	Examples	Advantages	Disadvantages	References
First generation feedstock	Soyabean Palm, Sunflower, rapeseed,etc.	• Synthesis of biodiesel.	 Crises in food market. Rise in cost of edible oil as well as biodiesel. Land requirements for cultivation of plant are in large proportion. 	[Celikten et al., 2010; Sumathi et al., 2008; Siler- Marinkovic et al., 1998]
Second generation feedstock	Karanja, Jatropha, Jojoba, Waste frying oil, Animal fat,etc.	 Decrease dependency on first generation feedstocks which are edible oil since alternative source of biodiesel. Wastelands can be used which are not preferred for food crop. 	 Not liberal to restitute our total transportation. Impecunious performance in the frosty temperature. 	[Pramanik, 2003; Canoira et al., 2006; Canakci, 2007; Singh and Singh, 2010]
Third generation feedstock	Microalgae of different species such as Botryococcus Braunii, Chlorella species, Nanochloro-psis species,etc.	 Superior over first and second generation feedstock. Due to its expeditive reproduction, cultivation is facile, extensive productivity and oil yield. Does not require specific land for production. It can be grown in salt water, fresh water and in bioreactor which is inappropriate for above two feedstocks. 	 Cost for processing is expensive. There are chances of contamination from bacteria so proper sterile conditions required. Most algal lipid has lower fuel value than diesel fuel and biodiesel with many poly-unsaturates. 	[Mata et al., 2010; Chisti, 2007]

Table 2.1 Various feedstocks used for biodiesel production

Catalyst	Feedstock	Catalyst	Oil: alcohol	Reaction	Time	Conversion	References
		wt%	molar ratio	temperature	(min)		
		Home	ogeneous Acid	catalyst			
H ₂ SO ₄	Sunflower oil and Soybean oil	2.5	1:6	60	60	96.6	[Farag et al., 2011]
HCl	Sunflower oil and Soybean oil	2.5	1:6	60	120	87.9	[Farag et al., 2011]
AlCl ₃	Sunflower oil and Soybean oil	2.5	1:6	60	120	87.98	[Farag et al., 2011]
CH ₃ SO ₃ H	Palm fatty acid	0.1	1:3	130	60	91	[Aranda et al., 2007]
H ₃ PO ₄	Palm fatty acid	0.1	1:3	130	60	50	[Aranda et al., 2007]
CH ₃ SO ₃ H	Palm fatty acid	0.1	1:3	130	60	80	[Aranda et al., 2007]
C ₂ HF ₃ O ₂	Soybean oil	2.0	1:20	80	360	98.40	[Miao et al., 2009]
PTSA	Corn oil	4.0	1:10	80	120	97.10	[Guan et al., 2009]
BSA	Corn oil	4.0	1:10	60	480	82	[Guan et al., 2009]
		Homogen	eous Base cata	lyst			
NaOH	Pongamia pinnata	0.5	1:9	60	45	89.5	[Sharma and Singh,

 Table 2.2 Various Homogeneous and heterogeneous catalyst for biodiesel production

20

							2008]
NaOH	Waste frying oil	0.8	1:6	60	60	95	[Dias et al., 2008]
NaOCH ₃	Duck tallow	1.0	1:6	65	180	83.60	[Chung et al., 2009]
КОН	Sunflower oil	1.0	1:6	60	60	95	[Dias et al., 2008]
ТМАН	Cotton seed oil	2.0	1:6	65	120	98	[Karavalakis et al., 2010]
TMG	Waste frying oil	3	1:12	65	90	93.80	[Karavalakis et al., 2011]
TEA	Cotton seed oil	6	1:9	190	180	55.3	[Yao et al., 2010]
Propyl-SO ₃ H-SBA-15	Palm oil	6	1:20	140	120	72	[Melero et al., 2010]
Propyl-SO ₃ H-SBA-15	Palm oil	6	1:20	140	120	72	[Melero et al., 2010]
Amberlyst-36	Palm oil	6	1:20	140	120	32	[Melero et al., 2010]
Sulfated zirconia	Oleic acid	0.50 gm	1:40	60	720	90	[Patel et al., 2013]
Chlorosulfonic zirconia	Oleic acid	3	1:8	100	720	100	[Zhang et al., 2014]
30% WO ₃ /AlPO ₄	Soybean oil	5	1:30	180	300	72.5	[Xie et al., 2012]
Ce/HUSY zeolite	Soybean oil	0.001 mol	1:30	200	1440	99.80	[Borges et al., 2013]
Fe(HSO ₄) ₃	Waste oil	1	1:15	205	240	94.5	[Alhassan et al., 2013]
30% Tungstosicicacid/	Oleic acid	100 mg	1:20	60	600	86	[Narkhede and Patel,
zeoliteHβ							2013]

21

Г

		Het	erogeneous	Base catalyst			
CaO	Rapeseed oil	1	1:26	60	180	90	[Kawashima et al., 2009]
MgO	Canola oil	3	3:20	190	120	82.8	[Jeon et al., 2013]
SrO	Olive oil	5	1:6	65	15	82	[Chen et al., 2012]
K ₃ PO ₄	Fried oil	5	1:6	65	180	78	[Viola et al., 2012]
Li/CaO	Karanja oil	5	1:6	65	60	99	[Kaur and Ali, 2011]
Na/Al ₂ O ₃	Soybean oil	1	1:32	120	360	97.1	[Tonetto and Marchetti, 2010]
Cs/SiO ₂	Canola oil	100 mg	1:40	135	300	25.35	[Kazemian et al., 2013]
MgAlFe hydrotalcite	Soybean oil	3	1:21	65	240	81	[Wang et al., 2012]
β - Ca ₃ (PO ₄) ₂	Soybean oil	1.01	1:6.27	70	300	97.73	[Chakraborty et al., 2011]
			Enzyme cat	alyst			
Immobilized lipase on crystalline PVA	Soybean oil	4	1:6	37	-	66.3	[Bergamasco et al., 2013]