabatic index, sO the magnitude of the initial discon- 
tinuity, k, the initial wave-front curvature, and E, a quantity depending upon 
the magnetic field strength such that .sO = 1 when the magnetic field is absent 
and E,, increases to co as the magnetic field strength increases to co. 
Moreover, let t, be the shock formation time. The formation of a shock wave 
and the time t, for the shock wave to form depend upon y, sO, k,, and E, in 
an interesting fashion. Since the detailed analysis performed in Section 3 is 
somewhat complicated, the following summary of the results will be found 
useful to compare the behaviour of different types of waves. In addition to 
the range 1 < y < 2, which has been of more physical interest until now, we 
have also considered the cases y < 1 and y > 2 for the sake of completeness 
of the analysis. 

(a) Plane waves. (i) All expansive waves ultimately decay to zero, while 
compressive waves grow without bound in a finite time. (ii) When y < 2, 
both the decaying of an expansive wave and the steepening of a compressive 
wave are enhanced by the presence of a magnetic field; further, an increase 
in magnetic field causes t, to decrease, and t, approaches a finite non-zero 
limiting value as E, --t co (iii) When y = 2, the magnetic field has no effect on 
the growth and decay properties of the wave front. (iv) When y > 2, both the 
decaying of an expansive wave and the steepening of a compressive wave are 
slowed down by the presence of a magnetic field; further, an increase in 
magnetic field causes t, to increase, and t, approaches a finite non-zero 
limiting value as eO + 00. 

(b) Cylindrical diverging waves. (i) All expansive waves attenuate, while 
compressive waves grow without bound. (ii) The decay rate of an expansive 
wave is enhanced by an increase in the magnetic field irrespective of the 
value of y. (iii) An increase in k,, causes an increase in t,. (iv) When y ( 2, 
there are two situations depending on the range of y, 1 sO 1, and k, such that in 
one case, t, is a monotonic increasing function of E,, and in the other case, t, 
has a unique minimum at a value (say, E*) of E, such that E* > 1 and t, 
decreases over the interval (1, E*) and increases as sO increases from E*, and 
t, --t co as E, --f co. Moreover, when y is fixed, an increase in the ratio k/Is,1 
causes E* to increase, and when the ratio k,/( s,I remains constant, an 
increase in y leads to a decrease in E*. (v) When y > 2, an increase in the 
magnetic field strength causes t, to increase, and t, + co as E,, -+ co. 

(c) Cylindrical converging waves. (i) All expansive waves form a focus, 
while not all compressive waves lead to a shock. In fact, there exists a 
positive critical value s, of the initial discontinuity such that if Is,1 < sC, a 
compressive wave forms a focus but not the shock; if IsO ( = sC, a 
compressive wave forms a shock and focus simultaneously; and if JsO ) > sC, 
then a compressive wave terminates into a shock before the formation of the 
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focus. Further, a compressive wave terminates into a shock if y and so lie in 
certain intervals; for values of y and E,, beyond this range, a focus is formed 
but no shock formation takes place; and for the remaining values of y and 
sO, both a shock and a focus are formed simultaneously. (ii) An increase in 
k, causes t, to decrease. (iii) When y < 2, an increase in eO (which is 
restricted to a suitable interval for a shock to be formed) causes t, to 
decrease. (iv) When y > 2, there are two situations depending on the range of 
y and E,, and the restrictions on Js,] and k, such that in one case t, is a 
decreasing function of E,,, while in the other case t, has a unique maximum 
at some E* belonging to the range of s0 with E* > 1. When y is fixed, an 
increase in the ratio k,/( s,/ causes E * to decrease, but if the ratio k,/l s,( 
remains constant, an increase in y leads to an increase in E*. 

