
Chapter 2

Tolerance-based intuitionistic fuzzy-rough set approach

for attribute reduction

2.1 Introduction

There are several benefits of intuitionistic fuzzy sets over fuzzy sets are available in the

literature. A vague pattern classification can be transformed into a precise and well-

defined optimization problem by using intuitionistic fuzzy set approaches. Unlike fuzzy

sets, intuitionistic fuzzy sets preserve a precise degree of the uncertainty.

Hereby, we propose a new type of intuitionistic fuzzy lower and upper approximations

by applying a tolerance degree on the similarity between two objects and give a novel

method along with a suitable algorithm to compute the reduct set [99] of an intuitionistic

fuzzy decision system. Although some of the researchers have presented tolerance-based

approach [41; 76] for feature selection, but none of them have considered the tolerance-

based intuitionistic fuzzy rough set assisted approach. Our proposed approach can handle

uncertainty, vagueness, and imprecision in a very effective manner as we propose an in-

tuitionistic fuzzy rough set model by combining two effective tools to handle uncertainty,

i.e. intuitionistic fuzzy set and rough set and further it is generalized for feature selection.

Apart from all the above-mentioned advantages, we have presented the degree of depen-

dency approach for feature selection based on an intuitionistic fuzzy rough set model. We

justify our proposed method by using propositions of lower and upper approximations

analogous to rough set theory. Finally, we compare our method with the tolerance-based
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fuzzy rough set approach for an arbitrary information system and show that our approach

gives a better result.

2.2 Tolerance-based fuzzy rough set approach for attribute selection

Let FDS be a fuzzy decision system as defined in introduction chapter. Adding to these

ideas, some similarity between two objects for each attribute can be defined. One of the

widely used fuzzy similarity relation [42] is defined as:

SIMa(xi, xj) = 1− |µa(xi)− µa(xj)|
|µamax − µamin |

(2.1)

where, µa(xi), µa(xj) are membership grades of objects xi, xj respectively and µamax , µamin

are maximum and minimum membership grades for an attribute a ∈ C respectively.

Now, we can extend the concept of [41; 76] for tolerance-based fuzzy rough feature

selection as follows:

For a subset of attributes P ,

(xi, xj) ∈ SIM δ
P iff

∏
a∈P

SIMa(xi, xj) ≥ δ (2.2)

where, δ is a similarity threshold, which gives required level of similarity for inclusion

within tolerance classes. Now, tolerance classes are generated by fuzzy similarity relation

as follows:

SIM δ
P (xi) = {xj ∈ U |(xi, xj) ∈ SIM δ

P} (2.3)

Now, lower and upper approximations of X ⊆ U are defined as

P δX = {xi|SIM δ
P (xi) ⊆ X}

P δX = {xi|SIM δ
P (xi) ∩X 6= φ}

(2.4)

The ordered pair (P δX,P δX) is called tolerance fuzzy rough set. Now, the positive region
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can be defined by:

POSδP (Q) = ∪X∈U/QP δX (2.5)

POSδP (Q) contains those objects that can be distinguished to classes of U/Q using

information contained in set of attributes P . Using the definition of the fuzzy posi-

tive region, the dependency function of decision attribute Q over the set of conditional

attributes P can be defined as

dδP (Q) =
|POSδP (Q)|
|U |

(2.6)

At every step, we add one attribute in the reduct set and calculate the degree of de-

pendency, when we obtain no increment in the degree of dependency, the algorithm

terminates and hence, we get the reduct.

2.3 Tolerance-based Intuitionistic Fuzzy Rough Set approach for attribute

reduction

In this approach, we find similarity between two objects with respect to an attribute or

subset of attributes. Feng & Li (2013) [25] defined a similarity relation by

sima(xi, xj) = 1−
√
α(µa(xi)− µa(xj))2 + β(νa(xi)− νa(xj))2 + γ(πa(xi)− πa(xj))2

(2.7)

where, µa(xi), νa(xi) and πa(xi) are membership, non-membership and hesitancy degrees

of an object with respect to attribute “a” respectively and α, β and γ are weighted factors.

