
Chapter 3

Fault-Tolerant Distributed

Node-to-Node Routing

In this chapter, we present an adaptive routing algorithm that finds n disjoint shortest

paths from the source node s to target node d in an n-dimensional hypercube. The

proposed algorithm exploits the path redundancy available in hypercube network by

means of a multipath routing approach. This algorithm is able to tolerate node/link

failures as well as capable to deal with congestion problems. Fault-tolerant routing

over all shortest node-disjoint paths has been investigated to overcome the failures

encountered during routing in hypercube networks.

In this chapter, we present an efficient methodology based on the use of disjoint

paths to provide fault-tolerant routing which has been investigated on hypercube net-

works. The proposed approach is based on all shortest node-disjoint paths concept in

order to find a fault free shortest path among several paths provided. The proposed

algorithm is a simple uniform distributed algorithm that can tolerate a large number

of process failures, while delivering all n messages over optimal-length disjoint paths.

However, no distributed algorithm uses acknowledgement messages (acks) for fault tol-

erance. So, for dealing the faults, acknowledgement messages (acks) are included in

the proposed algorithm for routing messages over node-disjoint paths in the hypercube

network. Simulation results confirm that the proposed node-to-node routing algorithm

provides an average of 10% improvement in the performance of hypercube network in

comparison with the previously proposed routing algorithms–depth first search algo-

rithm and unsafety vectors algorithm.

39



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

The remainder of this chapter is organized as follows. The overview about properties

of hypercube is explained in section 3.1. The phases of fault-tolerant distributed routing

are discussed in section 3.2. Then, preliminaries for routing algorithms are discussed

in section 3.3. Section 3.4 describes the two types of algorithms for hypercube-based

routing: one in the case of non-faulty and another one in the case of failures. Sec-

tion 3.5 gives the proof of correctness. Section 3.6 provide the evaluation model of

the contribution. Section 3.7 presents simulation platform and results with the help

of examples. Finally, the method is summarized and some concluding remarks of this

chapter is given in section 3.8.

3.1 Overview

Actually, the proposed fault-tolerant routing approach is based on the state information

of source-destination paths. If there are no nodes/links failures along a particular path,

then when message reaches to the destination node, the destination node sends the acks

message to the intermediate node and intermediate node sends to the source node for

confirming the delivery of message. If there is at least single node/link failure along

a particular path, then intermediate node/destination node will not send the acks

message to the source node. By this way to alert the source node about the failure in

the path, the later action is to discover alternative paths by flipping the bit position

corresponding to source-destination path. At the same instant, the message which has

been sent along the path where the node/link failure has been occurred are rerouted for

the destination node. This rerouting action is meant to be a quick response to node/link

failures, it may not be the optimal solution. At this point, the proposed method disables

the faulty path and improves the performance by searching an optimal path between

source node and destination node. Altering the bit position every time, provides the

number of alternative paths, which can be used to distribute the traffic burden on the

network. Using alternative paths, the method is able to avoid node/link failures and

by distributing load among these paths improves the system performance.

Let Hn be the n-dimensional hypercube. From the connectivity of Hn and Menger’s

theorem, we know that Hn can tolerate at most n− 1 arbitrary faulty nodes for point-

to-point communication or unicast (it is a communication between a single sender and

a single receiver over any network). So, for optimal solution, much effort has been

40



3.1 Overview

committed to deriving the sufficient conditions that allow n−1 faulty nodes for unicast

in Hn.

The diameter and bisection width of an n-cube network both are n [107]. The

diameter of a network is the largest distance between any two nodes. So, it can be

used to measure the maximum communication delay. Bisection width is the minimum

number of links that must be removed in order to divide the network into two halves.

So, it can be used to measure the capabilities for efficient applications.

Routing is a process of transmitting messages (say m) among processors, and its

efficiency is crucial to the performance of a multiprocessor system. Efficient and re-

liable routing can be achieved by using internally node-disjoint paths, because they

can be used to avoid congestion, accelerate transmission rate, and provide alternative

transmission routes. Two paths are internally node-disjoint if they do not share any

common node except their end nodes. The concept of disjoint paths arose naturally

from the study of routing, reliability, and fault tolerance in parallel and distributed

systems [62, 63, 94].

Fault-tolerance is the ability to perform its function correctly even in the presence

of internal faults. The aim of the fault-tolerance is to increase dependability of the

system. The reliability of data processing and data communication is very important

in hypercube systems as in all parallel systems. The speedup and the fault-tolerance

may be decreased if one or more nodes become faulty. In order to determine and avoid

the faulty nodes in the data communication, there are many different kinds of methods

to find the disjoint shortest paths [99] between the source and the target nodes.

There are many algorithms for node-disjoint paths routing in n-dimensional hyper-

cubes over node-to-node [112], node-to-set [16], and set-to-set [53, 55]. However, no

distributed algorithm uses acknowledgement messages (acks) for fault-tolerance. So,

for dealing the faults, acknowledgement messages (acks) are included in the proposed

algorithm for routing messages over node-disjoint paths in a hypercube network. In

this chapter, we focus on the problem of constructing n disjoint paths from source node

to the destination node in an n-cube network so that their total length and/or maximal

length are minimized.

41



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

3.2 Fault-Tolerant Distributed Routing

3.2.1 Detection & Notification

Under normal conditions, when there are no failures, the proposed fault-tolerant routing

algorithm routes the message from the source to the destination through path routing

functions. When traversing routing paths, if each node receives acks message, then it

means there is no failure in the system. Noticing a node/link failure to means acks

message is not received by the source node. The use of this acks message is to alert

source node that there is no failure along communication paths. Figure 3.1 graphically

shows the normal message passing and Figure 3.2 shows detection and notification of

node/link failures.

From Figure 3.1 to Figure 3.3, the dark blue colour vertices denote source/destination

nodes and dark gray colour vertices denote the intermediates nodes for a particular

path.

