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A Mond-Weir type dual for a class of nondifferentiable multiobjective varia-
tional problems in which every component of the objective function contains a
term involving the square root of a certain positive semidefinite quadratic form, is
considered and various duality results, viz. weak, strong, and converse duality
theorems, are developed for conditionally properly efficient solutions. These re-
sults are obtained under F-invexity assumptions and its generalizations on objec-
tive and constraint functions. This work extends many results on variational
problems established earlier. © 1996 Academic Press, Inc.

1. INTRODUCTION

Hanson [8] extended the duality results of mathematical programming to
a class of functions subsequently called invex. Since that time, it has been
shown [10, 11] that many results in mathematical programming previously
established for convex functions actually hold for the wider class of invex
functions. Mond et al. [11] extended the concept of invexity to the
continuous case and used it to generalize earlier duality results for a class
of variational problems. Mond and Smart [15] extended the duality theo-
rems for a class of static nondifferentiable problems with Wolfe type and
Mond-Weir type duals, and further extended these for the continuous
analogues. Mishra and Mukherjee [10] extended the work of Mond et al.
[11] for multiobjective variational problems which in particular extended
an earlier work of Bector and Husain [1] for invex functions.

Jeyakumar and Mond [9] introduced a wider class than that of invex
functions subsequently known as F-invex functions, which preserves the
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sufficient optimality and duality results in the scalar case, and avoids the
major difficulty of verifying that the inequality holds for the same function
n(.,.). Mukherjee and Mishra [16] extended the work of [9] to variational
problems with the concept of weak minima.

Singh and Hanson [17] generalized the concept of proper efficiency,
introduced by Geoffrion [7], to cover practical situations where Geoffrion’s
definition does not apply and they applied it to the relationship between
multiobjective programming and scalarized multiobjective programming,
and to the duality theory of mathematical programming.

The aim of this paper is to extend an earlier work of Mond et al. [13] to
the continuous case, under the assumption of -invexity and its generaliza-
tions on the objective and constraint functions. Further, duality results are
developed for conditionally properly efficient solutions. A close relation-
ship between these variational problems and nonlinear multiobjective
programming problems is also indicated. The results generalize various
well known results in variational problems with differentiable functions
and also give a dynamic analogue of certain nondifferentiable program-
ming problems.

2. NOTATION AND PRELIMINARIES

Let I =1[a,b] be a real interval and f: I XR"XR"—- R and
g I X R" X R" — R™ be continuously differentiable functions. In order
to consider f(z, x(¢), x(¢)), where x: I — R" with derivative x denote the
partial derivative of f with respect to ¢, x, and x, respectively, by f,, f.,
and f;, such that

L=

ax, " dx, " ax,

of  of 0f) f_(af of o

ax, " ax, ' ox, )

We write the partial derivatives of the vector function g using matrices
with m rows instead of one.

Let C(I, R") denote the space of piecewise smooth functions x with
norm ||x|| = llxll. + ||Dx|| where the differentiation operator D is given by

u=Dxex(t)=a+ ftu(s) ds,

where « is a given boundary value. Therefore D = d /dt except at discon-
tinuities.
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Consider the following vector minimum problem
(P®) Minimize [ f(1,x(1), k(1)) dt
- (/bfl(t,x(t),)'c(t) dt,/bfz(t,x(t))'c(t)) di. ...

[ (e x(1), &(n)) dr
subject to x(a) = «, x(b) =B (1)
g(t,x(t),x(t))y <0, tel (2)
Craven [6] obtained Kuhn—Tucker type necessary conditions for the above
problem and proved that the necessary conditions are also sufficient if

objective functions are pseudoconvex and constraints are quasiconvex.
Let K the set of feasible solutions for (P°) be given by

K={xeC(I,R"): x(a) = a,x(b) =B
g(t,x(1),x(t)) <0,r €1},

The following definitions will be needed in the sequel.

DEFINITION 1. A point x* in K is said to be an efficient solution of (P)
if for all x in K

j;bfi(t,x*(t),ic(t))dtZLbfi(t,x(t),k(t))dt Vie(l,2,...,p)

:»fubfi(t,x*(t),ic*(t))dtz /;bfi(t,x(t),ic(t))dt,

Vie{l1,2,... p).

DerINITION 2 (Borwein [2]). A point x* in K is said to be a weak
minimum for (P) if there exists no other x in K for which

fubf(t,x*(t),)'c*(t))dt>/abf(t,x(t),ic(t))dt.