In IFDS, the values of these parameters can be selected according to the requirement of

different users along with following conditions

(i) α ≥ β > γ

(ii) α + β + γ = 1
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(iii) 0 ≤ α, β, γ ≤ 1

For a subset of attributes P , similarity relation between two objects is defined as follows:

(xi, xj) ∈ simδ
P iff

∏
b∈P

simb(xi, xj) ≥ δ (2.8)

where, δ is a similarity threshold. Choice of δ permits attribute values to differ to a limited

extent, therefore we allow close attribute values of different objects to be considered as

identical. It is user/expert dependent. We define tolerance class of an object xi based on

above similarity relation as follows:

simδ
P (xi) = {xj ∈ U |(xi, xj) ∈ simδ

P} (2.9)

Now, lower and upper approximations of X ∈ U are defined as follows:

approxP δX = {xi|simδ
P (xi) ⊆ X}

approxP δX = {xi|simδ
P (xi) ∩X 6= φ}

(2.10)

The ordered pair (approxP δX, approxP δX) is called an intuitionistic fuzzy tolerance

rough set. Let Q be a set of attributes generating equivalence relation over U . Therefore,

the positive region and degree of dependency can be defined as:

POSδP (Q) =
⋃

X∈U/Q

approxP δX (2.11)

ΓδP (Q) =
|POSδP (Q)|
|U |

(2.12)

At each step, we insert one attribute in the obtained subset and calculate the degree of

dependency of decision attribute over a new set of conditional attributes. In case of no

increment in the degree of dependency, the process stops and we get the required reduct.
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A generalization of rough sets (as proposed by Pawlak [67; 68]) is presented in an

arbitrary universe of discourse by extending the concepts of crisp sets to intuitionistic

fuzzy sets as follows:

Theorem 2.3.1 Let (U,C ∪ D, VIF , IF ) be an IFDS. Let P ⊆ C and X ⊆ U , then

approxP δX ⊆ X ⊆ approxP δX

Proof: Let y ∈ approxP δX ⇒ simδ
P (y) ⊆ X

Since y ∈ simδ
P (y), hence y ∈ X. Therefore approxP δX ⊆ X.

Now, let y ∈ X, Since y ∈ simδ
P (y) ⇒ simδ

P (y) ∩ X 6= φ ⇒ y ∈ approxP δX ⇒ X ⊆

approxP δX.

Hence, approxP δX ⊆ X ⊆ approxP δX

Theorem 2.3.2 Let (U,C∪D, VIF , IF ) be an IFDS. Let P1 ⊆ P2 ⊆ C and X ⊆ U , then

(i) approxP δ
1X ⊆ approxP δ

2X

(ii) approxP δ
2X ⊆ approxP δ

1X

Proof:

(i) Let y ∈ approxP δ
1X, then simδ

P1
(y) ⊆ X. Since P1 ⊆ P2 ⇒ simδ

P2
(y) ⊆ simδ

P1
(y).

Thus, simδ
P2

(y) ⊆ X ⇒ y ∈ approxP δ
2X. Hence, approxP δ

1X ⊆ approxP δ
2X

(ii) Let y ∈ approxP δ
2X then simδ

P2
(y)∩X 6= φ. Since P1 ⊆ P2 ⇒ simδ

P2
(y) ⊆ simδ

P1
(y).

Thus, simδ
P1

(y) ∩X 6= φ⇒ y ∈ approxP δ
1X. Hence, approxP δ

2X ⊆ approxP δ
1X

Theorem 2.3.3 Let (U,C ∪ D, VIF , IF ) be an IFDS. Let P ⊆ C, δ1 ≤ δ2 and X ⊆ U ,

then

(i) approxP δ1X ⊆ approxP δ2X

(ii) approxP δ2X ⊆ approxP δ1X

Proof:
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(i) Let y ∈ approxP δ1X, then simδ1
P (y) ⊆ X. If z ∈ simδ2

P (y), then (y, z) ∈ simδ2
P

⇐⇒
∏

a∈P sima(y, z) ≥ δ2 ⇐⇒
∏

a∈P sima(y, z) ≥ δ1 (Since δ2 ≥ δ1) ⇐⇒ (y,z)∈

simδ1
P ⇐⇒ z∈ simδ1

P (y)⇒ simδ2
P (y) ⊆ simδ1

P (y)⇒ simδ2
P (y) ⊆ X

⇒ y ∈ approxP δ2X

Hence, approxP δ1X ⊆ approxP δ2X

(ii) Let y ∈ approxP δ2X, then simδ2
P (y) ∩ X 6= φ. Since simδ2

P (y) ⊆ simδ1
P (y) ⇒

simδ1
P (y) ∩X 6= φ⇒ y ∈ approxP δ1X

Hence, approxP δ2X ⊆ approxP δ1X

Theorem 2.3.4 approxP δ(XC) = (approxP δ(X))C, where XC denotes complement of

set X.