Figure 3.1: Message passing in normal condition.

Figure 3.2: Notification of node/link failures.

42



3.2 Fault-Tolerant Distributed Routing

3.2.2 Selection of Alternative Paths

The process of selecting an alternative paths is started after detection of node/link

failures. This step provides the solutions for re-routing message. The node that has de-

tected the node/link failure, since it has not received acks message from the neighbour-

hood node. After getting this information, the source node selects a set of non-faulty

intermediate nodes for alternative path to the destination. Basically, alternative paths

consist multi-step path of three or more path segments in three stages. The first stage

contains the set of segments between the source node and the first intermediate node;

the second stage corresponds to the segment between the first and the last intermediate

nodes; at last, the third stage comprises the set of segments between last intermediate

node and the final destination node. Figure 3.3 shows the selection of alternative path

in the presence of node/link failures.

Figure 3.3: Selection of alternative path.

The set of intermediate network nodes works as a super-node which is used in

alternative paths. Intermediate nodes are chosen according to their Dimension-Order

Routing in order to maximize the number of possible paths to avoid node/link failures.

Multi-step paths are segmented paths, which relies on the use of dynamic routing

provided by hypercube topology. Our algorithm provides alternative paths to avoid

node/link failures and configuring source-based alternative paths.

Dimension-Order Routing (DOR) is the most common deterministic routing scheme

used in the direct networks. In DOR, a message traverses the network in proper se-

quence over an ordered set of dimensions (e.g., dim0, dim1, dim2, ...) of path. For

example, suppose source node s = 0101 and destination node d = 1110. According to

the dimension-order routing, we have to alter the bit every time in new dimension and

43



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

in sequence. For this, first we calculate the hamming distance between s and d. So, the

hamming distance is 0101 ⊕ 1110 = 1011. It means that we can select three shortest

alternatives paths from s to d. These are as follows:

First path (0101, 1110) = (0, 1, 3) = 0101→ 0100→ 0110→ 1110

Second path (0101, 1110) = (1, 3, 0) = 0101→ 0111→ 1111→ 1110

Third path (0101, 1110) = (3, 0, 1) = 0101→ 1101→ 1100→ 1110

In the first phase source node finds all active intermediate nodes by altering its bits

one by one, in second phase intermediate nodes finds others neighbours intermediate

nodes by the same process, and in last phase intermediates nodes find the destination

node. These intermediate nodes are chosen by bit flipping.

But we have considered that the node 1111 is faulty, so we can’t choose second

path. We can choose first or third path from source to destination.

3.2.3 Configuration of Alternative Paths

In this phase, proper configuration is required on source-based routing paths between

the source and destination affected by node/link failures. This is important since

multiple node-disjoint paths were designed to provide alternative paths in the presence

of node/link failures.

The selection of suitable paths is the main objective in the presence of components

failures for source-destination pair. When a source node does not receive the acks,

then the source node configures multiple alternative routing paths to the destination

node. The configuration of these source-based alternative paths is similar to the one

explained in the section 3.2.2. In the source-based routing, intermediate nodes do as

scattering and gathering domains for the alternative non-faulty paths.

When the alternative paths have been configured, then the source node is able to

monitor the congestion of each path. If the message reaches to the destination node

through a non-faulty path, it mean source node received acks message successfully. The

set of alternative paths between any source-destination pair is shown in Figure 3.4. The

unique paths are given below–

0100→ 0101→ 0111→ 0011→ 1011

0100→ 0110→ 0010→ 1010→ 1011

44



3.2 Fault-Tolerant Distributed Routing

0100→ 0000→ 1000→ 1001→ 1011

0100→ 1100→ 1101→ 1111→ 1011

Figure 3.4: A multipath composed by 4 multistep paths in hypercube.

In Figure 3.4, four different colours of edges represent the unique path from source

to destination. In H4, there are four different possible paths since the degree is four.

The objective of the multipath configuration process is to determine the suitable

number of alternative paths for any source-destination pair. Thus, the multipath con-

figuration process is applied on the basis of topological properties of the network. The

intention of this process is to provide alternative non-faulty paths in a network. In the

worst case, the network congestion problems may vary after the occurrence of node/link

failures.

The multipath selection procedure is invoked before any new message is came into

the network. This procedure has two main goals:

• Avoid the use of faulty paths, and

• Distribute the communication load among the multipath.

3.2.4 Transient and Permanent Faults

Our proposed algorithm is able to deal with a large number of dynamic node/link fail-

ures. These methodologies are appropriate for handling permanent failures because

they provide alternative communication paths based on network conditions (by avoid-

ing faulty paths). Nevertheless, these alternative communication paths are not solely

optimal, when dealing with transient node/link failures. For example, suppose there is a

node/link failure in a source-destination pair and after configuration they use maximal

45



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

or congested paths for providing fault tolerance routing. This situation is acceptable

because of the prevention of best suitable path caused by node/link failure in the sys-

tem. Whenever the minimal paths are available in the network, the routing method

immediately switch back to minimal paths. Thus, the overall system performance can

be improved.

For maximum use of network resources, our methodology detects and applies dif-

ferent types of solutions to permanent and transient node/link failures. At first time,

node/link failures are always considered and handled as transient failures. If failures

continue to exist after a fix time interval, then its state changes to permanent. The

detection and right solution of transient and permanent node/link failures is based on

properly dealing of information about failures. Node/link failures notifications (when

acks message not received) warn the source node about the existence of one or more

node/link failures along the communication path and need to configure for choosing

new source-destination path. In this way, the reception of acks message implies the

absence of failures along the communication path.

As explained in the previous section, when source node does not receive acksmessage

from its neighbour node along the source-destination path, source node considers that

node/link failures as transient at first time. Source node once again resend the message

to that node, if the source node does not receive acks message regarding the same

node/link– that node/link failures treated as permanent. Otherwise stated, a node/link

failure will be noted as permanent only after not receiving acks message notifications

regarding that particular node/link. When source node does not receive acks message,

the source node resends the message up to a threshold value. In our methodology, we

set the threshold value by default to 15.

