
Chapter 5

Intuitionistic fuzzy rough set model based on (α, β)

-indiscernibility and its application to feature selection

5.1 Introduction

Feature selection or attribute reduction technique addresses the dimensionality reduc-

tion problem by governing a subset of original features to construct a good model for

classification or prediction task. The classical rough set model, introduced by Pawlak

[67, 68, 69], has been effectively applied as a feature selection or attributes reduction and

rule learning tool. In the rough set model, a crisp equivalence relation as well as crisp

equivalence classes is applied to define the dependency function between decision and

conditional attributes available in the information system. The dependency function is

effectively used to establish the relevance between the decision and conditional features

and to assess the classification potential of the features [77]. However, the classical rough

set model could not apply directly on the real-valued datasets due to its limited require-

ment of nominal data. Therefore, many generalizations of rough set model have been

presented to avoid the information loss. Fuzzy rough set is one of the most efficient

extensions of rough set, which can be directly applied to the real-valued datasets with-

out any modification in the information system. Predominately, fuzzy rough set can

efficiently tackle both fuzziness and vagueness available in the datasets with continuous

features. By combining rough and fuzzy sets [67, 100] as presented by Dubois and Prade

[20, 21] allows the notion of fuzzy rough sets, which gives a powerful means of dealing
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with the problem of discretization and can be effectively implemented to the reduction of

continuous attributes. Fuzzy rough sets are mostly implemented to direct the inconsis-

tency between conditional attributes and decision attributes [42], i.e. a few samples have

similar or having the same conditional attribute values but distinct labels. With lower

approximations in fuzzy rough sets, each sample can be assigned to a membership in the

form of a decision class to evaluate this inconsistency, and feature selection techniques

based on fuzzy rough sets focus to obtain a reduct to retain the membership of every

sample. In recent years, IF set theory has been effectively applied in the field of pattern

recognition, decision analysis, medical image processing [11, 83, 101, 104], etc. In spite

of the fact that rough sets and IF sets both capture specific aspects of the same idea-

imprecision, the combination of IF set theory and rough set theory are rarely discussed

by the researchers [26, 54, 55, 60]. In the current paper, first, we propose the concept of

(α, β)-indiscernibility of two objects in an IF information system. Second, we define a

novel IF tolerance relation using this (α, β)-indiscernibility concept. Third, we establish

a (α, β)-indiscernibility based IF rough set model, which is grounded on the substitution

of the indiscernibility relation in traditional rough set theory with our proposed IF tol-

erance relation. Fourth, a positive region based feature selection technique is developed

by using our proposed model. Moreover, an algorithm based on our proposed approach

is given to calculate the reduct of an IF decision system. Finally, our approach is applied

on example dataset and the reduct is calculated.

5.2 Intuitionistic Fuzzy Rough set based approach for feature selection

In the literature [36, 37, 39, 40, 41, 42, 43, 44], different feature selection approaches have

been developed by many researchers but they only considered fuzzy tolerance relation,

characterized by its membership function. However, hesitancy is available in almost

every information system, so it is required to consider non-membership grades of objects.

All the above proposed techniques do not consider non-membership grades, which is a

limitation of these approaches.

In this paper, we define a new kind of lower and upper approximations by considering
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both membership and non-membership grades as follows:

Definition 5.2.1 For each pair of objects x, y ∈ U , we can define an IF relation R in

U × U by

µR(x, y) =
1

n

n∑
i=1

µR̂(xi, yi)

νR(y, x) =
1

n

n∑
i=1

νR̂(xi, yi)

(5.1)

where, µR̂(xi, yi) = 1− |µ(xi)− µ(yi)| and νR̂(xi, yi) = |ν(xi)− ν(yi)|

Lemma 5.2.1 For x, y ∈ U , µR(x, y) = 1 and νR(x, y) = 0 if and only if x = y

Proof: If x = y, then µR(x, y) = µR(x, x) = 1
n

∑n
i=1 µR̂(xi, xi)

= 1
n

∑n
i=1(1− |µ(xi)− µ(xi)|) = 1 (Since,

∑n
i=1 1 = n)

and νR(x, y) = νR(x, x) = 1
n

∑n
i=1 νR̂(xi, xi)

= 1
n

∑n
i=1(|ν(xi)− ν(xi)|) = 0

Conversely, if µR(x, y) = 1, then 1
n

∑n
i=1 µR̂(xi, yi) = 1,

which implies that

n∑
i=1

(|µ(xi)− µ(yi)|) = n (5.2)

Since
∑n

i=1 1 = n, hence Eq.(5.2) reduces to n−
∑n

i=1|µ(xi)− µ(yi)| = n

which gives
∑n

i=1|µ(xi)− µ(yi)| = 0.

