Annales Geophysicae

ISSN: 0992-7689 (printed version) ISSN: 1432-0576 (electronic version)

Abstract Volume 14 Issue 8 (1996) pp 794-802

Response of ionospheric electric fields to variations in the interplanetary magnetic field

S. P. Mishra (1), E. Nielsen (2)

Department of Applied Physics, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India
 Max-Planck-Institut f
ür Aeronomie, D-37189 Katlenburg-Lindau, Germany

Received: 26 September 1995/Revised: 9 February 1996/Accepted: 21 March 1996

Abstract. The STARE system (Scandinavian Twin Auroral Radar Experiment) provides estimates of electron drift velocities, and hence also of the electric field in the high-latitude E-region ionosphere between 65 and 70 degrees latitude. The occurrence of drift velocities larger than about 400 m/s (equivalent to an electric field of 20 mV/m) have been correlated with the magnitude of the Interplanetary Magnetic Field (IMF) components B_z and B_y at all local times. Observation days have been considered during which both southward (B_z <0) and northward (B_z >0) IMF occurred. The occurrence of electric fields larger than 20 mV/m increases with increases in B_z magnitudes when B_z <0. It is found that the effects of southward IMF continue for some time following the northward turnings of the IMF. In order to eliminate such residual effects for B_z <0, we have, in the second part of the study, considered those days which were characterized by a pure northward IMF. The occurrence is considerably lower during times when B_z >0, than during those when B_z is negative. These results are related to the expansion and contraction of the auroral oval. The different percentage occurrences of large electric field for B_y >0 and B_y <0 components of the IMF during times when B_z >0, clearly display a dawn-dusk asymmetry of plasma flow in the ionosphere. The effects of the time-varying solar-wind speed, density, IMF fluctuations, and magnetospheric substorms on the occurrence of auroral-backscatter observations are also discussed.

Article not available online

Last change: February 23, 1997 helpdesk.link@springer.de © Springer Berlin Heidelberg 1996