Proof: z ∈ approxP δ(XC) ⇐⇒ simδ
P (z) ⊆ XC ⇐⇒ simδ

P (z) ∩X = φ ⇐⇒ z /∈

approxP δ(X) ⇐⇒ z ∈ (approxP δ(X))C . Hence, approxP δ(XC) = (approxP δ(X))C

Theorem 2.3.5 Let Y ⊆ U be another set of objects, then following properties holds.

(i) approxP δ(X ∩ Y ) = approxP δ(X) ∩ approxP δ(Y )

(ii) approxP δ(X ∪ Y ) = approxP δ(X) ∪ approxP δ(Y )

Proof:

(i) z ∈ approxP δ(X ∩ Y ) ⇐⇒ simδ
P (z) ⊆ X ∩ Y ⇐⇒ simδ

P (z) ⊆ X and simδ
P (z) ⊆

Y ⇐⇒ z ∈ approxP δ(X) and z ∈ approxP δ(Y ) ⇐⇒ z ∈ approxP δ(X) ∩

approxP δ(Y ) Hence, approxP δ(X ∩ Y ) = approxP δ(X) ∩ approxP δ(Y )

(ii) z ∈ approxP δ(X ∪ Y ) ⇐⇒ simδ
P (z) ∩ (X ∪ Y ) 6= φ ⇐⇒ (simδ

P (z) ∩ X) ∪

(simδ
P (z) ∩ Y ) 6= φ. Either simδ

P (z) ∩ X 6= φ or simδ
P (z) ∩ Y 6= φ, either z ∈

approxP δ(X) or z ∈ approxP δ(Y ). Therefore, z ∈ approxP δ(X) ∪ approxP δ(Y ).

Hence, approxP δ(X ∪ Y ) = approxP δ(X) ∪ approxP δ(Y )

Theorem 2.3.6 approxP δ(U) = U = approxP δ(U) and approxP δ(φ) = φ = approxP δ(φ)

Proof: It is easy to check.
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Theorem 2.3.7 approxP δ(simδ
P (x)) = simδ

P (x) = approxP δ(simδ
P (x))

Proof: Since approxP δ(X) ⊆ X ⊆ approxP δ(X)

Now replacing X by simδ
P (x) , we get

approxP δ(simδ
P (x)) ⊆ simδ

P (x) ⊆ approxP δ(simδ
P (x))

Now, we have to show that,

simδ
P (x) ⊆ approxP δ(simδ

P (x)) and simδ
P (x) ⊇ approxP δ(simδ

P (x))

Ifz ∈ simδ
P (x), then

∏
a∈P sima(x, z) ≥ δ (2.13)

Ify ∈ simδ
P (z), then

∏
a∈P sima(z, y) ≥ δ (2.14)

If, simδ
P (x) is a T -equivalence relation. Then,

min{simδ
P (x, z), simδ

P (z, y)} ≤ simδ
P (x, y), ∀x, y, z ∈ U (2.15)

From, Eq.(2.13),Eq.(2.14) and Eq.(2.15),we can conclude that
∏

a∈P sim
δ
P (x, y) ≥ δ

then, y ∈ simδ
P (x), hence, simδ

P (z) ⊆ simδ
P (x), then z ∈ approxP δ(simδ

P (x))

hence, simδ
P (x) ⊆ approxP δ(simδ

P (x))

Now, if z ∈ approxP δ(simδ
P (x)), then simδ

P (z) ∩ simδ
P (x) 6= φ

then ∃y ∈ U such that y ∈ simδ
P (z) ∩ simδ

P (x), then y ∈ simδ
P (z) and y ∈ simδ

P (x)

then
∏

a∈P sim
δ
P (y, z) ≥ δ and

∏
a∈P sim

δ
P (y, x) ≥ δ. Now, using Eq.(2.15), we can

conclude that
∏

a∈P sim
δ
P (x, z) ≥ δ,

then z ∈ simδ
P (x), hence, approxP δ(simδ

P (x)) ⊆ simδ
P (x).