After expansion, each term in left hand side is a non-negative quantity and hence µ(xi) =

µ(yi) for all i. If νR(x, y) = 0, then 1
n

∑n
i=1(|ν(xi)− ν(yi)|) = 0

which implies that
∑n

i=1|ν(xi)− ν(yi)| = 0.

Again each term in left hand side is a non-negative quantity and hence

ν(xi) = ν(yi) for all i.

From above, we get x = y. Therefore, IF relation as defined in Eq.(5.1) is an IF tolerance

relation.
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Let R be an IF relation in U characterized by µR : U ×U → [0, 1] and νR : U ×U →

[0, 1], then for given α, β ∈ (0, 1], objects x and y in U will be (α, β)-indiscernible if

µR(x, y) ≥ α and νR(x, y) ≤ β.

Now, lower and upper approximations can be defined as follows:

Rα,β(X) = {x ∈ U |µR(x, y) < α and νR(x, y) > β, ∀y ∈ XC}

Rα,β(X) = {x ∈ U |µR(x, y) ≥ α and νR(x, y) ≤ β, for some y ∈ X}

where, α, β ∈ (0, 1] refers the level up to which the compatibility among the objects is

to be considered so that lower approximation includes only those objects which are not

related up to a degree α and related up to a degree β to any object outside X.

Let U be an universe of discourse, R be an IF relation in U and X ⊆ U then following

holds:

Theorem 5.2.2 Let α1, α2, β1, β2 ∈ (0, 1] be such that α1 ≤ α2 and β1 ≥ β2, then

Rα1,β1
(X) ⊆ Rα2,β2

(X) and Rα2,β2(X) ⊆ Rα1,β1(X)

Proof: For any x ∈ Rα1,β1
(X), µR(x, y) < α1 and νR(x, y) > β1 for all y ∈ XC . Since

α1 ≤ α2 and β1 ≥ β2, we have µR(x, y) < α2 and νR(x, y) > β2 for all y ∈ XC and hence

x ∈ Rα2,β2
(X)⇒ Rα1,β1

(X) ⊆ Rα2,β2
(X).

Similarly, if x ∈ Rα2,β2(X), then µR(x, y) ≥ α2 and νR(x, y) ≤ β2, for some y ∈ X. Since

α1 ≤ α2 and β1 ≥ β2, we have µR(x, y) ≥ α1 and νR(x, y) ≤ β1 for some y ∈ X and hence

x ∈ Rα1,β1(X)⇒ Rα2,β2(X) ⊆ Rα1,β1(X).

Theorem 5.2.3 Rα,β(X) ⊆ X ⊆ Rα,β(X)

Proof: For any x ∈ Rα,β(X), we have µR(x, y) < α and νR(x, y) > β, ∀y ∈ XC .

Since µR(x, x) = 1 ≥ α and νR(x, x) = 0 ≤ β, hence x /∈ XC . This gives x ∈ X and

hence Rα,β(X) ⊆ X

Now, if x ∈ X, then µR(x, x) = 1 ≥ α and νR(x, x) = 0 ≤ β for x ∈ X, which implies

that x ∈ Rα,β(X) and hence X ⊆ Rα,β(X).

Theorem 5.2.4 φ
α,β

(X) = φ = Rα,β(φ).
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Proof: Rα,β(φ) = {x ∈ U |µR(x, y) < α and νR(x, y) > β, ∀y ∈ U} = φ

Rα,β(φ) = {x ∈ U |µR(x, y) ≥ α and νR(x, y) ≤ β, for some y ∈ φ} = φ

Theorem 5.2.5 Rα,β(U) = U = Rα,β(U).

Proof: From theorem 5.2.3, we have Rα,β(U) ⊆ U and U ⊆ Rα,β(U).

Remain to show that U ⊆ Rα,β(U) and Rα,β(U) ⊆ U

Let x ∈ U , then µR(x, y) < α and νR(x, y) > β, ∀y ∈ UC(= φ)

This implies that x ∈ Rα,β(U), hence U ⊆ Rα,β(U)

Now, Rα,β(U) ⊆ U is obvious, hence Rα,β(U) ⊆ U .

Theorem 5.2.6 Rα,β(XC) = (Rα,β(X))C, where XC is complement of set X.

Proof: Let x ∈ Rα,β(XC) ⇐⇒ µR(x, y) < α and νR(x, y) > β, ∀y ∈ (XC)C(= X) ⇐⇒

µR(x, y) < α and νR(x, y) > β,∀y ∈ X ⇐⇒ x /∈ Rα,β(X) ⇐⇒ x ∈ (Rα,β(X))C ⇒

Rα,β(XC) = (Rα,β(X))C .

Theorem 5.2.7 Rα,β(XC) = (Rα,β(X))C

Proof: Replace X by XC in theorem 5.2.6 and take complement on both sides.