The discontinuity at the wave front is shown to satisfy a Bernoulli-type 
equation which occurs frequently in studies of acceleration waves and other 
phenomena. The question naturally arises as to whether the general results 
known for such an equation are applicable to our problem. We find that 
some of the known theorems, reported in Chen [6, Chap. 31 need certain 
modifications: the last section of the present paper contains three of these 
modified theorems. These theorems are adequate to characterise the 
situations when the wave ultimately damps out, forms a shock, attains a 
stable wave form, or forms a focus. 

2. BEHAVIOUR AT THE WAVE FRONT 

Equations which describe the one-dimensional planar (V = 0) or cylin- 
drically symmetrical (v = 1) motion of a perfect plasma in the presence of a 
transverse magnetic field can be written down in the familiar form 

pt + up, + pu, $ vx- ‘pu = 0, (1) 

PU, + PUU, + px + ,uHH, = 0, (2) 

H,+uH,+Hu,+vx-‘uH=O, (3) 

Pt + UP, + YP(U, + vx- l u) = 0, (4) 

where u is the gas velocity, p the pressure, p the density, H the magnetic field 
strength, y the adiabatic index, ,u the magnetic permeability, t the time, and x 
is the single spatial coordinate being either axial in flows with planar 
geometry, or radial in cylindrically symmetric flows. Letter subscripts denote 
partial differentiation unless stated otherwise. The system of equations (1) to 
(4) possesses four families of characteristics [7], two of which, 

409/81/l-1.7 
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dx/dt = u f c, represent waves propagating in the fx direction with the 
magnetoacoustic speed c given by 

c = (a’ + by’*; a2 = YPIP, b* = pH*/p, 

and the remaining two form a set of double characteristic ak/dt = u, 
representing the particle path or trajectory. 

In terms of the characteristics (a wave tag ( and a particle tag w) as the 
reference coordinate system, the system of equations (1) to (4) can be 
transformed into the following equivalent system: 

(cp, - pu,) t, + pu, t, + vx- ‘putt, t, = 0, (5) 

(P, + PHH, - pcu,)t, - (P# + PHH,) t, = 0, (6) 

p* + ,uHH, + CPU, = - ux-’ uc*pt,, (7) 

(cH, - Hum) t, + Hu, t, + vx-‘cuHt, t, = 0, (8) 

X) = ut*, (9) 

x,=(u+c)t,. (10) 

Any dependent variable, S, say, will transform so that 

fx = (.f& -f&)/J, (11) 

.fi -I- uf, = - 46 t,lJ, (12) 

where J is the Jacobian of the transformation namely xm t, - xU t,. It follows 
from Eqs. (9) and (10) that 

J = - et, t, . (13) 

Since “doubling up” or overlapping of fluid particles is prohibited from 
physical considerations, t, # 0. Consequently J= 0, if, and only if, t, = 0 
when two adjoining characteristics merge into a shock wave. 

If one now considers the case in which the wave head x=x(t), which is 
defined as the location of a discontinuity in ux, is an outgoing characteristic, 
then the boundary conditions to the system in terms of d and w  are 

p=po,p=po, H=H,, u=O, t=W at d = 0, (14) 

pti=pe=H*=ur=O, t,= 1 at Q = 0, (15) 

where the subscript 0 denotes constant values in the undisturbed region 
ahead of the wave front. 



WAVE FRONTS IN MAGNETOHYDRODYNAMICS 193 

Equations (5) to (10) yield 

PO= (g%P@= (f$qu”.H,= (2) U,, 
x* = 0, x* = co at $ = 0. (16) 

Now, to compute u, at the wave front 4 = 0, we set s = u,.(~=~ and invoke 
(11) and (13) which yield 

s = - U)/(C&). (17) 

Differentiating (7) and (10) with respect to 4, and (6) and (9) with respect to 
w  and using the foregoing results, we find that at the wave front (a = 0 

where 

A, = 1.5 + {(y - 2)/(24)}; E; = (c,/a,)2 = 1 + (Wo)*. (20) 