The reception of an acks message means that there is no node/link failure in the

path of source-destination and message has reached to the destination node through

the path. So, all the node/link state along this path is fault-free. On the other hand,

upon not receiving the acks message, source node resends the message up to a specific

threshold value (15 times) and after reaching this specific threshold value, the state of

node/link failure is changed from transient to permanent. For clarity, the entire process

related to reception of acks message has been shown in Figure 3.5 with the help of the

flow diagram.

46



3.2 Fault-Tolerant Distributed Routing

Figure 3.5: Reception of acks messages.

Source node is aware of the states of its source-destination paths. If there are one

or more permanent node/link failures along the source-destination paths, then source

node attempts to send the message via one or more alternative communication path and

sends remaining messages through them. The entire process are detailed in Figure 3.6

with the help of the flow diagram.

The most important design parameters for solving the transient node/link failures

are: the method to identify the failed node/link; and the method for setting a faulty

node/link as permanent. Our algorithm uses:

♣ An acks based method where node/link failures are set as permanent only after

not receiving acks message (source node waiting for acks message after resending the

message 15 times).

♣ Source based probes for identifying the state of failed node/link. Probes are sent

for every 100 messages, 99 are sent via alternative paths and 1 via the faulty path.

47



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Figure 3.6: Message passing flow diagram.

3.3 Preliminaries

The node-disjoint paths problem is a problem of finding node-disjoint paths from a

source node s to destination node d, where d 6= s. If d = s, then it means that the

source node s and destination node d are the same. In this case, although message m

can not be propagated, it will remain held in process s. Any two or more paths from

s to d are said to be node-disjoint iff they do not have any common nodes except for

their end-nodes. Disseminated solutions to the node-disjoint paths problem have many

applications such as secure message passing, reliable routing, network survivability and

extending available bandwidth.

An n-dimensional hypercube Hn consists of 2n nodes, and n.2n−1 links since the de-

gree of each node is n [107]. For each node i of Hn, node id i is a unique n-dimensional

bit label an−1an−2 . . . a0 where larger number indices denote most significant bit posi-

tions. Every node A has label or address an−1an−2 . . . a0 with ai ∈ {0, 1}, where ai is

48



3.3 Preliminaries

called the ith bit or ith dimension of the address. Sometimes, i is called ith coordinate.

In this case, ai is called the value of the coordinate i. The important property of the

hypercube is that, it can be constructed recursively from lower dimensional cubes (sub-

cubes). Each subcube Sm (or m-subcube) has a unique address sn−1sn−2 . . . s0 with

si ∈ {0, 1, ∗}, where exactly m(0 ≤ m ≤ n) bits take the value ∗ (∗ is a don’t care

symbol). A complete hypercube itself can be considered as a special subcube, where

all the bits of its address take the ∗ value. Each node is also a special subcube in which

no bit of its address takes the ∗ value, and is called 0-cube. Each link has one bit that

takes the value ∗ and is called 1-cube and a quadrangle is called 2-cube and has two

bits that take the value ∗. A cube is 3-cube, if its address has three ∗, etc.

The n-dimensional hypercube can be partitioned into two disjoint (n − 1)- dimen-

sional subcubes. Hypercube have a recursive structure, so this property is a key in

developing the algorithms in this chapter. For n ≥ 1, H0
n−1

and H1
n−1

be the (n − 1)-

dimensional subcubes of an n-dimensional cube Hn, i.e., the most significant bit of the

node address of every node is 0 in H0
n−1

and 1 in H1
n−1

. H0
n−1

and H1
n−1

are both iso-

morphic toHn−1 and are connected to each other by edges in dimension i ofHn. Hn can

be partitioned into H0
n−1

and H1
n−1

on any dimension i (0 ≤ i ≤ n− 1). Similarly, Hn

can be further partitioned into four (n − 2)-dimensional subcubes H00
n−2

, H01
n−2

, H10
n−2

,

and H11
n−2

on dimensions i and j, i.e., H00
n−2

and H01
n−2

are the subcubes of H0
n−1

; and

H10
n−2

and H11
n−2

are the subcubes of H1
n−1

.

In a hypercube there may be faulty nodes and/or faulty links. In this case the

hypercube is called faulty hypercube. If non-faulty nodes and links exist in n-cube, it

is called a complete cube. A cube is called a subcube of complete n-cube if at least one

dependent (0 or 1) coordinate exists in the cube with dimension n.

3.3.1 Basic Hypercube Routing

Given two nodes u and v in Hn, the Hamming distance path is the minimal (shortest)

path obtained by flipping the non matching bits in ascending order of dimensions. For

example in H4, the first Hamming distance (0001, 1010) = (0, 1, 3) = 0001 → 0000 →

0010→ 1010, the second Hamming distance (0001, 1010) = (1, 3, 0) = 0001→ 0011→

1011 → 1010, and the third Hamming distance (0001, 1010) = (3, 0, 1) = 0001 →

1001 → 1000 → 1010. As this routing strategy only provides n − 1 disjoint paths and

49



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

we are looking for n disjoint paths from source node to destination node. So, we have

to apply Coordinate Sequence (CS) in every dimensions.

Figure 2.10 depicts the structure of the dimensions. If we move in x direction, then

we will change 0th bit position and it is called 0-dimension. If we move in y direction,

then we will change 1st bit position and it is called 1-dimension. If we move in z

direction, then we will change 2nd bit position and it is called 2-dimension, and so on.

We assume that the source and destination differ in n dimensions {0, 1, 2, . . . , n−1},

denoted as a set, CS. We can define the coordinate sequence CS : 〈0, 1, 2, . . . , n−1〉 as the

basic routing path. CS can be any permutation. CS determines how the multiple node-

disjoint paths are constructed based on the resolution order of dimension differences.

