
Chapter 3

Intuitionistic fuzzy neighborhood rough set model for

feature selection

3.1 Introduction

Feature selection techniques can be divided into two categories, firstly, symbolic method

and secondly, numerical method. Symbolic methods consider all features as categorical

variables and numerical methods take all the features as real valued variables. If there

exist any heterogeneous features, symbolic methods(such as Rough set ) based feature

selection) use a discretization approach and convert them as symbolic features which may

lead to some sort of assumption and cause information loss [52]. Discretization may dam-

age two types of structures, firstly neighborhood structure and secondly ordered structure

in real space. Latter problem was handled by fuzzy rough set model, but it was not able

to tackle the former problem. Very few researches have been proposed to deal with neigh-

borhood structure of the data sets. Dubois and Prade presented fuzzy rough set model

[21] by combining rough set and fuzzy set [100]. This model was generalized and suc-

cessfully implemented by many researchers for feature selection [39, 80, 81, 19, 88, 43] of

real-valued data sets but this model was not able to deal with neighborhood structure of

data sets. Qinghua et al [29] proposed neighborhood rough set model and it was success-

fully implemented to deal with neighborhood structure but was not able to preserve real

spaces. Wang et al [86] proposed fuzzy neighborhood rough set model and applied it for

feature subset selection. We have extended this model and proposed a novel intuitionistic
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fuzzy neighborhood rough set model and generalized it for feature selection, which can

handle both neighborhood structure and real space structure in more efficient manner.

Intuitionistic fuzzy set [1] is an extension of Zadeh fuzzy set. Intuitionistic fuzzy sets

have its own ability to better narrating and drawing ambiguities of the objective world

than the traditional fuzzy sets because it consider the positive, negative and hesitancy

degrees of an object simultaneously [2, 3]. Intuitionistic fuzzy sets have been efficiently

applied to solve many of the decision problems [56]. In recent years, some of the intu-

itionistic fuzzy rough set models [8, 13, 78, 90, 105] have been proposed and implemented

for feature selection. However, most of the models consider the intuitionistic fuzzy upper

and lower approximations of a decision class using a nearest sample, which fails in case

of noisy data set. Our proposed model can easily handle this problem as we are consid-

ering neighborhood structure of a sample which clearly indicates the uniqueness of our

approach.

In this paper, we first define the intuitionistic fuzzy decision of a sample and character-

ize its intuitionistic fuzzy information granule by introducing parameterized intuitionistic

fuzzy relation. The proposed model is the generalization of fuzzy neighborhood rough

set concept, which overcomes the drawback of fuzzy rough set approach by introduc-

ing a nearest neighbor of a sample to different intuitionistic fuzzy decision classes. We

calculate the reduct of an information system by using degree of dependency approach.

Furthermore, We present an attribute reduction algorithm for better understanding of

our model. Finally, an illustrative example has been given to demonstrate our approach.

3.2 Intuitionistic Fuzzy neighborhood rough set based approach for

feature selection

Let IFDS = {X,C ∪ q, VIF , IF} where X is a non-empty collection of objects, C is

collection of conditional attributes and q is a set of decision attributes. We want to

approximate intuitionistic fuzzy decision classes with parameterized intuitionistic fuzzy

information granules by defining a model for attribute reduction. Let {d1, d2.......dk} is

a partition of sample space X into k mutually exclusive decision classes by q . Every
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A ⊆ C can induce a intuitionistic fuzzy binary relation PA on X . If PA is reflexive,

symmetric and transitive, then PA is called intuitionistic fuzzy similarity relation (intu-

itionistic fuzzy equivalence relation)[15].

(Example 1:) Feng et al [25] defined similarity between two objects with respect to an

attribute as follows:

Pa(xi, xj) = 1−
√
α(µa(xi)− µa(xj))2 + β(νa(xi)− νa(xj))2 + γ(πa(xi)− πa(xj))2

where, µa(xi), νa(xi) and πa(xi) are membership, non-membership and hesitancy de-

grees of an object with respect to attribute a ∈ A respectively and α, β and γ are weighted

factors. In IFDS, the values of these parameters can be selected according to the require-

ment of different users along with following conditions

(i) α ≥ β > γ

(ii) α + β + γ = 1

(iii) 0 ≤ α, β, γ ≤ 1

Now, intuitionistic fuzzy neighborhood of an object xi ∈ X is defined as

[xi]A(xj) = PA(xi, xj),∀xj ∈ X,

where, PA(xi, xj) = infa∈APa(xi, xj)