Integrating (18) with respect to w  on the line of constant $(= 0), we obtain 

u,$ = Um,(X/Xo)-“‘2, (21) 

where uVO and x0 are respectively the values of ug and x at t = 0. Making use 
of (21) in (19) and integrating with respect to VI, we get 

4AJ~~o 
f, = h - &l - 92) ((x/x,)‘-“* - l}, 

where tbO is the values oft, at t = 0. 
Using (21) and (22) in (17), we finally obtain 

s= 1 + c,‘(l - v/2)-‘Il,x,s,{(x/x,)‘-“2 - 1) ’ (23) 

where sO(#O) is the value of s at t = 0. It is evident from (23) that if s, > 0 
(i.e., an expansive wave front), s will decrease monotonically in time. But if 
s,, < 0 (i.e., a compressive wave front), the denominator in (23) may vanish 
at some finite time; JsJ must tend to co at such a time, and this signifies the 
appearance of a shock wave. The coincidence of this behaviour with the 
vanishing of t,, and hence of the Jacobian of transformation is clear from 
Eqs. (13), (17), and (22). 



194 MENON AND SHARMA 

3. DISCUSSION 

In each of the following three situations, we lind essentially two 
possibilities: expansive waves ultimately damp out, while compressive waves 
may grow into a shock wave in a finite time t,. A detailed study of shock 
formation time t, and its dependence on the four parameters (the adiabatic 
index y, the initial wave front curvature k, = l//x,1, the initial discontinuity 
s,, and the magnetic field intensity E,,) reveals interesting differences in the 
three situations. 

(I) Plane Waves (v = 0) 

For plane waves, Eq. (23) reduces to 

s=s,(l +/i,s,t)-‘, (24) 

where ,4, is as in (20). Therefore, if s0 > 0 then the wave decays (s -+ 0 as 
t-+ co), and ifs,, < 0 then a shock is formed (IsI+ co as t+ tc) at a finite 
time 

Consider the effect of y and .sO on s. Equation (24) shows that when y < 2, 
then both the decaying of an expansive wave and the steepening of a 
compressive wave are enhanced by the presence of a magnetic field (E: > 1). 
This feature is somewhat different from other effects such as geometrical 
convergence (or divergence) and dissipation which increase one rate but 
diminish the other. Here the steepening or flattening of the wave front is the 
result of a non-linear pulse-shaping mechanism and not of energy loss, and 
this mechanism is stronger when a magnetic field is added. 

When y = 2, the magnetic field drops out of Eq. (24), and thus it has no 
effect on the steepening or flattening of the wave front. It may be noted that 
in the Chew-Goldberger-Low model of a plasma, y = 2 for waves transverse 
to the magnetic field (involving pJ. When y > 2, both the decaying of an 
expansive wave and the steepening of a compressive wave are slowed down 
by the presence of a magnetic field. 

As the magnetic lield increases, Eq. (25) shows that the time t, taken for 
the shock formation decreases or increases, respectively, according as y < 2, 
or y > 2; in both cases t, + 2/(3 Is,,~) as s0 --f co. Thus, even a very strong 
magnetic field cannot offset the tendency of a plane compressive wave to 
grow into a shock. We shall see presently that this is not true for cylindrical 
waves. 
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(II) Cylindrical Diverging Waves (V = 1, x0 > 0) 

Equation (23) may be written in dimensionless form as 

&,=(l +E,~@\T)-“* {l +2@-‘e,‘A,((l +c&B\r)“*- l)}-‘, (26) 

where 

r=tls,I, @ = ao/(xoso>. (27) 

In the present case, ( @ I= a,/(~,, 1 s,, I) = a,, k,/( s0 I. 
From (26), if s,, > 0 then the wave decays (s--t 0 as t -+ co), and if s0 ( 0 

then the wave steepens up into a shock wave (Is I -+ co as t + tJ at a finite 
t, = z,/l so 1, where 

rc=/l,‘{l +(I@IE0/4/lo)}. (28) 

First consider the effect of y and c0 on the behaviour of t, or, equivalently, 
on r,. We establish that 

(9 t, + co as s0 + co ; in fact, limr,-a,(rc/so) = I Q, l/9. 