From this it follows that if an x* in K is efficient for (P°) then it is also a weak
minimum for (P°).
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DeriNITION 3 (Geoffrion [7]). A point x* in K is said to be properly
efficient solution of (P°) if there exists scalar M > 0 such that V i
{11 21 e :p}

[ (), ) di = [P (1), () de
< [0, 50 di = [P0, 50) d
for some j such that
[P0, 50 di > [T x%(0), 5(0)) e

whenever x is in K and
f[lbfi(t,x(t),ic(t))dt< Lbfi(t,x*(t),k*(t))dt.

An efficient solution that is not properly efficient is said to be improp-
erly efficient. Thus for x* to be improperly efficient means that to every
sufficiently large M > 0 there is an x in K and an i € {1,2,..., p} such
that

fbf"(t,x(t),)'c(t))dt<fbf"(t,x*(t),x*(t))dt

and
[ (). 37 0) de = [*F (10, () de
>M fabff(t,x(t),ic(t))dt— Lbff(t,x*(t)k*(t) dr)
Vje{1,2,...,p},
such that

fabff(t,x(t),)'c(t))dt> fabfj(t,x*(t),)'c*(t))dt.
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DerINITION 4 (Singh and Hanson [17]). A point x* in K is said to be
conditionally properly efficient for (P°) if x* is efficient for (P°) and there
exists a positive function M(x) such that for each i € {1,2,..., p}, we have

j;bfi(t, x*(t), x*(t)) dt — fabf"(t, x(t),x(t)) dt
< fabM(x)ff(t,x(t),)'c(t))dt

—fabM(x)ff(t,x*(f):;C*(t)) dt,

for some j such that

fabff(t,x(t),)'c(t))dt</abff(t,x*(t),)'c*(t))dt

whenever x is in K and
Lbfi(t,x(t),i(t))dt< fabf"(t,x*(t),ic*(t))dt.

Now we consider the following Singh and Hanson [17] type parametric
variational problem for predetermined positive functions 7,(x) such that
a; < m;k(x) <b;, i €{1,..., p} where a, and b, are specified constants

(P°) Minimize f om0 £t x(0), 3(1)) at
subject to (1) and (2).

Problems (P°) and (P?) are equivalent in the sense of Singh and Hanson
[17]. Theorems 1 and 2 are valid when R” is replaced by some normed
space of functions, as the proofs of these theorems do not depend on the
dimensionality of the space in which the feasible set of (P) lies. For our
variational problems the feasible set K lies in the normed space C(I, R").
For completeness we shall merely state these theorems characterizing
conditional proper vector minima of (P°) in terms of solutions of (P?).

THEOREM 1. If x* is an optimal solution of (P?) then x* is conditionally
properly efficient for (PP).

THEOREM 2. If x* is conditionally properly efficient for (P°) then x* is
optimal for (P?) for some 7(x*) > 0,i=1,2,...,p.
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Consider the following nondifferentiable multiobjective variational pri-
mal problem as

(P) Minimize szp(t,x(t),)}(t) dt

) (fab{fl“'x(f)'*(m + (T () Br(0) Y,

1/2

/ab{fp(t,x(t),)'c(t)) + (x(1) B (1) x(1)) }dt)

subject to (1) and (2),

where B,(¢), i € {1,2,..., p} is a positive semi-definite (symmetric) matrix,
with E,(-), i € {1,2,..., p} continuous on 1.

The aim of this paper is to show that the requirements of objective and
constraint functions to be invex, pseudo-invex, or quadi-invex can be
weakened to requiring V-invexity, I’-pseudo-invexity, and l’-quasi-invexity,
respectively.

3. VECTOR INVEXITY

Vector invexity was introduced into mathematical programming by
Jeyakumar and Mond [9]. Mukherjee and Mishra [16] have extended the
concept of V-invexity to the continuous case and obtained sufficient
optimality criteria and duality results for a class of multiobjective varia-
tional problems under V-invexity assumptions.