Example 2: Taking t1 = 0.4, t2 = 0.4 , and t3 = 0.2, we get intuitionistic fuzzy similarity

relation matrix PC of IFDS as given in Table 1.7 by:
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On the basis of intuitionistic fuzzy neighborhood of an object, intuitionistic fuzzy

decision of xi is defined as follows:

q
′

m(xi) =
|[xi]C ∩ qm|
|[xi]C |

,m = 1, 2......k. (3.1)

Example 3: From Table 1.7, decision classes are:

X/q = {{x1, x3, x6}, {x2, x4, x5}}

Then intuitionistic fuzzy decisions of each object can be calculated using Eq. (3.1)

and similarity relation matrix PC as

q
′
1(x1) = 0.60, q

′
1(x2) = 0.39, q

′
1(x3) = 0.56, q

′
1(x4) = 0.44, q

′
1(x5) = 0.46, q

′
1(x6) = 0.56.

q
′
2(x1) = 0.40, q

′
2(x2) = 0.61, q

′
2(x3) = 0.44, q

′
2(x4) = 0.56, q

′
2(x5) = 0.54, q

′
2(x6) = 0.44.

Now, we construct a parameterized intuitionistic fuzzy information granule related to xj

as follows:

[xi]
α
A(xj) =

 0, if PA(xi, xj) < α

PC(xi, xj), if PA(xi, xj) ≥ α
(3.2)

where, α ∈ [0, 1] is a parameter which control the size of intuitionistic fuzzy neighbor-

hood. On the basis of intuitionistic fuzzy information granule, the intuitionistic fuzzy

neighborhood lower and upper approximations of q′m over A can be defined by

Pα
A(q

′

m) = {xi ∈ dm|[xi]αA ⊆ q
′

m}

Pα
A(q

′

m) = {xi ∈ dm|[xi]αA ∩ q
′

m 6= φ}
(3.3)

Now, lower and upper approximations of q with respect to A ⊆ C can be defined as
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follows:

Pα
A(q) = {Pα

A(q
′

1), P
α
A(q

′

2)..............P
α
A(q

′

k)}

Pα
A(q) = {Pα

A(q
′

1), P
α
A(q

′

2)..............P
α
A(q

′

k)}
(3.4)

Furthermore, intuitionistic fuzzy positive region and degree of dependency of q upon A

can be defined as:

posαA(q) =
k⋃

m=1

Pα
A(q

′

m) (3.5)

ΓαA(q) =
|posαA(q)|
|X|

(3.6)

A is said to be reduct of C if degree of dependency of q over A is same as degree of

dependency of q over C and it has no redundant attribute.

Theorem 3.2.1 Let IFDS= 〈X,C, q〉 , if A ⊆ C then PC ⊆ PA .

Proof It is obvious (since PC =
⋂
a∈C Pa ⊆

⋂
a∈A Pa = PA).

Theorem 3.2.2 If α1 ≤ α2, then ∀xi ∈ X, [xi]α2
A ⊆ [xi]

α1
A .

Proof

[xi]
α2
A (xj) =

 0, if PA(xi, xj) < α2

PC(xi, xj), if PA(xi, xj) ≥ α2

(3.7)

Since α2 ≥ α1 , hence, for xj ∈ X
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[xi]
α1
A (xj) =

 0, if PA(xi, xj) < α1 ≤ α2

PC(xi, xj), if PA(xi, xj) ≥ α1

(3.8)

So, using Eq.(3.7) and Eq.(3.8), we get, [xi]
α2
A (xj) ≤ [xi]

α1
A (xj)⇒ [xi]

α2
A ⊆ [xi]

α1
A

Theorem 3.2.3 If A1 ⊆ A2 ⊆ C , then posαA1
(q) ⊆ posαA2

(q)

Proof From theorem 3.2.1, if A1 ⊆ A2 , then PA2 ⊆ PA1 , which gives [xi]
α
A2
⊆ [xi]

α
A1

,

∀xi ∈ X .