(ii) Let y < 2. If either y > 1.4 and 1 @I > 4(2 - y)( 1 + y),/(5y - 7), or 
y~[4-5(4,(+{(4-5~@~)Z+16(7~@~+8)}V2]/8, then r, increases as s0 
increases. 

(iii) Let y < 2. If y < 1.4, or, y > 1.4 and ) @I < 4(2 - y)(l + y)/ 
(5y--7), or r<[4-5l@l+{(4-5(@l)2+16(71@(+8)}Y2]/8, then there 
is an E* > 1 such that r, decreases as so increases from 1 to E*, and T, 
increases as E, increases from s* to co, so that 5, has a unique minimum at 
E”, where E* is the unique positive solution of the equation 

(Z-y)(J+;)-‘+ (3&2-y)-‘- l,-I=$. (291 

In fact, E* > {5(2 - ~)/l]““. 

(iv) Consider the E* of (iii) above where 5, is a minimum. If one of 
the quantities y or I @ ( is fixed and the other increases, then E* decreases. 

(v) If y > 2, then r, increases as E,, increases. 

Statement (i) follows from (20). Statements (ii), (iii), and (v) are proved 
by considering the sign of &J&s, as follows. A simple computation yields 

i, 
3 

co 
(30) 

which is positive for all so > 1 if y > 2, so that (v) follows. If y < 2, the right 
side of (30) increases with e. and is ultimately positive. Hence, if &,,/&, is 
non-negative at ,so = 1, then ar,/&, is positive for all e. > 1, while if &J&z, 
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is negative at E, = 1, then there must exist an E* > 1 such that iY7,/i3~~ is 
negative for 1 < e0 < E* and positive for E, > E*, so that 7, has a minimum 
at E*. The right side of (30) vanishes at E*, which leads to (29). To examine 
the sign of arc/&s0 at E,, = 1, we find from (30) that 

( ) /12 8% 

Oago co=, 
= IQi( (5y - 7) - (2 - y)(l + y) 

4 

=y2- (I-q9y- (J.p+2). (31) 

The middle expression in (3 1) is negative if either 5y < 7, or if y > 1.4 and 
I@ 1 < 4(2 - y)( 1 + y)/(5y - 7). The last expression in (3 1) is negative if, and 
only if, y lies between the two roots of the quadratic; however, one of the 
roots is negative and the other is positive, so that y should be less than the 
positive root. This completes the proof of (ii) and (iii). The last statement of 
(iii) follows by solving (29) for ) @pI. To prove (iv), note that the left side of 
(29) decreases if any one of the three quantities ) CD), y, and so increases, 
keeping the other two quantities fixed. Thus, for instance, if y is fixed and 
) @I increases, then E* must decrease in order to keep the function constant. 

The effect on t, of variation in the initial wave-front curvature k, is as 
follows: t, increases when the initial curvature of the wave front increases, 
because so(LJt,/aJ @I) = 87,/d I @ 1 is positive from (28). Similarly, an increase 
in (soI leads to a decrease in t,. Note that if so < 0, then the wave always 
leads to a shock no matter how small Iso 1 is. Moreover, the shock formation 
time t, for a cylindrical diverging wave is greater than that for a plane wave, 
with the same Isol and eo, in view of (28). 

(III) Cylindrical Converging Waves (V = 1, x0 < 0). 