DerINITION. A vector function F = (F,,..., F,), Fi(x) =
[PFie, x(2), x(¢)) dt is said to be V-invex if there exist different vector
functions n(¢, x, X) € R? with n(¢,x,x) =0 and o;; I X X, X X; = R,
\{0} such that for each x, x € X, and i € {1,2,..., p}

Fx) = E) = [ a0, )£ 70, 50)n(, (0., 50)
d
(1), 5(1) a1, x(1). 5(1))

xf;(t,)‘c(z),)"c(t))} dt.
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If we take a,(z, x(¢), x(¢)) = 1,V i = 1,..., p this definition reduces to
invex functions, see Mishra and Mukherjee [10], and if we take p =1,
a(t, x(¢), x(¢)) = 1, the above definition reduces to invex in x and x on
[a,b] with respect to n, see Mond and Smart [15] and Mond, Chandra, and
Husain [11]. V-pseudo and V-quasi-invexity are simply defined; the vector
function F is V-pseudo-invex with respect to n and B;: I X X, X X, = R,
\{0} is for each x, ¥ € X,

p

_ . d _ .
/b ) {n(t,x,fc)f;(t,x,fc) + En(t,x,)'c)f)-j(t,)'c,)'c)} dt >0

aj=1

a ;

p p
= "L B Dt x iy diz [TY Bt x, D) f (1,5, F) dr;
i=1 a j=1
or equivalently,

[ X Btx B f(1 %) de < f”; Bi(t,x, B)f (£, %, ¥) dt

a j—
b L . . d , .
=>f Y {n(t,x,)'c)f;(t,ic,;'c) + En(l,x,)’c)f;(t,)'c,)'c)} dt < 0.
a j=1
The vector function F is said to be V-quasi-invex if there exist functions
n: I X Xy X X, = R? with n(¢, %, %) = 0 and y;: I X X, X X, = R, \{0}
such that for each x, ¥ € X,

l

b & b & -
f 2 vt x, X)fit, x, %) dt S/ y,(t,x, %) fi(t, X, ) dt
a -1 a =1

L 4 . d , .
= /b Y {n(z,x,;'c)f;(t,;'c,)'c) + En(r,x,i)f;(t,fc,i)} dr < 0;
aj=1
or equivalently,

4 4 . d , .
Lb{g{n(z,x,)'c)f;(t,)'c,)'c) + En(t,x,)?)f;(t,)'c,)'c)}dt >0

p p

= "X vt D fxw) di> [TY (0 D) f(1 5 ) dr.
4 i=1 a j=1

Again all V-pseudo-invex functionals are also I-invex. It is to be noted

here that if f is independent of ¢, then V-invexity, I-pseudo-invexity, and

V-quasi-invexity defined above reduce to the definitions of V-invexity,

V-pseudo-invexity, and V-quasi-invexity of Jeyakumar and Mond [9], re-
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spectively. Note also that linear functional multiobjective variational prob-
lems are V-invex variational problems. Moreover, invex multiobjective
variational problems are necessarily I-invex variational problems, but not
conversely, which is clear from the following example of Mukherjee and
Mishra [16].

ExampLE. Consider

] bxf(t) bxz(t)
L L
subject to
1—x,(t) <0, 1—x,(t)<0.
Then, for
(1) uy(1)
b ) = X O =y

Bi(t,x(t),u(t))y =1fori=1,2, n(t, x(t),u(t)) =x(t) —u(t),

we shall show that

fab{f,-(t,x,)'c) — [t u ity — ap(t,x, ) fi(t i) (e, x,u) e = 0

fori=1,2.
Now,

fmﬁom_fwﬂod_fwxo(mm> ﬁuw

o x5(1) o (1) o (1) | up(t)  ud(r)

X (x(1) = D)(xp(2) = 1) dt

b (xi() — 1)’
=4Wdt20.

Thus, V-invexity does not necessarily imply invexity.

It has been shown in [9] that V-invex functions can be formed from
certain nonconvex functions. In the subsequent analysis, we shall fre-
guently use the following generalized Schwarz inequality

x"Bz < (xTBx)l/Z(ZTBz)l/Z,

where B is an n X n positive semidefinite Matrix.
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ProposiTiON.  If f;, i =1,..., p, in V-invex with respect to a; and m,
i=12,...,p,withn(x,u) =x —u + y(x, u), where B,(x,u) = 0 then f; +
1B, is also V-invex with respect to .

Proof. The proof follows easily from the proof of Proposition 2 of
Mond and Smart [15].