Theorem 2.3.8 (i) approxP δ({x}C) = (simδ
P (x))C

(ii) approxP δ({x}) = simδ
P (x)

Proof:
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(i) z ∈ approxP δ({x}C) iff simδ
P (z) ⊆ {x}C ⇐⇒ simδ

P (z) 6⊂ {x} ⇐⇒ z /∈

simδ
P (x) ⇐⇒ z ∈ (simδ

P (x))C .

(ii) z ∈ approxP δ({x}) iff simδ
P (z) ∩ {x} 6= φ iff x ∈ simδ

P (z) iff z ∈ simδ
P (x)

Theorem 2.3.9 (i) approxP δ(approxP δ(X)) = approxP δ(X)

(ii) approxP δ(approxP δ(X)) = approxP δ(X)

Proof:

(i) Since, approxP δ(X) ⊆ X, now, replacing X by approxP δ(X), we get

approxP δ(approxP δ(X)) ⊆ approxP δ(X)

Now, let y ∈ approxP δ(X), we have to show that y ∈ approxP δ(approxP δ(X)).

Ify ∈ approxP δ(X), then simδ
P (y) ⊆ X (2.16)

Letz ∈ simδ
P (y), then

∏
a∈P sima(z, y) ≥ δ (2.17)

Ifu ∈ simδ
P (z), this implies that

∏
a∈P sima(u, z) ≥ δ (2.18)

If simδ
P is an equivalence relation. Then from Eq.(2.17),Eq.(2.18) and T -transitivity

property of simδ
P , we get

∏
a∈P simP (u, y) ≥ δ, it implies that u ∈ simδ

P (y). From

Eq.(2.16), we get u ∈ X.

Since u ∈ simδ
P (z) and u ∈ X, this implies that simδ

P (z) ⊆ X, then z ∈ approxP δ(X).

Since z ∈ simδ
P (y) and z ∈ approxP δ(X). This gives that simδ

P (y) ⊆ approxP δ(X),

this implies that, y ∈ approxP δ(approxP δ(X)),

hence, approxP δ(X) ⊆ approxP δ(approxP δ(X))

Hence, we get the required result.
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(ii) Since X ⊂ approxP δ(X), then replacing X by approxP δ(X), we get

approxP δ(X) ⊆ approxP δ(approxP δ(X))

Now, let y ∈ approxP δ(approxP δ(X)), this implies that

simδ
P (y) ∩ approxP δ(X) 6= φ.

Let us consider z ∈ simδ
P (y)∩approxP δ(X), then z ∈ simδ

P (y) and z ∈ approxP δ(X),

this gives that
∏

a∈P sima(z, y) ≥ δ and simδ
P (z) ∩ X 6= φ, this implies that ∃u,

such that u ∈ simδ
P (z) and u ∈ X, then

∏
a∈P sima(u, z) ≥ δ and u ∈ X. Since,∏

a∈P sima(z, y) ≥ δ and
∏

a∈P sima(u, z) ≥ δ,

if simδ
P is T -transitive, then we can conclude that

∏
a∈P sima(u, y) ≥ δ, then u ∈

simδ
P (y). Since, u ∈ simδ

P (y) and u ∈ X, this provides that simδ
P (y) ∩X 6= φ, this

implies that y ∈ approxP δ(X). Hence approxP δ(approxP δ(X)) ⊆ approxP δ(X).

Hence, we get the result.

Theorem 2.3.10 (i) approxP δ(X) ⊆ approxP δ(approxP δ(X)) ⊆ approxP δ(X)

(ii) approxP δ(X) ⊆ approxP δ(approxP δ(X)) ⊆ approxP δ(X)

Proof:

(i) Since, X ⊂ approxP δ(X), then, replacing X by approxP δ(X), we get

approxP δ(X) ⊆ approxP δ(approxP δ(X))

Now, let y ∈ approxP δ(approxP δ(X)), it results in, simδ
P (y) ∩ approxP δ(X) 6= φ.

it implies that ∃z ∈ U , such that z ∈ simδ
P (y) and z ∈ approxP δ(X),

then z ∈ simδ
P (y) and simδ

P (z) ⊆ X, this gives that

z ∈ simδ
P (y) and z ∈ simδ

P (z) ⊆ X, this implies that z ∈ simδ
P (y) and z ∈ X

this provides that simδ
P (y) ∩X 6= φ, then y ∈ approxP δ(X).