Here (23) may be written as 

s,(l - kocot)-“2 
s = 1 + (so/s,){ 1 - (1 - koCot)“2} ’ (32) 

where k, = I/(x,1 is the initial wave-front curvature, and 

SC = co kolWo)* (33) 

The numerator on the right side of (32) becomes unbounded at t*, where 
t* = l/(k,c,). The denominator on the right side of (32) varies 
monotonically from 1 to 1 + (so/s,) as t increases from 0 to t*. Thus, if 
s,, > 0, then s--f cx) as t -+ t*, leading to the formation of a focus. However, 
when so < 0, there are three possibilities; if [soI < s, then 1 s) + co as t + t*, 
which corresponds to the formation of a focus but not a shock; if I so ( = s,, it 
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follows from (32) that IsJ + co as t --t t*, which corresponds to the 
simultaneous formation of a shock and a focus; and, finally, if (s, 1 > s,, the 
denominator in (32) vanishes at some finite time t, < t*, i.e., IsI -+ co as 
t + tc, where 

t, = (co/to)-’ II- (I-jg1= k,:,s,, (+$’ (34) 
so that in this case, a shock is formed before the focus (tc < t*). 

We see that, unlike the previous situations, a shock does not necessarily 
form if so < 0. Let us first examine the necessary restrictions on y, k,, and E, 
for a shock to occur. In view of (20) and (33), the condition s, < (s,I is 
equivalent to the condition 

~E;‘+(Y-~)E;~>[@(, (35) 

where @ is as in (27); in the present case, I@(= aJ(lx,,j Is,,l) = a,k,/(s, j. 
The equality in (35) represents the simultaneous formation of a shock and a 
focus. 

Suppose that y > 2. The left side of (35) decreases monotonically from 
1 + y to zero as s0 increases from 1 to co. Therefore, shock formation cannot 
take place if 1 + y < (@I, while shock occurs for all e0 in a certain range 
I<E~<E’ if l+r>l@l, where E’ is that value of e0 which satisfies the 
equality in (35), and shock does not occur when E, > E’. 

Suppose now that y < 2. The derivative of the left side of (35) is 
3(2 - y - E;)/E; which is positive if e,, < (2 - y)“’ and negative if 
Eg > (2 - yy2, so that the left side of (35) increases with E, over 
0 < Eg < (2 - y)“’ and decreases over (2 - y)“’ < E, < co, with the 
maximum value 2(2 - Y)-“~ occurring when E, = (2 - y)“*. Since E, is 
restricted to the range E,, > 1, the inequality (35) can now be tackled easily. 
If (2 - y)“‘< 1, i.e., 72 1, then the left side of (35) decreases over s0 > 1 
and we have the same situation as for y > 2 above. If (2 - y)“’ > 1, i.e., 
y < 1, then shock does not occur if 2(2 - Y)-“~ < 1 @I, while shock occurs 
when, and only when, E,, lies in a certain range E, <E~ < E’ if 
2(2 - Y)-“~ > /@I. In the last possibility the equality in (35) has two 
positive roots, the larger of the roots is denoted by E’, and E, is the smaller of 
the roots if E, > 1, otherwise we take E, = 1; thus E, = 1 if, and only if, 
1 + y > I@/, which follows by evaluating (3.5) at e0 = 1. 

We may summarize the restrictions necessary for shock formation as 
follows. In view of (33), (27), and (20), a cylindrical converging wave grows 
into a shock if, and only if, A, > I @l&,/2; if the inequality holds then the 
shock occurs before the focus does (i.e., t, < t*), and if the equality holds 
then the shock occurs simultaneously with the focus (i.e., t, = r*). 
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Equivalently, we have the following restrictions on y and the magnetic field 
E, : (i) Let y > 1. If (1 + y) < ] 9 ], there is no shock formation. If 
(1 f y) > ( @I, then there is a unique E’ > 1 satisfying the equality in (35) 
such that there is no shock formation if E,, > E’, a shock is formed before the 
focus if 1 <a, < a’ and a shock is formed together with the focus if a,, = a’. 
(ii) Let y < 1. If 2(2 - y)-i” < ] @p1, there is no shock formation for all sO. If 
2(2 - y)-“’ = 1 CD), there is a unique E’ > 1 satisfying the equality in (35), 
such that when a0 = a’ there is simultaneous formation of shock and focus, 
while for all E,, # E’, there is no shock formation. If 2(2 - y)-‘* > ( @( the 
equality in (35) has precisely two positive roots, one of which (denoted by 
E’) exceeds unity, and we define the number a, to be the smaller of the roots, 
or 1 according as, respectively (1 + 7) is less than or not less than ) @ ] ; then 
there is shock formation if, and only if, E, lies in the interval a, < s0 < E’. 
Moreover, the shock is formed before the focus if E, < a0 < a’ while both the 
shock and focus are formed together when either E,, = E’ and (1 + y) < ] @ ], 
or, a0 = a’. 