4. DUALITY
In view of Proposition 1 of [14], the Mond—Weir type dual for (P,) is

(D) MaX|m|zef Z (fi(u) + u'B;z;) dt

subject to
u(a) = a, u(b) = (3)
; T fi(t u, i) + Bi(1)z,(1) + Zngx(t u,it)

p . m .
Ynfi(nwi) + Ly0ginwi)) ()
2’Bz, <1, i=12,..p (5)
f;by/(f)gj(t,u,it) dt=0, j=12,...,m (6)
y(t) =0, tel,te=1,7>0, (7)

where

e=(1,1,...,1) €R". (7)'

Now Theorems 1 and 2 motivated us to define the following vector
maximization variational problem:

Dual (D) Maximize (fb{fl(t, u(t), (1)) + u(t) By(t)z,(t)} dt

fab<fp(t,u(t),it(t)) + u(t)TBp(t)Zp(t)}dt)

subject to (3)—(7).

In problems (P,) and (D,), the vector 0 < € R” is predetermined.
Note that if p = 1, then (P) and (D) become the pair of nondifferentiable
nonsymmetric dual problems treated by Mond and Smart [15]. In case
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B,=0,YVie(12,...,p}then (P)and (D) reduce to the problems studied
by Bector and Husain [1], and Mukherjee and Mishra [15]. If we take
p=1 B,=90,Vie{l,2,...,p} then (P) and (D) reduce to the varia-
tional problem dealt by Mond e al. [11].

Let K and H denote the sets of feasible solutions of (P) and (D),
respectively.

THeoReM 3 (Weak Duality). Let x € K and (u,7,y,2,...,2,) € H.
Let

(Lb{Ti(fl(t’ 0,0) + 'TBl(f)Zl(t))} dt, ...,

fb{Tp(fp(” 0,0) + 07B,(1)z,(1)} dt)

a

by V-pseudo-invex and

be V-quasi-invex both with respect to m for all piecewise smooth z;: I — R".
Then

([ (0030 50) + (B0 i
[(5ex0). ) + (30 B, (0)x(1))
—(fab(fl(f,u(t),it(t)) +u(t) By(t)zy(1)) dt,...,
[ (a0, 00)) + ()" B,(0z,(0) |

& —int R? + .

Proof. Let x € K and (u,7,y,2,...,2,) € H. Then by the feasibility
condition and vy,(¢, x(1), u(¢)) > 0, we have

["E e x(0),1(0)3,(08, (1 2(0), 5 (0)) di

a

_/ab g: v (£, x(t), u(t))y(t)gi(t,u(t),u(t))dt <0 VxeK.
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Thus, V-quasi-invexity of ( [y, g,(¢,0,0)dt, ..., [ty g,.(t 0,0)dt) gives

m

‘ d .
fb Y {n(t,x,u)ng){(t,u,it) + En(t,x,u)ng,ﬁ(t,u,it)} dt <0. (8)

a j:l

Integration by parts (4) gives

fabn(t,x,u)[é w{fi(u(e). (1) + B(0)z(1))
+§:1y,-gz(r,u<r>,a<r)>]dt
- n(t,x,w[é (0 u(r), (1) + jﬁly,(r)gi(z.u(r)a(r))]
_fab%n(t,x(t),u(t))[énf;u,u(r).am)

+ Zy,-(t)gi(t:u(l),it(t))l- 9)
j=1
Since, n(t, u(t), u(s)) = 0, from (9) we have

[ {0, 0l (0) )

a j:l

d .
# (301080, (0) (1) | a

p
- _'/[;b'_zl{n(t,X(t)’u(t))Ti(in(t’u(t)’l:l(t)) + Bi(1)z,(1))
d .
+ET](I,X(f):u(t))Tif){(t,u(t),it(t)}dt. (10)

From (10) and (8), we have

7% mtx(1), u(@)m( £i(tu(r), u(0)) + B(1)z,(1))

a =1

d A
+ En(t’ x(t),u(t))rfi(t, u(t),it(t))} dt > 0. (11)
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By V-pseudo-invexity of ([ 7,(f,(¢,0,0) + 0"B() dt, ..., [/7,(f,(¢,0,0) +
0"B,(1)z,(1)) dt), Swchwarz Inequality, and (5), we have

A -gi(t’x(t)’u(t))Tf{ﬁ(f’x(f)'X(t)) + (x(t)TBi(t)X(t))l/z} dt

a j=

p
2 [ X B0 ()R u(e). (1) + ()" B()z(0) .
(12)

The conclusion now follows, since Te = 1, and B;(¢, x(¢), u(¢)) > 0. 1
ProPosITION. Let u € K, (u,7,y,zy,..., z,) € H. Let the V-pseudo
and V-quasi-invexity conditions of Theorem 3 hold. If

1/2
)

(u(0)"B.(1)u())”* = u(1) B(1)z,(1) (13)

VY i=12,...,p, then u is conditionally properly efficient for (P) and
(u,7,y,zy,..., z,) is conditionally properly efficient for (D).

