List of figures

Figure No.	Figure Caption	Page No.
Figure 1.1	Typical cross sections of through and deck type bridges	2
Figure 2.1	Failure causes and modes of failure leading to collapse	11
Figure 2.2	Simply supported composite truss bridge of span 36m	17
Figure 2.3	General view of the Lully Viaduct Composite Bridge	19
Figure 2.4	Longitudinal view and standard cross section	19
Figure 2.5	K-shaped joint geometry with shear studs	20
Figure 2.6	Proposed bridge at Bogibeel with 125m span	20
Figure 2.7	View of the Ulla river viaduct	22
Figure 2.8	Sarutagawa Bridge	23
Figure 2.9	Composite construction with prestressing of upper and lower	23
	slabs	
Figure 2.10	Rigid connectors	27
Figure 2.11	Flexible connectors	28
Figure 2.12	Anchorage shear connectors	28
Figure 2.13	Headed shear connectors	29
Figure 3.1	View of the collapsed I-35W bridge	34
Figure 3.2	Failure ofgusset plate at U10	35
Figure 3.3	View of Chauras Bridge after failure	36
Figure 3.4	Arrangement of Chauras Bridge	38
Figure 3.5	Stress diagram under loading at the time of collapse	39
Figure 3.6	Joints U13, U14 and buckled member U13U14	40

Figure 3.7	Member U13U14	41
Figure 3.8	Built up box section	43
Figure 3.9	Half elevation of Garudchatti bridge	45
Figure 3.10	Support reactions in service condition	46
Figure 3.11	Arrangement of anchorage blocks at abutment locations	46
Figure 3.12	Strengthening details	49
Figure 3.13	Member stresses in the bridge	51
Figure 3.14	Discontinuity of diagonal members at M-joints	52
Figure 3.15	Loading arrangement	52
Figure 3.16	Arrangement for measurement of deflection	53
Figure 3.17	Garudchatti bridge over Alaknanda river, India	53
Figure 3.18	Stress-Strain curves of compression or tensionmember for	57
	mild steel of grades E250 and E410	
Figure 3.19	Intact gusset plates at joints U13 and U14	58
Figure 3.20	Endurance limits for E250 and E410 grade steel	59
Figure 3.21	Arrangement of vehicles for fully loaded deck condition	61
Figure 4.1	Composite deck type steel truss bridge	69
Figure 4.2	Strain diagram	71
Figure 4.3	Cross section of composite joist	75
Figure 4.4	Force equilibrium of composite truss	77
Figure 4.5	Composite truss bridge model for plastic failure	82
Figure 4.6	Force equilibrium at plastic collapse	83
Figure 4.7	Elevation showing half span of 90m truss bridge	85

Figure 4.8	STAAD model for composite truss bridge	86
Figure 4.9	Cross section of 90m span truss bridge	86
Figure 4.10	90m span composite truss bridge details	92
Figure 4.11	Deck slab stress under LL	93
Figure 4.12	90m span composite truss bridge for 1.5x(DL+LL) case	94
Figure 4.13	Composite truss bridge (90m span) model for plastic failure	96
Figure 4.14	Force equilibrium at plastic collapse	97
Figure 5.1	Non-composite and composite beams	102
Figure 5.2	Shear flow in shear connectors	103
Figure 5.3	Densification of shear connectors	104
Figure 5.4	Details of 42.0m span bridge	109
Figure 5.5	STAAD model with plate elements	115
Figure 5.6	Variation of longitudinal shear along the bridge span	118
Figure 5.7	Deck slab stress	118
Figure 6.1	30.0m span Through type truss bridge	125
Figure 6.2	30.0m span Deck type truss bridge	126
Figure 6.3	30.0m span Semi type truss bridge	127
Figure 6.4	30.0m span Under slung truss bridge	128
Figure 6.5	90.0m span Through type truss bridge	129
Figure 6.6	90.0m span Deck type truss bridge	130
Figure 6.7	90.0m span Semi deck type truss bridge	130
Figure 6.8	90.0m span Under slung truss bridge	131
Figure 6.9	Abutment details for 90.0m deck type bridge.	140

Figure 6.10	Valley profile and 30.0m span through type bridge	141
Figure 6.11	Valley profile and 30.0m span semi deck type bridge	142
Figure 6.12	90.0m span semi deck composite truss bridge	145