Hence approxP δ(approxP δ(X)) ⊆ approxP δ(X)

(ii) Since, approxP δ(X) ⊆ X, then replacing X by approxP δ(X), we can conclude that

approxP δ(approxP δ(X)) ⊆ approxP δ(X).

Now, let y ∈ approxP δ(X), this implies that simδ
P (y) ⊆ X.

Since X ⊆ approxP δ(X), hence, simδ
P (y) ⊆ approxP δ(X), this results in, y ∈
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approxP δ(approxP δ(X))

Hence,approxP δ(X) ⊆ approxP δ(approxP δ(X))

2.4 Algorithm for Tolerance-based Intuitionistic Fuzzy Rough Reduction

In this section, we establish a quick reduct algorithm for feature selection by using a

tolerance-based degree of dependency, i.e. ΓδP (Q). The algorithm starts with a null set

and adds those attributes one by one, which provide a maximum increase in the degree of

dependency of decision attribute over a subset of conditional attributes until it achieves

highest potential value for any dataset (it will be 1 in case of a consistent system). This

algorithm produces a close-to-minimal reduct of a decision system without exhaustively

checking all possible subsets of conditional attributes, which is the key advantage of our

proposed algorithm. The resulting algorithm can be given as follows:

Tolerance Based Intuitionistic Fuzzy Rough Reduct(C,D, δ)

C, Collection of all conditional attributes;

D, Collection of all decision attributes;

δ, the similarity threshold

1. S ⇒ {}; Γδbest = 0

2. do

3. L← S

4. Γδprev = Γδbest

5. ∀x ∈ (C\S)

6. if ΓδS∪{x}(D) > ΓδL(D)

7. L← S ∪ {x}

8. Γδbest = ΓδL

9. S ← L

10. until Γδbest == Γδprev

11. return S
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In the next section, we apply the above algorithm on an example dataset to clearly

demonstrate the proposed concept.

2.5 Illustrative Example

In order to illustrate our proposed approach, an arbitrary example of fuzzy decision

system is given in Table 2.1. Here, the table consists of six conditional attributes

{a, b, c, d, e, f}, one decision attribute {Q} and six objects {x1, x2, x3, x4, x5, x6}.

Now we apply tolerance-based fuzzy rough set based attribute selection as follows:

Since x1, x3 and x6 have decision class value as 1, while x2, x4 and x5 have 0, hence

decision classes can be given by:

U/Q = {{x1, x3, x6}, {x2, x4, x5}}

Setting A = {a} and δ = 0.8, a tolerance class based on a similarity measure defined

as Eq. (2.1) for attribute set A is given by:

U/SIM δ
A = {x2, x6}

Similarly, for B = {b}, C = {c}, D = {d}, E = {e}, F = {f}, we get tolerance classes as

follows:

U/SIM δ
B = {{x1, x3}, {x2, x5}, {x4, x6}}

U/SIM δ
C = {x5, x6}

U/SIM δ
D = {x1, x2}

U/SIM δ
E = {x1, x5}

U/SIM δ
F = {x1, x3}

On the basis of A, lower approximations of decision classes can be obtained by

Aδ{1, 3, 6} = {xi|SIM δ
A(xi) ⊆ {1, 3, 6}} = φ

Aδ{2, 4, 5} = {xi|SIM δ
A(xi) ⊆ {2, 4, 5}} = φ

So, positive region can be calculated by:

POSδA(Q) = Aδ{1, 3, 6} ∪ Aδ{2, 4, 5} = φ ∪ φ = φ

So, the degree of dependency of decision attribute Q over conditional attribute set A is

calculated as:
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dδA(Q) =
|POSδA(Q)|
|U | = 0

6

Similarly, for B = {b}, C = {c}, D = {d}, E = {e}, F = {f},

dδB(Q) = 4
6
, dδC(Q) = 0

6
, dδD(Q) = 0

6
, dδE(Q) = 0

6
, dδF (Q) = 2

6

Now, B is added to the reduct set. On adding other features with reduct set B one by

one, other degree of dependencies are:

Table 2.1: Fuzzy Decision Table

dδ{a,b}(Q)=6
6
, dδ{b,c}(Q) = 6

6
, dδ{b,d}(Q) = 6

6
, dδ{b,e}(Q) = 6

6
, dδ{b,f}(Q) = 6

6

As degree of dependency cannot exceed 1, therefore {{a, b}∨{b, c} ∨ {b, d} ∨ {b, e} ∨ {b, f}}

is the reduct set of given information system.