We are now in a position to discuss the effect of s,, k,, and s0 on the 
shock formation time t,. As we did for diverging waves in (II) above, we 
vary one of the parameters, keeping the other fixed. It is clear from the above 
discussion that k; i or 1 s,, ] can be increased indefinitely and the shock will 
still be formed, while a0 is to be restricted to a suitable finite interval (1, a’) 
or (si , a’). 

The shock formation time t, decreases as the curvature k, increases, which 
becomes clear upon substituting (33) into (34); t, decreases as the initial 
discontinuity (soI increases, because the last expression in (34) involves the 
product ~(2 - y) which is an increasing function of y in 0 <JJ ( 1, with 
Y=%/l%l* 

To examine the effect of increasing sO, we consider the sign of &/&,,. A 
simple computation yields 

E&,JLI; ($)=- (L&)(2+$+ (36) 

If y < 2, then t, decreases as E,, increases, because Bt,/&, is negative. If 
y > 2, we know from (i) above that (1 + 7) > ( @J ( and that s0 is restricted to 
the interval [ 1, a’], where E’ is the unique solution to the equality in (35), so 
that s,/]s,, ] increases to 1 as E,, increases to E’. Therefore, the right side of 
(36) is negative when a, = E’, because the first term vanishes at a, = E’. 
Moreover, the right side of (36) is a decreasing function of E,, over 
1 < a,, < a’. At s0 = 1, in view of (27), the right side of (36) becomes 

- {(I @l/4)(5Y - 7) - (Y - 2x1 + Y)Il(l f Y). (37) 
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We have already studied the sign of a similar quantity in the argument 
which followed (31). A repetition of the same argument establishes the 
following conclusions: 

(i) If y < 2, then t, decreases as co increases. 

(ii) Suppose that y > 2. If I @I > 4(y - 2)(1 + y)/(5y - Xl, or 
equivalently, y does not lie between the two quantities [4 + 5 ( @I f 
{(4 + 5 ] @‘I)’ - 16(7 (@I - 8)}y2]/8, then t, decreases as E, increases (if a 
shock is formed, i.e., t, exists, then (@I Q 1 + y). 

(iii) Suppose that y > 2. If I @I < 4(y - 2)(1 + y)/(5y - 7), or, 
equivalently, y lies in the open interval with end points at 
[4 + 5 ] @p/ f ((4 + 5 1 @I)’ - 16(7 ] @I-8)}“‘]/8, then there is an E* > 1 such 
that t, increases as E,, increases from 1 to E*, and t, decreases as s0 increases 
from E* to E’. Thus t, has a maximum at E*, and minima at E,, = 1 and at 
E,, = E’; also E* satisfies the equation 

(3 + (y - 2)/$(] @le,)-1 - 3&;(4(y - 2))- l = 3, 

which expresses the fact that (37) vanishes at .sO = E*. 

(iv) In (iii) above, consider the E* where t, is a maximum. If / @I 
increases, and y is fixed, then the corresponding E* decreases. If y increases 
and I@( is fixed, then the corresponding E* increases. 