From the definition of lower approximation, it follows that Pα
A1

(q
′
m) ⊆ Pα

A2
(q

′
m) .

Hence, posαA1
(q) ⊆ posαA2

(q)

Theorem 3.2.4 If A ⊆ C and α1 ≤ α2 , then posα1
A (q) ⊆ posα2

A (q) .

Proof Since α1 ≤ α2 ⇒ [xi]
α2
A ⊆ [xi]

α1
A , ∀xi ∈ X.. From the definition of lower approxi-

mation, we have Pα1
A (q

′
m) ⊆ Pα2

A (q
′
m). Therefore, posα1

A (q) ⊆ posα2
A (q).

Theorem 3.2.5 If A1 ⊆ A2 ⊆ C, then ΓαA1
(q) ≤ ΓαA2

(q) .

Proof It is obvious from theorem 3.2.3.

Theorem 3.2.6 If A ⊆ C and α1 ≤ α2 , then Γα1
A (q) ≤ Γα2

A (q).

Proof It is obvious from theorem 3.2.4.

3.3 Algorithm for feature selection based on Intuitionistic fuzzy

neighborhood rough set

G, Collection of all conditional attributes;

M, Collection of all decision attributes;

α , the similarity threshold;

Z ← {}; Γαbest = 0;

do

L← Z
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Γαprev = Γαbest

∀x ∈ (G\Z)

if ΓαZ∪{x}(M) > ΓαL(M)

L← Z ∪ {x}

Γαbest = ΓαL

Z ← L

until Γαbest == Γαprev

return Z

3.4 Illustrative Example

In order to explain our approach, we take an arbitrary intuitionistic fuzzy decision system

as given in table 1.7. Now, we can calculate reduct set as follows:

Taking , α = 0.3, A = {a} and using Eq.(3.3), we get,

P 0.3
A (q

′
1) = φ and P 0.3

A (q
′
2) = {x2, x4}

from Eq.(3.4), lower approximation of q with respect to A ⊆ C is

P 0.3
A (q) = {φ, x2, x4}

Therefore, positive region can be given as follows:

pos0.3A (q) = P 0.3
A (q

′
1) ∪ P 0.3

A (q
′
2) = {x2, x4}

Now, degree of dependency of q upon A is:

Γ0.3
A (q) = 2

6

Similarly, for B = {b}, C = {c}, D = {d}, E = {e}, and F = {f} degree of dependencies

are:

Γ0.3
B (q) = 2

6
,Γ0.3

C (q) = 2
6
,Γ0.3

D (q) = 4
6
,Γ0.3

E (q) = 2
6
,Γ0.3

F (q) = 3
6
.

Since degree of dependency of q upon D is highest, hence D is the reduct candidate.

Now, we add other attributes with reduct candidate {d} and calculate other degree of

dependencies as follows:

Γ0.3
{a,d}(q) = 5

6
,Γ0.3
{b,d}(q) = 5

6
,Γ0.3
{c,d}(q) = 4

6
,Γ0.3
{d,e}(q) = 5

6
,Γ0.3
{d,f}(q) = 5

6
.

Since, for {a, d}, {b, d}, {d, e}, {d, f}, degree of dependencies are same and highest, so we

can take any one of them as new reduct candidate. Taking {a, d} as a reduct candidate,



Chapter 3. Intuitionistic fuzzy neighborhood rough set model... 60

we iterate the entire process and get other degree of dependencies as follows:

Γ0.3
{a,b,d}(q) = 6

6
,Γ0.3
{a,c,d}(q) = 5

6
,Γ0.3
{a,d,e}(q) = 4

6
,Γ0.3
{a,d,f}(q) = 5

6
.

Since degree of dependency cannot exceed 1, hence reduct of the given decision system

is {a, b, d}.

3.5 Conclusion

In this paper, we introduced a novel intuitionistic fuzzy neighborhood rough set by defin-

ing a parameterized intuitionistic fuzzy relation and dependency of conditional features

over decision feature. On the basis of intuitionistic fuzzy decision, we defined lower and

upper approximations of decision attribute with respect to a subset of conditional at-

tributes. We then defined positive region along with degree of dependency for attribute

reduction. Using this model, a greedy attribute reduction algorithm is given. Finally, we

applied our approach to an example data set to get a reduct set.

***********