CSi is defined as i circular left shifts of CS. CS0, CS1, . . . , CSn−1 will create n node-

disjoint shortest paths:

• 1st path — given by CS0 : 〈0, 1, 2, . . . , n− 1〉

• 2nd path — given by CS1 : 〈1, 2, . . . , n− 1, 0〉

• 3rd path — given by CS2 : 〈2, . . . , n− 1, 0, 1〉

. . .

• nth path — given by CSn−1 : 〈n− 1, 1, 2, . . . , n〉

Here, the paths generated from source s by coordinate sequence CS follow a match-

ing process along dimension 0 to dimension n − 1. In Figure 2.9, source 0000 and

destination 1011 differ in 3 dimensions {0, 1, 3} and similar in dimension 2 only. We

can shift the bits of input sequence one by one cyclically from left. The node-disjoint

paths are as follows:

• 1st path with bit-flip sequence 〈0, 1, 3〉 is (0000, 0001, 0011, 1011);

• 2nd path with bit-flip sequence 〈1, 3, 0〉 is (0000, 0010, 1010, 1011);

• 3rd path with bit-flip sequence 〈3, 0, 1〉 is (0000, 1000, 1001, 1011);

• 4th path with bit-flip sequence 〈2, 3, 0, 1, 2〉 is (0000, 0100, 1100, 1101, 1111, 1011).

50



3.4 Algorithms

Out of the four paths given, three of them are of length three, while one of them is

of length five.

In hypercube routing, the coordinate sequence CS of a path is sent along with the

message m. After a successful forwarding along dimension i, dimension i will be deleted

from the sequence. Finally, the sequence becomes empty upon reaching the destination

group.

According to the hypercube property [107], these multiple node-disjoint paths are

composed of n shortest paths of length n when the source and the destination differ

in n dimensions in an n-dimensional hypercube. All of these paths are generated from

the coordinate sequence CS. The benefit of the node-disjointness is that the paths will

not cross each other, which increases the efficiency of the routing.

3.4 Algorithms

The proposed algorithms traverse each path Pi = s, . . . , d, where 0 ≤ i ≤ n − 1, with

source s and destination d in the absence of faults as follows. If s[i] = d[i], then message

m can not be propagated and it will remain held in process s. Otherwise, the vertex

after s on Pi is obtained by flipping the ith positions of s and the vertex before d on Pi

is obtained by flipping the ith positions of d. Then, each remaining successive vertex on

Pi is obtained by flipping the next significant bit position of the current vertex where

s and d differ starting from position i, or we can say that if s[i] 6= d[i], i.e. the ith

positions of s and d differ, each successive vertex on Pi is obtained by flipping the next

most significant bit position of the current vertex where s and d differ starting from

position i.

To deal with faults, our proposed algorithm uses acknowledgement message (acks).

Processes can fail only by crashing and when a crash is permanent, and up to n − 1

nodes may crash at any given time. A process is correct if it does not crash during

computation, otherwise, it is faulty. If sender process receives the acknowledgement

message (acks) from the neighbourhood process, it means the neighbourhood process

is correct (or non-faulty). If sender process does not receive the acknowledgement

message (acks) from the neighbourhood process, it means the neighbourhood process

is incorrect (or faulty).

51



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

If source node does not receive the acknowledgement message (acks) after sending a

message as a result of the bit-flip operation on current node c, our proposed algorithm

does not accomplish the bit-flip of the next most significant bit position x where s

and d differ. Instead, it flips the next most significant bit position of c after x where

s and d differ to obtain the id of the next node. Afterwards, bit-flip at position x is

accomplished to obtain the next node. As a result, the same path traversed in the

absence of faults is reached and followed until finding another faulty node.

The proposed algorithm sends n messages m0,m1, . . . ,mn−1 from source process

s to destination process d in two cases. In first case, the algorithm proceeds when

there is no faults in the system and in second case when there is failure in the system.

When s 6= d, each message mi, 0 ≤ i ≤ n− 1, is sent over a distinct node-disjoint path

between s and d. For doing this, the source process s sends each message to a distinct

neighbouring process with index (or dimension or bit-flip position) and target node id.

The id of the neighbouring process is obtained from the id of s by flipping the most

significant bit position. This information is used by an intermediate process to identify

its successor in a node-disjoint path.

As each intermediate process identifies a bit-flip position to route a received message,

a bit-flip sequence containing the sequence of bit-flip positions for each message m

routed over a disjoint path is obtained. We now present the basis of the algorithm

using the concept of bit-flip sequences. The proposed algorithm associates a distinct

bit-flip sequence with each messagem traversing a distinct disjoint path in a distributed

manner to ensure the disjointness of the paths. The bit-flip sequence is associated

with message m traversing a node-disjoint path such that the first bit-flip position in

the sequence corresponds to the first process on the path, the second bit-flip position

corresponds to the second process on the path and so on. Therefore, every intermediate

process on a disjoint path has a corresponding bit-flip position in the associated bit-flip

sequence.

We define two functions which are used by our proposed algorithm. Function fi(s, d)

is the position of the ith bit or the dimension i, in which the labels s and d differ. For

example,

f0(011101, 001001) = 2,

f1(011101, 001001) = 4.

52



3.4 Algorithms

Similarly, Function gi(s, d) gives the position of the ith bit or dimension i between

s and d, where the bits are common. For example,

g0(011101, 001001) = 0,

g1(011101, 001001) = 1.

If s and d have all/no bits in common, fi/gi assumes the value φ. For example,

f0(001101, 001101) = φ,

g0(001101, 110010) = φ.

In the remainder of this section, we present the proposed algorithm in two steps.

First, Algorithm 1 explains the message routing in the fault-free condition. Second,

Algorithm 2 presents the routing algorithm in the presence of node/link failures [120].