Theorem 5.2.8 For Y ⊆ U , X ⊆ Y ⇒ Rα,β(X) ⊆ Rα,β(Y ) and Rα,β(X) ⊆ Rα,β(Y )

Proof: For any x ∈ Rα,β(X), µR(x, y) < α and νR(x, y) > β, ∀y ∈ XC

Since Y C ⊆ XC , hence µR(x, y) < α and νR(x, y) > β, ∀y ∈ Y C

⇒ x ∈ Rα,β(Y )⇒ Rα,β(X) ⊆ Rα,β(Y )

If x ∈ Rα,β(X), then µR(x, y) ≥ α and νR(x, y) ≤ β, for some y ∈ X. Since X ⊆ Y ,

which implies that x ∈ Rα,β(Y )

Hence, Rα,β(X) ⊆ Rα,β(Y ).

Theorem 5.2.9 Let R1 and R2 are two IF relations such that

R1 ⊆ R2 ⇒ R2α,β
(X) ⊆ R1α,β

(X) and R1α,β(X) ⊆ R2α,β(X).
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Proof: Since, R1 ⊆ R2, hence, µR1(x, y) ≤ µR2(x, y) and νR1(x, y) ≥ νR2(x, y),∀x, y ∈ U

Now, let x ∈ R2α,β
(X) ⇐⇒ µR2(x, y) < α and νR2(x, y) > β,∀y ∈ XC ⇐⇒ x ∈

R1α,β
(X) ⇐⇒ R1 ⊆ R2 ⇒ R2α,β

(X) ⊆ R1α,β
(X).

Furthermore, x ∈ R1α,β(X) ⇐⇒ µR1(x, y) ≥ α and νR1(x, y) ≤ β, for some y ∈ X ⇐⇒

µR2(x, y) ≥ α and νR2(x, y) ≤ β, for some y ∈ X ⇐⇒ x ∈ R2α,β(X) ⇐⇒ R1α,β(X) ⊆

R2α,β(X).

Theorem 5.2.10 Rα,β(X ∩ Y ) = Rα,β(X) ∩Rα,β(Y ).

Proof: Since X ∩ Y ⊆ X, hence Rα,β(X ∩ Y ) ⊆ Rα,β(X) (using theorem 5.7)

Since X ∩ Y ⊆ Y , hence Rα,β(X ∩ Y ) ⊆ Rα,β(Y )

which implies that Rα,β(X ∩ Y ) ⊆ Rα,β(X) ∩Rα,β(Y )

Now, we have to show that

Rα,β(X) ∩Rα,β(Y ) ⊆ Rα,β(X ∩ Y )

Let x ∈ Rα,β(X) ∩Rα,β(Y )⇒ x ∈ Rα,β(X) and x ∈ Rα,β(Y )

⇒ µR(x, y) < α and νR(x, y) > β, ∀y ∈ XC and µR(x, z) < α and νR(x, z) > β, ∀z ∈ Y C

⇒ µR(x, u) < α and νR(x, u) > β, ∀u ∈ XC ∪ Y C

⇒ µR(x, u) < α and νR(x, u) > β, ∀u ∈ (X ∩ Y )C

⇒ x ∈ Rα,β(X ∩ Y )C

Hence, Rα,β(X) ∩Rα,β(Y ) ⊆ Rα,β(X ∩ Y )

Theorem 5.2.11 Rα,β(X ∪ Y ) ⊇ Rα,β(X) ∪Rα,β(Y ).

Proof: Since X, Y ⊆ X ∪ Y , hence Rα,β(X) ⊆ Rα,β(X ∪ Y ) (using theorem 5.7)

and Rα,β(Y ) ⊆ Rα,β(X ∪ Y )

This implies, Rα,β(X) ∪Rα,β(Y ) ⊆ Rα,β(X ∪ Y )

Theorem 5.2.12 Rα,β(X ∪ Y ) = Rα,β(X) ∪Rα,β(Y ).

Proof: Since X, Y ⊆ X ∪ Y , hence Rα,β(X), Rα,β(Y ) ⊆ Rα,β(X ∪ Y )

⇒ Rα,β(X) ∪Rα,β(Y ) ⊆ Rα,β(X ∪ Y )

Now, x ∈ Rα,β(X ∪ Y )⇒ µR(x, y) ≥ α and νR(x, y) ≤ β, for some y ∈ X ∪ Y

⇒ µR(x, y) ≥ α and νR(x, y) ≤ β, for some y ∈ X or µR(x, y) ≥ α and νR(x, y) ≤ β, for
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some y ∈ Y ⇒ x ∈ Rα,β(X) or x ∈ Rα,β(Y )

⇒ x ∈ Rα,β(X) ∪Rα,β(Y )

Hence, Rα,β(X ∪ Y ) ⊆ Rα,β(X) ∪Rα,β(Y )

Hence, we get the required result.