The intersection of all the reduct sets is defined as Core. Hence {b} is the core of given

dataset.

Now we convert the above FDS into IFDS by using Jurio et.al. [46] concept with hesi-

tancy degree as 0.2. The transformed decision system is given in Table 2.2.
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Table 2.2: Intuitionistic Fuzzy Decision Table

The decision classes of above information system are U/Q = {x1, x3, x6}, {x2, x4, x5}

Setting A = {a}, B = {b}, C = {c}, D = {d}, E = {e}, F = {f} and taking α = 0.4, β =

0.4, γ = 0.2 and δ = 0.8, we obtain tolerance classes as:

U/SIM δ
A = {{x1, x2, x6}, {x1, x5}, {x2, x3, x6}, {x3, x4}}

U/SIM δ
B = {{x1, x3, x6}, {x2, x4, x5}}

U/SIM δ
C = {{x1, x5, x6}, {x2, x3}, {x2, x5, x6}, {x3, x4}}

U/SIM δ
D = {{x1, x2, x3}, {x1, x2, x4}, {x3, x5}, {x5, x6}}

U/SIM δ
E = {{x1, x2}, {x1, x4, x5}, {x3, x6}, {x4, x6}}

U/SIM δ
F = {{x1, x2, x4}, {x3, x6}, {x4, x5}, {x5, x6}}

Now, lower approximations of decision classes for attribute set A can be given by:

approxAδ{1, 3, 6} = {xi|SIM δ
A(xi) ⊆ {1, 3, 6}} = φ

approxAδ{2, 4, 5} = {xi|SIM δ
A(xi) ⊆ {2, 4, 5}} = φ

So, the positive region is calculated by:

POSδA(Q) = φ ∪ φ = φ

Therefore, degree of dependency can be obtained as:

ΓδA(Q) = 0
6

Similarly, degrees of dependencies for other attributes are:
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ΓδB(Q) = 6
6
,ΓδC(Q) = 0

6
,ΓδD(Q) = 0

6
,ΓδE(Q) = 2

6
,ΓδF (Q) = 4

6

Since the degree of dependency can never exceed 1. Hence, algorithm terminates and we

get reduct set of the given decision system as {b}.

2.6 Conclusion

In this chapter, we have given a novel approach for attribute reduction by using tolerance-

based intuitionistic fuzzy rough set concept. We have defined lower and upper approxima-

tions against a threshold value and presented a method to calculate degree of dependency

of decision attribute over a subset of conditional attributes by using the tolerance-based

intuitionistic fuzzy rough set for attribute reduction. Moreover, we have validated sup-

porting theorems based on lower and upper approximations. Furthermore, we have ap-

plied our proposed algorithm to an example data set and a comparison has been presented

with the tolerance-based fuzzy rough set method. We observed that with the previous

algorithm the obtained reduct set was {{a, b}∨ {b, c} ∨ {b, d} ∨ {b, e} ∨ {b, f}} and after

applying our proposed method, the reduct was {b} . This clearly indicates the superiority

of our proposed work. It is obvious from the given example that our model works fine

when trying to discover the smallest reduct from a decision system. Moreover, reduct of

the decision system can be improved by adjusting the parameter so that the ability of

the model to handle tolerance for fault or noise may increase. It is also observed that

the proposed algorithm is capable to handle uncertainty, vagueness as well as the noise

of the information system.

Our approach would be useful for selecting the most predictive and non-redundant

features for machine learning tasks and enhance the interpretability of datasets for the

applications in the field of expert and intelligent systems. Nowadays, high-dimensional

intuitionistic fuzzy information systems are generated in many areas related to expert

and intelligent systems, which could be directly handled in an effective way by using

our proposed approach. Performances of different classifiers could be enhanced by using

our approach as it selects the most relevant and non-redundant features. However, the

proposed approach, which considers the intuitionistic fuzzy set concept, may cause a
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relatively high computational complexity. We have converted FDS into IFDS with a fixed

value of degree of hesitancy, which may not be always possible for real-world datasets.

***********