Proof. From (12) and (13) it follows that for all x € K

1/2

[7E a{ntu. i) + (w0 Boun) "} ar

=/”

a j=1

M=

£t u(e) () +u()" B(1)z,(1)} dt

b

IA
M~

Tl-{fi(t,x(t),)'c(t)) + (x(t)TBi(t)x(t))l/z} dr. (14)

a j=1
Thus u(¢) is an optimal solution of (P.). Hence, by Theorem 1, u(¢) is a
conditionally properly efficient solution of (P).

We first show that (u,7,y,z,...,2,) is an efficient solution of (D).
Assume that it is not efficient, i.e., there exists (ﬁ,?,y,zl,...,zp) eH
such that

fab{fi(t, a(1), (1)) +a(t) B(1)z(1) ) di

> [ (£, i(0) + u(n)B(D)z(0)dr, Vi
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and
j;b(ff(t, u(1).i(t)) +a(1)" B (1)z,(1)) dr
> [ab(ff(z,u(t)a(t)) +u(t) B(1)z,(1)) dt
for at least one j € {1,2,..., p}.

Thus, from (13),

[ (P i) + (u()"Byu(n) ) ar

f “(e,a(r),u(r)) +u(t) B(t)z,(t)dt  Yie{1,2,...,p)

a

and

[ {Fu. i) + (wo"Bouwn) ) d
< jab(f-f(t,u(t),u(t)) + (u(t)"Bi(1)2,(1))
for at least one j € {1,2,..., r},

contradicting weak duality. Hence (u, 7, y, z,, . . ., z,) is efficient.

Now we show that (u, 7, y, z;, ..., z,) is a conditionally properly efficient
solution of (D). Assume that it is not conditionally properly efficient, i.e.,
there exists (&, 7, 3, Z,, - . -, z,) € H such that for some i and all M(z) > 0

fab{f"(t,a(z),zi(t)) + () B(1)2,(1) ) di
= [, i) + u(0)B()z(0) di
> /:M(ﬁ){ff(t,u(t),it(t)) +u(1) By(1) (1)} di

—fa”M(a){ff(t,a(t),a(t)) +a(t) B(1)z(1)}dt (15)
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andV j €({1,2,..., p}, such that
fab{ff(t,u(z),a(t)) +uu(t) B(1)z(1)} di
> fa”{ff(r,a(z),ﬁ(t)) + (1) By (1)5(r) } dr.

Since 7> 0, 7# 0,

j;b

M=

7(fi(r.u(r), u(r)) + u(t)B,(¢)z,(1)) dt

P

1
b
)
a

Now (16) and (13) lead to

i

(£t u(e), () + u(e) Bi(1)z,(1) dr.  (16)

1

1

p -
fab.:zl?,.(ﬁ(t,ﬁ(t),ﬁ(t)) T+ a(1)B(1)Z,(1)) dt

S

> /abigfri(ﬁ(t,u(t),it(t)) + (”(I)TB,-(t)u(t))l/z) 0

contradicting (12). Thus (u,7,y, zy,..., z,) is conditionally properly effi-
cient.

THEOREM 4 (Strong Duality). Let the V-pseudo-invexity and V-quasi-
invexity conditions of Theorem 3 hold. Let x° be normal [13] and a condition-
ally properly efficient solution for (P). Then for some 7 € A", there exists a
piecewise smooth y°: I — R™ such that (u = x°,7,y%) is a conditionally
properly efficient solution of (D) and

[{rie ). 20) + (20 B()x(0) ") a

- [t (0),i00) + () B (1) 22(0) ) d

Vie{l1,2,...,p}.