3.4.1 Routing Without Failures

When a process receives a message m, it propagates the message m through functions

fi(s, d) and gi(s, d) to its neighbourhood process. After receiving a message m, the

neighbourhood process performs the corresponding bit-flip in the sequence to propagate

the message m to the next process on the path. Upon receiving message m and the

position of the bit-flip i, an intermediate process s determines the next bit-flip position

b in the bit-flip sequence corresponding to the path traversed by message m. For that

purpose, process s searches (using modulo-n) the next most significant bit position b

after position i, wherein s and d differ by using the function fi(s, d) and function gi(s, d)

provides the path where the bit position are common. Although, paths given by gi(s, d)

usually are longest in comparison of provided by the function fi(s, d). Subsequently,

we can find the successor process on the node-disjoint path by flipping the bth bit of

process id s. This simple deterministic algorithm always finds a path of minimum

length. This length is at most n, and the computation overhead of the routing process

is very small. The routing algorithm is provided in Algorithm 1 for hypercubes with

no crash failures. For Algorithm 1, the inputs are addresses of source and destination

nodes and output is minimum length path between source and destination.

53



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Algorithm 1 Algorithm for node-to-node routing in a hypercube

Require: s is the label of current process and d is the label of destination process.

1: for all i, 0 ≤ i ≤ n− 1 do

2: send message through fi(s, d) and gi(s, d)

3: if s = d then hold the message m in process s;

4: else

5: propagate message m to next processor through fi(s, d) and gi(s, d)

6: end if

7: end for

3.4.2 Routing With Failures

The objective of selecting alternative path is to configure source-based routing paths

between source and destination affected by node/link failures. This is an important

task because designing alternative paths provides fast responses to node/link failures.

The first step of this objective is the selection of suitable communication paths for

source-destination pairs struck by node/link failures. Upon occurrences of a node/link

failure in the system, the source node configures one or more alternative routing paths

to the corresponding destination.

Now, in the case of faulty nodes in the hypercube, our algorithm uses the acknowl-

edgement message (acks), when sender sends the message m, it waits for acknowl-

edgement message (acks). If acks are received, it means neighbourhood process is

non-faulty, otherwise it is faulty. When a process receives a message m, it performs

the corresponding bit-flip in the sequence, as long as the identified neighbour or the

link connecting the process to the neighbour is non-faulty. If the identified neighbour

or the link connecting the process to the neighbour is faulty, the corresponding bit-flip

sequence needs to be altered to avoid the faulty node/link, while maintaining the dis-

jointness of the paths. The bit-flip sequence is uniformly altered to avoid each faulty

node/link while maintaining the disjointness property in a distributed manner based

on only local knowledge as follows.

After getting a faulty node/link, the process postpones the bit-flip that would lead

the message m to the failed link/process, and instead performs the subsequent bit-flip

in the sequence to send the message m to a different neighbour. The postponed bit-flip

in the sequence is carried out by the neighbouring process on the altered node-disjoint

54



3.4 Algorithms

path. The proposed bit-flip sequence alteration corresponds to a swapping of two con-

secutive bit-flips implementing a detour of the message around the failed process/link

in a distributed manner. The proposed mechanism preserves node-disjointness along

with all other properties addressed in the next section.

Then, process s checks by receiving acknowledgement message (acks) whether or not

neighbouring process or the link connecting s to neighbouring process is faulty. If sender

receives the acks, then the process and the link are non-faulty, messagem is forwarded to

neighbouring process along with function fi(s, d) and gi(s, d), which consists destination

id d and the computed bit-flip position b. Otherwise, process s postpones the flip at

bit position b by searching (using modulo-n) the next most significant bit position bn

after position b wherein s and d differ by using the fi(s, d) function and same by using

the gi(s, d) function again. Observe that the postponed bit-flip b in the sequence must

be effected at some point to reach the destination process; it is effected by the next

intermediate process on the path, by providing (((i + 1) mod n) − 1) mod n to the

next intermediate process as the bit-flip position, ensuring that the postponed bit-flip

b is the next effected one. As a result, the algorithm successfully bypasses the faulty

process/link by swapping the order of two consecutive bit-flips b and bn in the sequence.

The proposed fault-tolerant algorithm is provided in Algorithm 2. For Algorithm 2, the

inputs are addresses of source and destination nodes with acknowledgement message

and output is minimum length path between source and destination.

Algorithm 2 Algorithm for node-to-node routing in a faulty hypercube

Require: s is the label of current process and d is the label of destination process.

acks is the acknowledgement message.

1: for all i, 0 ≤ i ≤ n− 1 do

2: send message through fi(s, d) and gi(s, d)

3: if s = d then hold the message m in process s;

4: else if acks not received to s then

5: i← (((i+ 1) mod n)− 1) mod n;

6: propagate message m to next processor through fi(s, d) and gi(s, d)

7: else

8: i← (i+ 1) mod n

9: propagate message m to next processor through fi(s, d) and gi(s, d)

10: end if

11: end for

55



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

All the paths from a source node to a destination node, among which there is the

shortest path, are found by the algorithm. The found paths are fixed to avoid compli-

cation of the algorithm. The shortest path may be determined by way of comparison

of the lengths of the found paths.

3.5 Proof of Correctness

Lemma 3.5.1. If the message m is correct then it should reach from source s to

destination d.

Proof. If the message m is not affected, then algorithm compares the bits of d and s

where they differs by function fi(s, d) and where the bits are same by function gi(s, d).

By these functions one can found simple paths and each path found by the algorithm

is the shortest node-disjoint path from s to d. Hence, the lemma follows.

Lemma 3.5.2. The proposed fault-tolerant algorithm sends n correct messages via

node disjoint paths from s to d.

Proof. Suppose there is no faulty adjacent nodes of s and d, then algorithm alter the bit

positions through fi(s, d) and gi(s, d). Moreover, if at most one faulty node exist in the

adjacent of any nodes in the hypercube, then fault-tolerant algorithm propagates the

message with sufficient condition by swapping the bits within the pair of nodes. When

the algorithm has a faulty node, the next altering the bits is accomplished by both the

functions and effected by the adjacent node on the path of hypercube. Furthermore,

these paths terminate at d by Lemma 1. Hence, the lemma follows.