Theorem 5.2.13 Rα,β(X ∩ Y ) ⊆ Rα,β(X) ∩Rα,β(Y ).

Proof: Since X ∩Y ⊆ X, Y , hence Rα,β(X ∩Y ) ⊆ Rα,β(X) and Rα,β(X ∩Y ) ⊆ Rα,β(Y )

Therefore, Rα,β(X ∩ Y ) ⊆ Rα,β(X) ∩Rα,β(Y ).

Definition 5.2.2 Now positive region of D can be defined as:

POSP (D) = ∪X∈U/DRα,β(X)

where, U/D is set of all decision classes.

Definition 5.2.3 (54) Let (U, P∪D) be a fuzzy decision system, where U = {U1, U2, ..., Un},

P is a set of conditional attributes and D is a set of decision attributes. If for Q ⊆ P ,

POSQ(D) = POSP (D) and POSQ\{a}(D) 6= POSQ(D),∀a ∈ Q , then Q is called positive

region preserved reduct.

5.3 Algorithm for reduct computation

In this section, we present a suitable algorithm based on our proposed approach to cal-

culate the reduct as follows:

Step 1: Take an IF information system (U, P ∪D).

Step 2: Find similarity between each objects using IF relation as defined in Eq.(5.1).

Step 3: Input the set X ⊆ U to be approximated.

Step 4: Choose parameters α, β ∈ (0, 1].

Step 5: Calculate lower approximation of X using definition.

Step 6: Calculate positive region using and find the positive region based reduct set.
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5.4 Illustrative Example

As a case study, we consider an IF information system from [59] as given in table 5.1.

Now, we calculate positive region based reduct set as follows:

Firstly, we calculate IF relation of two objects for P = {A1, A2, A3, A4, A5} using Eq.(5.1)

as mentioned in table 5.2.

Now, we can find decision classes using table 5.1 as {{U1, U2, U4, U5}, {U3, U6, U7}}

Taking α = 0.98, β = 0.02, we calculate positive region as follows:

Table 5.1: Intuitionistic Fuzzy Information System
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Table 5.2: Intuitionistic Fuzzy Relation

For X = {U1, U2, U4, U5}, XC = {U3, U6, U7}

Rα,β(X) = {U4}

For X = {U3, U6, U7}, XC = {U1, U2, U4, U5}

Rα,β(X) = {U6}

POSP (D) = {U4} ∪ {U6} = {U4, U6}

Now, removing attributes one by one from the set P = {A1, A2, A3, A4, A5}, we cal-

culate other positive regions as follows:

For C = {A2, A3, A4, A5}, POSC(D) = {U4, U6}

For C = {A1, A3, A4, A5}, POSC(D) = {U4, U6}

For C = {A1, A2, A4, A5}, POSC(D) = {U4, U6}

For C = {A1, A2, A3, A5}, POSC(D) = {U4, U6}

For C = {A1, A2, A3, A4}, POSC(D) = {U4, U6}

Since POSP\{a}(D) = POSP (D),∀a ∈ P

Hence P cannot be a reduct set.

For E = {A1, A2, A3}, POSE(D) = {U4, U6}

For E = {A2, A4, A5}, POSE(D) = {U4, U6}

For Q = {A1, A4, A5}, POSQ(D) = {U4, U6}
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Since POSC\{a}(D) = POSC(D),∀a ∈ C

Hence C cannot be a reduct set.

For F = {A1, A4}, POSE(D) = {U4}

For F = {A1, A5}, POSE(D) = {U6}

For F = {A4, A5}, POSE(D) = {U4}

Since POSQ(D) = {U4, U6} = POSP (D)

And POSQ−{a}(D) 6= POSQ(D),∀a ∈ Q

Hence, Q = {A1, A4, A5} is a reduct set of IF information system as given in table 5.1.

5.5 Conclusion

Intuitionistic fuzzy set theory and rough set theory have been proved to be useful math-

ematical tools to deal with uncertain information. IF set theory can handle uncertainty

in much better way when compared to fuzzy set theory as it considers positive, nega-

tive and hesitancy degree of an object simultaneously while fuzzy set theory considers

only positive degree of an object. IF information systems are an essential type of infor-

mation systems, which are generalized from fuzzy valued data tables. In this paper, a

novel IF rough set model based on (α, β)-indiscernibility concept was introduced to cope

with IF information system. This model was validated by using supporting theorems.

Furthermore, a positive region based feature selection technique was proposed by using

this model. Moreover, a suitable algorithm was presented to calculate reduct for IF

information systems. Finally, we applied our approach on an IF information system and

calculate the reduct.

***********