Proof. Since x° is a conditionally properly efficient solution of (P) and
generalized V-invexity conditions are satisfied, by Theorem 2, x° is optimal
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for (P,) for some 7 € A". Therefore, by Theorem 3, there exists a piece-
wise smooth y°: I — R™ such that for ¢ € I,

LA u®(1), 2°(0)) + B(1)2(1)]

1

p
i=

I IRTORE0)

d| ? ) m .
== .Z T u0(2), 10(0)) + X yP () gl(t, ul(e), i®(1)) (17)
i=1 j=1

(x°() B()x°(1)) " =x°(1) B(1)20(1),  i=12,....p (18)
z()'B(1)z%(t) <1, i=1,2,....p (19)
Yo(1)"g(t,x°(1), X°(1)) = 0, (20)

yo(t) = 0. (21)

From (17) and (21) it follows that (x° 7,y° 27,...,z7) € H. In view of

(18), by Proposition 1, (u°,=x°,7,y° z7,..., z)) is a conditionally prop-
erly efficient solution of (D). Using (18) we have

[, 80) + () B (0) " ai

- {0, i00) + () B (1) 22(0) ) d

vie{12,....,p}. 1

For validating the converse duality theorem (Theorem 5) we make the
assumption that X, denotes the space of piecewise differentiable function
x: IR" for which x(a) = 0 = x(b) equipped with the norm ||x|| = [|x]l.. +
| Dx|l.. + ||D?x]l.. defining D as before. The problem (D) may be rewritten
in the form

Minimize — ¢(u,7,y) = (=™ (u,7,y), —d*(u,7,y),...,
—¢*(u,7,y))
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subject to
u(a) = a, u(b) =B
O, u(t), (), ii(), 7, y(1), 3(1)) = 0
y(t) =0, tel,
where

#ur) = [ a0) + (<0 B0 x(0) ) a

Vi=1,2...p

and

0 = 0(t,u(t),u(t),i(t), 7, y(t), (1))
T (fi(t u(t), u(t)) + B(t)z(1))

i=1

(f) "gi(r u(r), (1))

||M§

i=1

= D| £ A0, i(0) + £ (08l () i)

with u(t) = D?u(t).

Consider 0O(0, u(-), u(-), ii(-), 7, y(-)y(-)) as defining a map
U X, XY X AT—> A, where Y is the space of piecewise differentiable
function y: t = R™ and A is a Banach space. A Fritz John Theorem [4, 5]
for infinite dimensional multiobjective programming problem may be
applied to problem (D) along with the analysis outlined in [11] or [3] for
the derivation of optimality conditions. However, some restrictions are
required as in [3] on the equality constraint ©(-) = 0, since infinite
dimensional space is involved here. It suffices to assume that the Frechet
derivative

¥ = (P, ¥, ¥.) has a (weak*) closed range.
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THEOREM 5 (Converse Duality). Let the V-pseudo invexity and V-quasi-
invexity conditions of Theorem 3 hold. Let (u° 7° y°) with u® € X,, 7% €
A", and y° €y be a conditionally properly efficient solution of (D). Let

() ¢’ have (weak*™) closed range,
(1) fand g be twice continuously differentiable
mn  fi-Dfl,i=12..., p be linearly independent, and
V) (B0, — D)V, + DB()'O)B()=0= () =0, L

Then, the objective functions of (P) and (D) are equal and u® is a properly
efficient solution of (P).

Proof. Since (u° 7°,y%), with u° € X, and having a (weak*) closed
range, is conditionally properly efficient, it is a weak maximum. Hence,
there exists « € R”,y, u € R™, and piecewise smooth B: I —» R" and
v: I - R™ satisfying the following Fritz John conditions [4, 5], which are
derived by means of the analysis of [3]

o fi(r.u®(1), 2°(1)) + By(1)20(1)]

1

p
i=

+ X (080, i)

p m
-D _Z a;fi(t,u(r),u’(1)) + ; Yy (1) gl(r,u(r), (1)
—((B(1))'®, —D(B(1))" O + DB(1)'O;) =0, tel (22)
(a’e)g = ((B(1))"O, —DB(1)"O;) + 8(1) =0, rel, (23)

B (Fit,u®(1),d®(1)) + B(1)2%(1)) — ;=0 Vie{1.2,....p}

(24)

8(t)'y(r)=0, tel, (25)
wr=10 (26)
(a,B(t),8(t), w) >0, t€l, (27)

(a,B(t),8(t), n) #0, tel, (28)
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where

F=1f(r,ul(r), (1)), g=g(t,u’(r),i1)),
fo=fu(tu(r),u’(1)),  etc,

with all derivatives evaluated at u = u°.
Now following the lines of the proof of Theorem 5 of [1] and Theorem 3
of this paper, we get

[{Fae i) + (@@ B o)) d

- [ @0,8(0) + w(0) B(u(0) ) d
Viel1,2,...,p}

and, by Proposition 1, u°(¢) is a properly efficient solution of (P). |
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