Lemma 3.5.3. Even in the presence of faulty node, correct message m traverses an

optimal path length of at most n+ 1.

Proof. When we applied both functions fi(s, d) and gi(s, d) together, then algorithm

traverses path length of at most n+1, even in the presence of faulty node in a hypercube.

Actually, it is the longest possible path in a hypercube that a message m traverses.

Hence, the lemma follows.

Lemma 3.5.4. In the proposed algorithm, each of the n normal messages sent by

source process s traverses a shortest all node-disjoint path and reaches destination

process d.

56



3.6 Evaluation Model

Proof. Both functions of the algorithm provides all node-disjoint path in all the cases.

Furthermore, due to faulty nodes, there is no effect on the length of the paths and

the paths are the shortest all node-disjoint paths by Lemma 2. As these messages are

reached from s to d by Lemma 1. Hence, the lemma follows.

Theorem 3.5.5. In a n-dimensional Hn, the proposed algorithm passes n messages

from source node s to destination node d through n all node-disjoint paths of optimal

length n+ 1.

Proof. In the proposed algorithm, each of the n messages sent by source node s to

destination node d traverses a shortest all node-disjoint path by Lemma 4 and all

message reached to destination node d in at most n + 1 round by Lemmas 3. Hence,

the theorem follows.

3.6 Evaluation Model

The evaluation of the contributions of this chapter is done with the help of Coloured

Petri nets (CPN or CP-nets) tools simulator. The primary reason for selecting the

CPN tools is because it is a tool for editing, modelling, simulating and validation

of systems in which concurrency, communication, and synchronisation play a major

role. User interaction with CPN Tools is based on direct manipulation of the graphical

representation of the CPN model using interaction techniques, such as tool palettes

and marking menus. A CPN model of a system is an executable model representing

the states of the system and the events (transitions) that can cause the system to

change state. The CPN language makes it possible to organise a model as a set of

modules, and it includes a time concept for representing the time taken to execute

events in the modelled system. CPN Tools is an industrial-strength computer tool for

constructing and analysing CPN models. Using CPN Tools, it is possible to investigate

the behaviour of the modelled system using simulation, to verify properties by means of

state space methods and model checking, and to conduct simulation-based performance

analysis [103, 122].

The CPN model of the hypercube topology for routing the messages from source

to destination is shown in Figure 3.7. This model describes a sequence of messages is

sent from the source node to the destination node through communication link where

57



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Figure 3.7: CPN model of the system.

messages may be delayed or lost due to node/link failures. In particular, the CPN

model consists following three parts:

• Source: The source part has two transitions, one for sending the messages (say,

send msg) and another for receiving acknowledgements (say, receive acks).

• Communication Network: The communication part has two transitions, one for

transmitting the messages (say, transmit msg) and another for transmitting the ac-

knowledgements (say, transmit acks).

• Destination: Finally, the destination part has a single transition in which it can

receive messages and send acknowledgements (say, receive msg).

The interface between the source and the communication network consists of the

places W and Z, while the interface between the communication network and the

destination consists of the places X and Y .

The messages to be sent are positioned at the place send. Each token on this place

contains a message number (INT type) and the data contents of the message (DATA

type). The place nextsend contains the number of the next message to be sent. Initially

this number is 1, and it is updated each time an acknowledgement is received.

The content of the received message is kept at the place received. This place contains

58



3.6 Evaluation Model

a single token with a text string (DATA type) which is the concatenation of the text

strings contained in the received messages. Initially the text string at received is empty,

i.e., “”. At the end of the transmission we expect received to contain the text string

“Life is always better when you are laughing”. The place nextrec contains the number

of the next message to be received. Initially this number is 1, and it is updated each

time a message is successfully received.

We do not model how the source splits a messages into a sequence of messages or

how the destination reassembles the messages into a message. Neither do we model

how the tokens at source and destination are removed at the end of the transmission

or how the message numbers in nextsend and nextrec are reset to 1. Now let us take a

closer look at the five different transitions in the protocol system.

1. send msg sends a message to the communication network by creating a copy of

the message on place W . The number in nextsend specifies which message to

send. It should be noted that the message is not removed from source. Neither

is the counter at nextsend increased. The reason is that the message may be

lost due to faulty node/link and hence need to be retransmitted. Our protocol is

pessimistic, in the sense that it continues to repeat the same message - until it

gets an acknowledgement telling that the message has been successfully received.

2. transmit msg transmits a message from the source site of the hypercube network

to the destination site by moving the corresponding token from W to X. The

boolean expression Ok(s, r) determines whether the message is successfully trans-

mitted or lost. The variable r will be bound to an arbitrary value in its colour set

(i.e., to any integer between 1 and 15). CPN Tools makes a fair choice between

the 15 values. The Ok function returns true if the value of r is less than or equal

to the value of s. This means that the probability of successful transmission is

determined by the token at place SP . We have given SP a token with value 13.

Hence we have 87% chance for successful transmission. However, it is easy to

modify the success rate, simply by changing the token value at SP .

3. receive msg receives a message and checks whether the message number n is

identical to the number k in nextrec. When the two numbers match, the number

in nextrec is increased by 1 and the text string in the message is concatenated

59



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

to the text string in received unless it is stop = “♯♯♯♯♯♯♯♯”, which by convention

indicates end-of-message. Otherwise, the message is ignored and the number in

nextrec is left unchanged. In both cases an acknowledgement is sent containing

the number of the next message which the source should send.

4. transmit acks transmits an acknowledgement from the destination site of the

hypercube network to the source site by moving the corresponding token from Y

to Z. The transition works in a similar way as transmit msg. This means that

the acknowledgement may be lost, with a probability determined by the token at

place SA.