4. BEHAVIOUR OF THE SOLUTION OF BERNOULLI EQUATION 

Differentiating (17) with respect to w  and using (18) (19), and the 
condition t = w  at 4 = 0, we obtain the following Bernoulli-type equation for 
the discontinuity s with lu = VC,/(~X) and /I = - n ,, , 

ds 
-=-ps +ps’. 
dt 

(38) 

The most general analysis known to date of the solution of (38), with ,u, p 
as functions of t, and p of constant sign, is given in [g-lo]. All these results, 
without any modification are quoted as Theorems 3.2.2 to 3.2.6 in a book by 
Chen [6], and the results of [8] are also quoted in the Handbuch der Physik 
[ 111. Unfortunately some of these theorems are incomplete and one of them 
is incorrect. Several workers (e.g., [ 12-141) after deriving such an equation. 
do refer to these only known results, while many workers (e.g., [S, 15-181) 
do not seem to be aware of these results and therefore analyse their problems 
only for simple cases. We feel that such a situation is a handicap to workers. 
The present section modifies Theorems 3.2.2, 3.2.4, and 3.2.6 stated in [6]. 
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As in [6, S-101, let the function j?(t) be of constant sign, i.e., sgn 
P(t) = + 1 for all t, or sgn P(t) = - 1 for all t. 

The modified results are as follows: 

THEOREM 1. Consider Eq. (38) with s(0) # 0. Suppose that ,a(t) and P(t) 
are integrable on every Jinite sub-interval of [0, oo), the function /3(t) is of 
constant sign on [0, co) and sgn s(0) = - sgn j?(t). Let lim inf,,, ]/3(t)/ # 0 
and define A(t) = &t)/&t). 

(a) If sgnI(t)= - sgn s(0) f or all suficiently large t, then 
lim &cc, s(t) = 0; 

(b) If A is bounded above (resp., below) or tends to a non-negative 
(resp., non-positive) finite or infinite limit L, the same is true for any solution 
s(t) > 0 (resp., s(t) < 0). 

ProoJ Statement (b) is Theorem 3.2.2 of Chen; in this case, 
sgn A(t) = sgn s(0) for all sufficiently large t. It is therefore sufficient to 
prove (a). The solution of (38) is 

where 

F(t) = f y(r) dt. 
0 

(40) 

Since sgnP(t) = - sgn s(O), we may write (39) as 

Now, sgn A(t) = - sgn s(0) = sgn p(t) implies that sgn cl(t) = + 1 for all 
sufficiently large t, say for t > T, so that exp(-F(t)) monotonically decreases 
as t increases when t > T. The integral in the denominator of (41) is an 
increasing function of t, therefore, it either converges or diverges to +co; if it 
converges then exp(-F(t))+ 0 and hence s(t)+ 0 as t--t co, because 
lim inft+, IP( # 0, and exp(-F(r)) is monotone for t > P, if it diverges to 
+co, then again s(t) + 0 as t --$ co because the numerator in (41) is bounded. 
This completes the proof of Theorem 1. 

In the present paper, we have discussed special cases of Theorem l(a) in 
Section 3 for cylindrical diverging and converging expansive waves, with 
,~=c,v/(2(x,+c,1))and~=-/i,, whenn,>O. 
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THEOREM 2. Consider Eq. (38), with s(O) # 0. Suppose that ,u(t) and 
P(t) are integrable on everyfinite subinterval of [0, a), the function /3(t) is of 
constant sign, and sgn s(O) = sgn P(t). Let F(t) = (b p(z) d7 and 

a= 
[j 

oa IPWI ew(-W)) df] - ’ . 

(i) If Is(O)\ > a, there exists a uniquefinite time t, > 0 such that 

I *&/3(t) exp(-F(t)) dt = l/s(O); and 
0 

fim Is(t)1 = co. 
-)I 

(ii) Let jr IP(t)I dt = co. rfls(O)l < a, then lim inf,+, Is(t)1 = 0. 

(iii) If Is(O)1 = a, lim inf,,, IP( # 0 and ,u(t)/fl(t) tends to a finite 
non-zero or infinite limit as t -+ 00, then lim,,, s(t) = lim,,, [b(t)/P(t)]. 

