List of Figures

Figures	Page Nos.
Chapter 3	
Figure 3.1 GC-MS chromatogram of waste vegetable oil (WVO)	38
Figure 3.2 GC-MS chromatogram of Karanja oil	40
Chapter 4	
Figure 4.1 Synthesis of β -K ₂ Zr ₂ O ₅ by solid state method	46
Figure 4.2 TGA curve of uncalcined β -K ₂ Zr ₂ O ₅ catalyst	47
Figure 4.3 XRD pattern of the β -K ₂ Zr ₂ O ₅ catalyst synthesized via	48
solid-state reaction	
Figure 4.4 ATR-FTIR spectra of β - K ₂ Zr ₂ O ₅ catalyst	48
Figure 4.5 SEM image of the β - K ₂ Zr ₂ O ₅ synthesized catalyst	51
Figure 4.6 EDS image of the β - K ₂ Zr ₂ O ₅ synthesized catalyst	52
Figure 4.7 Particle size distribution	54
Figure 4.8 ¹ H NMR spectrum of WVO FAME obtained at 4.0 wt%	57
β - K ₂ Zr ₂ O ₅ , 1:10 oil: methanol, 120 min reaction time at 65 °C temperature,	
600 rpm stirring speed	

Figure 4.9 ¹ H NMR spectrum of Karanja oil FAME obtained at 3.0 wt%	57
β - K ₂ Zr ₂ O ₅ , 1:8 oil: methanol, 120 min reaction time at 65 °C temperature,	
600 rpm stirring speed	
Figure 4.10 Effect of catalyst concentration on FAME conversion (%)	59
of WVO and Karanja oil	
Figure 4.11 Effect of oil: methanol molar ratio on FAME conversion (%)	60
of WVO and Karanja oil	
Figure 4.12 Effect of reaction temperature on FAME conversion (%) of	60
WVO and Karanja oil	
Figure 4.13 Effect of reaction time on FAME conversion (%) of WVO	63
and Karanja oil	
Figure 4.14 Effect of stirring speed on FAME conversion (%) of WVO	63
and Karanja oil	
Figure 4.15 Beta-potassium dizirconate (β - K ₂ Zr ₂ O ₅) reusability analysis	64
up to seven runs	
Chapter 5	
Figure 5.1 Synthesis of barium zirconate (BaZrO ₃) via co-precipitation	69
method	
Figure 5.2 TGA curve of uncalcined BaZrO ₃ catalyst	70
Figure 5.3 XRD pattern of the BaZrO ₃ catalyst synthesized via	71
co-precipitation method	
Figure 5.4 ATR-FTIR spectra of BaZrO ₃ catalyst	71

Figure 5.5 SEM image of the BaZrO ₃ synthesized catalyst	74
Figure 5.6 EDS image of the BaZrO ₃ synthesized catalyst	74
Figure 5.7 Particle size distribution	76
Figure 5.8 ¹ H NMR spectrum of WVO FAME obtained at 1.2 wt% barium zirconate, 1:27 oil: methanol, 180 min reaction time at 65 °C temperature, 600 rpm stirring speed	79
Figure 5.9 ¹ H NMR spectrum of Karanja oil FAME obtained at wt% barium zirconate, 1:27 oil: methanol, 180 min reaction time at 65 °C temperature, 600 rpm stirring speed	79
Figure 5.10 Effect of catalyst concentration on FAME conversion (%) of WVO and Karanja oil	82
Figure 5.11 Effect of oil: methanol molar ratio on FAME conversion (%) of WVO and Karanja oil	82
Figure 5.12 Effect of reaction temperature on FAME conversion (%) of WVO and Karanja oil	83
Figure 5.13 Effect of reaction time on FAME conversion (%) of WVO and Karanja oil	85
Figure 5.14 Effect of stirring speed on FAME conversion (%) of WVO and Karanja oil	86
Figure 5.15 Barium zirconate (BaZrO ₃) reusability analysis up to nine runs	87