5. receive acks receives an acknowledgement and updates the number in nextsend

by replacing the old value with the one contained in the acknowledgement.

After executing few number of steps, the CPN model may have reached the inter-

mediate state as shown in Figure 3.8. From Figure 3.8 the source is sending message

number two and two copies of this message are available at places W and X. The string

“Life is alway” has been received. This is the lists of the first two messages and now

the destination is waiting for message number three. Thus, the messages on W and X

will be ignored when they arrive the destination. One acknowledgement is present at

place Z. When receive acks occurs, nextsend will be updated to three, and then source

will start sending message number three.

After executing all the steps, the destination received all the messages successfully.

When the last message with “♯♯♯♯♯♯♯♯” is received, nextrec gets the value 9. This value

will be communicated to the source via transmit acks, nextsend will be updated to 9,

and the sending will stop because no message with this number exists. The final CPN

model after executing all steps as shown in Figure 3.9.

For easy representation of CPN model, one can organize it in multiple nets. Now

we will discuss all five transitions one by one. We add one extra place, named sendmsg

in send msg transition. It describes the number of individual messages have been sent.

Figure 3.10 shows that message number one has been sent 5 times, message number

two 4 times, message number three 12 times, message number four 4 times, message

number five 6 times, message number six 11 times, message number seven 15 times and

message number eight 17 times.

60



3.6 Evaluation Model

Figure 3.8: CPN model of the system after few steps.

Figure 3.9: CPN model of the system after all steps.

Then we add one extra place, named count in receive acks transition. It provides

the sequence number for acknowledgements as shown in Figure 3.11.

61



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Figure 3.10: CPN model for the Sender Side.

Figure 3.11: CPN model of the Receiver acks.

The place lostmsg in transition transmit msg says about the lost messages due to

node/link failures. In Figure 3.12, we have lost two copy of message number 3, only one

copy of message number 4, three copy of message number 6 and two copy of message

number 7.

The place lostacks in transition transmit acks says how many acknowledgements

have lost/transmitted. In Figure 3.13, we have lost 12 acknowledgement and success-

fully transmitted 54.

The place recmsg in transition receive msg says about successfully received messages.

In Figure 3.14, first we received message number 1 with data “Life ”, then message

number 2 with data “is alway”, message number 3 with data “s bett”, message number

4 with data “er when ”, message number 5 with data “you ar”, message number 6 with

62



3.7 Implementation & Simulation Results

Figure 3.12: CPN model of the Transmit Message.

Figure 3.13: CPN model of the Transmit acks.

data “e laugh”, message number 7 with data “ing ♯♯”, and finally message number 8

with data “♯♯♯♯♯♯♯♯”.

3.7 Implementation & Simulation Results

The algorithm has been tried statically for hypercubes of various dimensions. The

following assumptions are made to test the correctness of the algorithm.

• Source node of the hypercube sends messages to each neighbour node to check

the availability of nodes.

63



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Figure 3.14: CPN model of the receiver.

• If one or more nodes are faulty, discard these nodes permanently.

• The fault tolerant routing algorithm executed at each non-faulty node then de-

termines the correct routes.

We have implemented this algorithm using the CPN Simulator running over 32-

bit Windows operating system with core i7 and 4 GB RAM for various hypercube

dimensions and injected faults at various nodes and shown that the algorithm provides

correct routes in the event of failed nodes.

The proposed algorithm is compared with two routing algorithms– depth first search

algorithm and unsafety algorithm. The depth first search routing algorithm is based

on graph search and the unsafety routing algorithm is based on vectors. The proposed

algorithm is simulated for 30, 40, 50 & 60% of faulty nodes in a 8-dimensional hypercube

network (H8) and got results. Figure 3.15, Figure 3.16, Figure 3.17 and Figure 3.18

presents simulation results of average message latency. Each diagram presents results

for different message lengths 60, 80, 100, 120, 140, 160, 180 and 200. Due to, the most

important issues in the networks is the average of message latency, we focused on this

factor in the simulations. In Figure 3.15, when the number of faulty nodes are about

30% in H8. Our algorithm provides an average 14% improvement in the performance

of the network. In Figure 3.16, when the number of faulty nodes are about 40% in

64



3.7 Implementation & Simulation Results

H8. Our algorithm provides an average 12% improvement in the performance of the

network. In Figure 3.17, when the number of faulty nodes are about 50% in H8. Our

algorithm provides an average 20% improvement in the performance of the network.

In Figure 3.18, when the number of faulty nodes are about 60% in H8. Our algorithm

provides an average 14% improvement in the performance of the network. With this

analysis we can observe that our proposed routing algorithm with different number of

faulty nodes and different message lengths provides better average message latency and

increases the reliability of the network.

Message Length (Flit)

Figure 3.15: Simulation result for different message lengths with 30% faulty nodes in H8.

Figure 3.19, Figure 3.20, Figure 3.21 and Figure 3.22 presents simulation results

of average message latency for H8 with 30, 40, 50 & 60% faulty nodes, respectively.

Each diagram presents results for different generation rates. In Figure 3.19, when the

number of faulty nodes are about 30% in H8. Our algorithm provides an average 7%

improvement in the performance of the network. In Figure 3.20, when the number of

faulty nodes are about 40% in H8. Our algorithm provides an average 5% improvement

in the performance of the network. In Figure 3.21, when the number of faulty nodes

are about 50% in H8. Our algorithm provides an average 4% improvement in the

performance of the network. In Figure 3.22, when the number of faulty nodes are about

60% in H8. Our algorithm provides an average 4% improvement in the performance

of the network. Our approach provides better performance when we are increasing the

65



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Message Length (Flit)

Figure 3.16: Simulation result for different message lengths with 40% faulty nodes in H8.

Message Length (Flit)

Figure 3.17: Simulation result for different message lengths with 50% faulty nodes in H8.

generation rate. With this analysis we can observe that the proposed algorithm has

the more reliability than previous algorithms. It also has the accepted performance

comparing with them.