Proof. Statements (i) and (ii) form Theorem 3.2.4 in Chen; we, therefore 
prove (iii). The solution (39), when sgn s(O) = sgn P(t), may be written as 

s(t) = {sgn sUVHwWW~ 
/I 

l/lstOl - j’ M7)l w+--F(7))] d7/ . (42) 
0 

The integral in the denominator increases from 0 to 6’(= Is(O)J-‘) as t 
increases from 0 to co, and the integral converges over [0, co) because 
a = Js(O)( so that 0 < a < co. Since p/j3 tends to a finite non-zero or infinite 
limit as t + co, and lim inft+, I/?(t)1 # 0, it follows as in the proof of 
Theorem 1 that exp(-F(t)) -+ 0 as t --t co. Thus, both the numerator and the 
denominator in (42) tend to zero as t + co, and we may apply 1’Hospital’s 
rule to obtain 

-PO> fi; s(t) = {sgn s(O)} lim - = lim ‘u(t) 
+ f-too -I/?(t){ ha3 /3(t)’ 

because sgn s(O) = sgn P(t). This completes the proof. 
Section 3. II of the present paper deals with a special case of 

Theorem2, withp=cov/{2(-(x,I+c,t)},/?=-/i,, and a=sC. 
Theorem 3.2.6 stated in Chen [6, p. 2551, needs an essential modification 

in its statement and its proof. The statement “if there exists a finite time 
t* > 0 such that lim,,. p(t) = - co, then lim,,,. jbp(7) dz = - co” appearing 
in the proof is clearly incorrect because unbounded functions can be 
integrable over finite intervals; a standard example is the function 
p(t)=-(l-t)p, O<t< l=t*, where 0 < p < 1. Another inaccuracy in 
the same proof is the last step, where it is asserted that if the integrals in the 
numerator and denominator of (41) are unbounded as t -+ t*, then so is ,u\P. 
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It is possible that //?I may tend to infinity faster than ,U as t--t t* so that ,~//3 
could tend to a finite limit (e.g., consider the case p =,u*). The modified 
theorem is as follows. 

THEOREM 3. Consider the equation (38) with s(0) # 0. Suppose that ,u(t) 
and P(t) are integrable on everyflnite subinterval of [0, t*), the function /3(t) 
is of constant sign on [0, t*), sgn s(O) = - sgn P(t), and 

hi (‘p(r) dr = - 00. 
0 

(43) 

Let F(t) = Ii ,u(r) dz and 6 = lf I/?(t)1 exp(-F(t)) dt. Then (i) 
lim,,, Is(t)1 = co ifS < co; (ii) lim,,, Is(t)/ = lim,,. [p(t)/P(t)], ifS = co and 
p(t)/P(t) tends to aj?nite or infinite limit as t + t*. 

If Condition (43) is replaced by the condition 

I 
t* 

p(t) dt = + 00, then 
0 

li-i s(t) = 0. 

Proof: If (43) holds, the numerator of (4 1) tends to co as t + t*. In case 
(i) the denominator is bounded so that Is(t)/ + 00 as t + t*. In case (ii), we 
may apply I’Hospital’s rule as in Theorem 1. 

The last statement follows because the denominator in (41) is bounded 
away from zero, whereas the numerator tends to zero as t + t*. This 
concludes the proof of the theorem. 

Remark. The above theorems, when applied to our problem, yield the 
conditions under which the wave ultimately damps out, or takes a stable 
wave form, or, forms a shock or a focus. However, in the present case, the 
same information is obtained directly from Solution (23). Since we could 
extract much more information about the dependence of steepening or flat- 
tening of the wave front on so, y, ko, and so, we preferred not to use the 
incomplete theorems of Chen [6]. 

The Bernoulli equation (38) appears in many situations where ,U and p 
may not be as simple as in our problem; it is necessary to have the above 
modified theorems for use in more general situations. 
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