Table of Contents

Certificate			i
Declaration	by the	candidate	ii
Copyright transfer certificate			iii
Acknowledge	Acknowledgement		
Table of Con	tents		v-ix
List of Figur	es		x-xii
List of Table	es		xiv-xv
Preface			xvi-xix
Chapter 1		Introduction	Page no
	1.1	General	1
	1.2	Failure of bridges	3
	1.3	Composite truss bridge	4
	1.4	Motivation	6
	1.5	Organization of thesis	7
Chapter 2		Literature Review	9-32
	2.1	General	9
	2.2	Brief history of failure of bridges	9
	2.3	Developments in composite truss technology	12
	2.4	Composite truss bridge	15
		2.4.1 Types and examples of composite steel truss	16
		bridges	
	2.5	Shear connection in composite truss bridges	26
	2.6	Critical Observations	31
	2.7	Scope of present study	32
Chapter 3		Failure Analysis of Chauras Bridge And Success of	33-66
		Garudchatti Bridge: A Case Study	
	3.1	General	33
		3.1.1 Brief history of Failure of I-35W Bridge: A Steel	34

		truss bridge	
	3.2	Failure analysis of Chauras bridge	36
		3.2.1 Geometry of the Chauras bridge	37
		3.2.2 Analysis of Chauras Bridge at collapse	39
		3.2.2.1 Cross section and permissible stress of failed	40
		member U13U14	
		3.2.2.2 Buckling class of the member	42
		3.2.2.3 Casting sequence of deck slab	43
	3.3	Strengthening of Garudchatti bridge	43
		3.3.1 Analysis of Garudchatti bridge	44
		3.3.2 Strengthening details of critical members	47
		3.3.3 Continuation of diagonal compression member at	51
		M-Joints	
		3.3.4 Load testing of Garudchatti bridge	52
		3.3.5 Precautions in load testing	55
	3.4	Discussion on Chauras and Garudchatti bridges	55
		3.4.1 Critical discussion on failure of Chauras bridge	56
		3.4.1.1 Design at Limit State of Serviceability	58
		3.4.1.2 Recommended design at Limit State of Strength	60
		3.4.2 Discussion on strengthening and load testing of	63
		Garudchatti bridge	
	3.5	Concluding remarks	64
Chapter 4		Steel-Concrete Composite Truss Bridge	67-100
	4.1	General	67
	4.2	Concept of composite truss bridge	68
	4.3	Effect of shrinkage strain on composite action	70
	4.4	Code provisions for composite trusses in buildings	71
		4.4.1 Code provisions in the American code SJI-CJ-	72
		2010	
		4.4.2 Canadian code provisions in CAN/CSA S16.1	76
	4.5	Proposed analysis and design guidelines for composite	77

		steel t	russ bridges			
		4.5.1	Modelling of the bridge	78		
		4.5.2	Analysis under various loading conditions	78		
		4.5.3	Design for service and overload conditions	81		
	4.6	Reserv	ve strength at plastic collapse	82		
	4.7	Comp	arison between non - composite and composite	84		
		deck t	deck type truss bridges.			
		4.7.1	Geometric details and bridge model	85		
		4.7.2	Material properties	87		
		4.7.3	Loading on the bridge	87		
		4.7.4	Load Combinations	88		
		4.7.5	Design of the bridge	89		
		4.7.6	Optimized design results	90		
		4.7.7	Reserve strength at plastic collapse	96		
		4.7.8	Deflection and steel off take comparison	98		
	4.8	Concl	uding remarks	100		
Chapter 5		Shear	Connection in Composite Truss Bridges	101-122		
	5.1	Gener	al	101		
	5.2	Behav	riour of shear connectors	102		
		5.2.1	Longitudinal shear flow in solid and open web	103		
		girder	bridges			
	5.3	Code	provisions for shear connectors	104		
		5.3.1	Indian code provisions.	105		
		5.3.2	Canadian code provisions	105		
		5.3.3	American code provisions	106		
		5.3.4	Eurocode provisions	107		
	5.4	Design	n of shear studs using standard codes	108		
		5.4.1	Spacing of shear studs as per IRC: 24 - 2010	110		
		5.4.2	Spacing of shear studs as per CAN/CSA-S16-01	110		
		5.4.3	Spacing of shear studs as per SJI-CJ-2010	111		
		5.4.4	Spacing of shear studs as per Eurocode	113		

	5.5	Total longitudinal shear in shear studs using finite	115
		element analysis	
	5.6	Spacing of shear studs	117
	5.7	Recommendations for design of shear studs	119
	5.8	Concluding remarks	120
Chapter 6		Comparison of Through and Deck Type Truss	123-152
		Bridges and Use of High Tensile Steel	
	6.1	General	123
	6.2	Geometric details of the bridge	124
		6.2.1 Geometric details for the 30.0m span bridges	124
		6.2.2 Geometric details for the 90.0m span bridges	129
	6.3	Analysis and design	131
		6.3.1 Modelling	131
		6.3.2 Loading	131
		6.3.3 Design	132
	6.4	Comparison between the bridges of different geometry	133
		6.4.1 Comparison for the 30.0m span bridges	133
		6.4.1.1 Comparison for service load under (DL+LL) case	133
		6.4.1.2 Comparison for design at limit state of strength	134
		for overload condition of 2.25x(DL+LL) case	
		6.4.2 Comparison for the 90.0m span bridges	136
		6.4.2.1 Comparison for service load under (DL+LL) case	136
		6.4.2.2 Comparison of design at limit state of strength for	137
		overload condition of 2.25x(DL+LL) case	
	6.5	Effect of bridge span on bridge configuration selection	138
	6.6	Abutment and embankment requirements	140
	6.7	Valley profile	141
	6.8	Use of HTS steel in composite steel truss bridges	142
		6.8.1 Properties of structural steel	143
		6.8.2 Design example of 90.0m span truss bridge using	144
		mild steel and HTS	

		6.8.2.1 Geometric arrangement for the 90.0m span bridge	144
		6.8.2.2 Modelling	145
		6.8.2.3 Loading	145
		6.8.2.4 Design	146
		6.8.3 Cost comparison of structural steel in	147
		superstructure	
	6.9	Concluding remarks	149
Chapter 7		Conclusions and Recommendations	153-160
	7.1	General	153
	7.2	Future scope of study	158
	7.3	Authors contribution and novelty of the work	158
References			161-166
Annexure I			167-184
List of Publications			185