Simulation results confirm that the proposed node-to-node routing algorithm pro-

vides an average of 10% improvement in the performance of hypercube network in

comparison with the previously proposed routing algorithms–depth first search algo-

66



3.7 Implementation & Simulation Results

Message Length (Flit)

Figure 3.18: Simulation result for different message lengths with 60% faulty nodes in H8.

rithm and unsafety vectors algorithm.

Generation Rate (Message/cycle)

Figure 3.19: Simulation results for different generation rates with 30% faulty nodes in

H8.

The routing algorithm has been applied to the following examples and how the

algorithm finds the unique path is illustrated—

Example 3.7.1. Consider the source node s = (0000), destination node d = (1011) and

faulty nodes {f1 = 0001, f2 = 0011, f3 = 0100, f4 = 0101, f5 = 0111, f6 = 1010, f7 =

67



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Generation Rate (Message/cycle)

Figure 3.20: Simulation results for different generation rates with 40% faulty nodes in

H8.

Generation Rate (Message/cycle)

Figure 3.21: Simulation results for different generation rates with 50% faulty nodes in

H8.

1100, f8 = 1110} in H4. This problem provides the maximum 4 node-disjoint paths,

but we are looking for shortest node-disjoint non-faulty paths. So the unique possible

shortest computed path according to the algorithm is P (0000, 1011) = {3, 0, 1} =

0000→ 1000→ 1001→ 1011.

68



3.7 Implementation & Simulation Results

Generation Rate (Message/cycle)

Figure 3.22: Simulation results for different generation rates with 60% faulty nodes in

H8.

Example 3.7.2. Consider the source node s = (000000), destination node d = (111001)

and faulty nodes {f1 = 000001, f2 = 000010, f3 = 000011, f4 = 000100, f5 = 000101,

f6 = 000110, f7 = 000111, f8 = 001010, f9 = 001100, f10 = 010111, f11 = 011011, f12 =

011100, f13 = 100000, f14 = 110101, f15 = 111010, f16 = 111101, f17 = 111110, f18 =

111111} in H6. This problem provides the maximum 6 node-disjoint paths, but we are

looking for shortest node-disjoint non-faulty paths. So there are two possible short-

est paths according to the algorithm. The computed first path P (000000, 111001) =

{3, 4, 5, 0} = 001000 → 011000 → 111000 → 111001 and computed second path

P (000000, 111001) = {4, 5, 0, 3} = 000000→ 010000→ 110000→ 110001→ 111001.

Example 3.7.3. Consider the source node s = (00000000), destination node d =

(10101010) and faulty nodes {f1 = 00000010, f2 = 00000100, f3 = 00001010, f4 =

00011011, f5 = 00101000, f6 = 00110101, f7 = 00111100, f8 = 01010111, f9 = 01011111,

f10 = 10000000, f11 = 10001000, f12 = 10001010, f13 = 10100101, f14 = 10111001, f15 =

10111101, f16 = 10111111, f17 = 11100011, f18 = 11100111, f19 = 11110000, f20 =

11111000, f21 = 11111001, f22 = 11111100} in H8. This problem provides the max-

imum 8 node-disjoint paths, but we are looking for shortest node-disjoint non-faulty

paths. So the unique possible shortest computed path according to the algorithm

is P (00000000, 10101010) = {5, 7, 1, 3} = 00000000 → 00100000 → 10100000 →

10100010→ 10101010.

69



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

Our algorithm generates n paths which are mutually node-disjoint in the case when

there is no failures in the system. The node-disjoint property follows from the fact

that, we are computing the path from the source node to the destination node and at

any stage the hypercube has two subcubes: the 0-subcube and the 1-subcube. Since

n-dimensional hypercubes have n links connecting n nodes, so in the presence of failures

they choose the alternative paths with the help of functions. Thus, the paths computed

at any stage of recursion cannot intersect with each other. The advantageous of node-

disjoint paths is if a task tries to move to a faulty node, it will try an alternative

route.

3.8 Conclusion

Throughout this chapter, we have described the proposed fault-tolerant node-to-node

adaptive routing algorithm. In this chapter an optimal algorithm is proposed that de-

termines the shortest node-disjoint paths from a source node to any destination node.

Our algorithm allows to find all the paths between source to destination and is inde-

pendent of the number of faulty nodes and links in a hypercube networks. For dealing

the faults, acknowledgement messages (acks) are included in the proposed algorithm

for routing messages over node-disjoint paths in a hypercube network. The task of

the algorithm may be finished after determining the first path, the length of which is

equal to Hamming distance. The algorithm is effective to provide fault tolerance for

the hypercube system, which may have a great number of faulty nodes and, or links.

Our proposed algorithm rely on dynamic reconfiguration process to deal failures

in parallel systems without halting the computing system. The proposed algorithm is

based on multipath adaptive routing method and needs no virtual channels for dead-

lock avoidance. On the other hand, the routing methodology proposed by Gomez et

al. [49] and Dong Xiang [126] uses static fault mode. In this mode, the system must

be restarted. For this new routes are calculated and system restarts from the last safe

state. This problem is not introduced in our proposal because our algorithm has been

designed to handle with both static and dynamic components failures.

Koibuchi et al. [69] proposed a method which deals dynamic failures but uses vir-

tual channels for routing. Actual HPC systems usually rely on simple solutions. For

70



3.8 Conclusion

instance, Titan and Blue Gene/Q supercomputers [1] may route messages either deter-

ministically using dimension order routing (xyz) or dynamically, but the hardware does

not have the capacity to route around faulty nodes and/or links.

This approach may be applied to the routing algorithms with local information

about faulty nodes and links and also to broadcasting and multicasting algorithms and

task allocation problems.

71



3. FAULT-TOLERANT DISTRIBUTED NODE-TO-NODE ROUTING

72