Chapter 6

Figure 6.1 Synthesis of Ca ₂ Al ₂ O ₅ via solid state method	92
Figure 6.2 TGA curve of uncalcined Ca ₂ Al ₂ O ₅ catalyst	93
Figure 6.3 XRD pattern of the Ca ₂ Al ₂ O ₅ catalyst synthesized via	94
solid state method	
Figure 6.4 ATR-FTIR spectra of Ca ₂ Al ₂ O ₅ catalyst	94
Figure 6.5 SEM image of the Ca ₂ Al ₂ O ₅ synthesized catalyst	97
Figure 6.6 EDS image of the Ca ₂ Al ₂ O ₅ synthesized catalyst	97
Figure 6.7 Particle size distribution	99
Figure 6.8 ¹ H NMR spectrum of WVO FAME obtained at 3.0 wt%	102
Ca ₂ Al ₂ O ₅ , 1:21 oil: methanol, 150 min reaction time at 65 °C	
temperature, 700 rpm stirring speed	
Figure 6.9 ¹ H NMR spectrum of Karanja oil FAME obtained at 2.5 wt%	103
Ca ₂ Al ₂ O ₅ , 1:18 oil: methanol, 150 min reaction time at 65 °C	
temperature, 700 rpm stirring speed	
Figure 6.10 Effect of catalyst concentration on FAME conversion (%)	105
of WVO and Karanja oil	
Figure 6.11 Effect of oil: methanol molar ratio on FAME conversion (%)	105
of WVO and Karanja oil	
Figure 6.12 Effect of reaction temperature on FAME conversion (%)	107
of WVO and Karanja oil	

Figure 6.13 Effect of reaction time on FAME conversion (%) of	109
WVO and Karanja oil	
Figure 6.14 Effect of stirring speed on FAME conversion (%) of	109
WVO and Karanja oil	
Figure 6.15 Calcium aluminate (Ca ₂ Al ₂ O ₅) reusability analysis	110
up to seven runs	

Chapter 7

Figure 7.1 Synthesis of waste guinea fowl bone derived catalyst	115
Figure 7.2 TGA curve of raw waste guinea fowl bone	116
Figure 7.3 XRD pattern of the calcined waste guinea fowl bone	117
Figure 7.4 ATR-FTIR spectra of calcined waste guinea fowl bone	118
Figure 7.5 SEM image of calcined guinea fowl bone	120
Figure 7.6 EDS image of calcined guinea fowl bone	121
Figure 7.7 Particle size distribution	122
Figure 7.8 ¹ H NMR spectrum of WVO FAME obtained at 4.0 wt%	125
beta-tricalcium phosphate, 1:21 oil: methanol, 180 min reaction time	
at 65 °C temperature, 700 rpm stirring speed	
Figure 7.9 ¹ H NMR spectrum of Karanja oil FAME obtained at 3.0 wt%	125
beta-tricalcium phosphate, 1:18 oil: methanol, 180 min reaction	
time at 65 °C temperature, 700 rpm stirring speed	

Figure 7.10 Effect of catalyst concentration on FAME conversion (%)	128
of WVO and Karanja oil	
Figure 7.11 Effect of oil: methanol molar ratio on FAME conversion	128
(%) of WVO and Karanja oil	
Figure 7.12 Effect of reaction temperature on FAME conversion	129
(%) of WVO and Karanja oil	
Figure 7.13 Effect of reaction time on FAME conversion (%)	132
of WVO and Karanja oil	
Figure 7.14 Effect of stirring speed on FAME conversion (%) of	132
WVO and Karanja oil	
Figure 7.15 Waste guinea fowl bone derived catalyst reusability	133
analysis up to seven runs	

Scheme

Scheme 7.1 Transesterification reaction mechanism in the presence of 135beta-tricalcium phosphate (β -Ca₃(PO₄)₂)