Chapter 7

Representability of fuzzy biorders and fuzzy weak orders

7.1 Introduction

The idea of providing a representation for a binary relation \mathcal{R} between two non empty sets A and X was formulated by Guttman[46] in 1944, by proposing two functions $f: A \to \mathbb{R}$ and $g: X \to \mathbb{R}$ such that

$$a\mathcal{R}x \Leftrightarrow f(a) > g(x),$$

for each $a \in A$ and $x \in X$. In 1969, Ducamp and Falmagne[36] showed that if A and X both are finite, then the existence of such type of functions f and g for a binary relation \mathcal{R} between A and X is equivalent to the following condition:

$$a\mathcal{R}x \text{ and } b\mathcal{R}y \Rightarrow a\mathcal{R}y \text{ or } b\mathcal{R}x,$$
(7.1)

for each $a, b \in A$ and $x, y \in X$.

A relation satisfying the condition (7.1) (called as Ferrers condition [79, 91]) is said to be a biorder. It has been proved by Doignon et al. [34] that the condition (7.1) on \mathcal{R} is equivalent to the condition

$$\mathcal{R}\mathcal{R}^d\mathcal{R}\subseteq\mathcal{R},\tag{7.2}$$

The contents of this chapter, in the form of a research paper, has been published in 'Internat. J. Uncertain., Fuzziness Knowledge-Based Systems,(6), **24**(2016)917-935'.

where \mathcal{R}^d denotes the dual of \mathcal{R} . They also studied representability of biorders and interval orders. Representations of different types of ordering have been studied by several authors(see e.g., [19, 82, 86]).

The fuzzy analogues of the Ferrers conditions (7.1) and (7.2), which are given as follows:

$$\min\{\mathcal{R}(a,x), \mathcal{R}(b,y)\} \le \max\{\mathcal{R}(a,y), \mathcal{R}(b,x)\}, \text{ for each } a, b \in A \text{ and } x, y \in X$$
(7.3)

and

$$\mathcal{R}o_T \mathcal{R}^d o_T \mathcal{R} \subseteq \mathcal{R} \tag{7.4}$$

are no more equivalent in general. A condition under which (7.3) and (7.4) are equivalent has been provided by Fodor[41]. Keeping this in view, in literature, there are two different definitions of fuzzy biorders, corresponding to these two non-equivalent Ferrers conditions(also called T-Ferrers conditions)[41, 97]. Comparative studies of T-Ferrers relations, fuzzy biorders and fuzzy interval orders have been carried out by several authors(see e.g., [28, 30]). Baets and Walle[10] had introduced the notion of T-fuzzy interval orders and studied two particular types of T-fuzzy interval orders: Weak and Strong fuzzy interval orders.

The study of fuzzy weak orders with respect to a left continuous t-norm Tand their representability by the residual implication operator associated with T(called T-representable fuzzy weak orders) has been done by several authors(see e.g., [11, 98]). Characterizations for a T_M -representable(also called Gödel representable) fuzzy weak orders and for the fuzzy relation which can be written as the union or intersection of a finite family of T_M -representable(or Gödel representable) fuzzy weak orders have been obtained by Baets et al.[11]. Characterizations for a T_P -representable fuzzy weak order and for finite intersections of fuzzy weak orders with respect to any left continuous t-norm T have been obtained by Sali et al.[98].

The representability of a fuzzy total preorder additive fuzzy preference structure without incomparability and a compatible fuzzy semiorder, in terms of the α -cuts of their corresponding fuzzy weak preference relation have been respectively studied by Agud et al.[1] and Induráin et al.[52].

In this chapter, we have studied representability of both fuzzy biorders and fuzzy weak orders. It is observed that union of a finite family of fuzzy weak orders with respect to T is a fuzzy quasi-transitive relation with respect to T. In the last theorem, we have obtained a characterization for a T_L -representable fuzzy weak order.

Now we recall some definitions and results which will be used throughout the chapter.

Definition 7.1. [123] Let \mathcal{R} be a fuzzy relation between A and X. Then for $\alpha \in [0, 1]$, the α -cut \mathcal{R}_{α} is given by

$$\mathcal{R}_{\alpha} = \{ (a, x) \in A \times X : \mathcal{R}(a, x) \ge \alpha \}.$$

Note that each \mathcal{R}_{α} is a binary relation between A and X.

Definition 7.2. [84] Let \mathcal{R} be a fuzzy relation on A. Then its *strict part* $P_{\mathcal{R}}$ is the fuzzy relation on A given by:

$$P_{\mathcal{R}}(a,b) = \begin{cases} \mathcal{R}(a,b), & \text{if } \mathcal{R}(a,b) > \mathcal{R}(b,a) \\ 0, & \text{otherwise.} \end{cases}$$

Definition 7.3. [11] Let T be a t-norm. Then a fuzzy relation \mathcal{R} on A is called a *fuzzy weak order* with respect to T if it is:

- 1. strongly S_M -complete;
- 2. T- transitive.

Definition 7.4. [11] Let T be a t-norm. Then a fuzzy relation \mathcal{R} on A is called a *fuzzy quasi order* with respect to T if it is:

1. reflexive;

2. T-transitive.

Definition 7.5. [11] Let T be a t-norm and S be its dual t-conorm. Then a fuzzy relation \mathcal{R} on A is called a *fuzzy quasi-transitive* relation with respect to T if it is:

- 1. strongly S_M complete;
- 2. negatively S-transitive.

Definition 7.6. [34] Let \mathcal{R} and \mathcal{Q} be two binary relations between A and X, X and Y respectively. Then the *composition* $\mathcal{R}\mathcal{Q}$ is the binary relation between A and Y given by

$$\mathcal{RQ} = \{(a, y) : \text{there exists } x \in X \text{ such that } (a, x) \in \mathcal{R} \text{ and } (x, y) \in \mathcal{Q} \}$$

Definition 7.7. [61] Let \mathcal{R} and \mathcal{Q} be two fuzzy relations between A and X, X and Y respectively and T be a t-norm. Then the *fuzzy composition* $\mathcal{R}o_T\mathcal{Q}$ with respect to T is the fuzzy relation between A and Y given by

$$(\mathcal{R}o_T\mathcal{Q})(a,y) = \sup_{x \in X} T\{\mathcal{R}(a,x), \mathcal{Q}(x,y)\}, \text{ for each } (a,y) \in A \times Y.$$

Definition 7.8. [34, 79, 91] A binary relation \mathcal{R} between A and X is said to satisfy the *Ferrers property* if

$$(a, x) \in \mathcal{R} \text{ and } (b, y) \in \mathcal{R} \Rightarrow (a, y) \in \mathcal{R} \text{ or } (b, x) \in \mathcal{R},$$
 (7.5)

for each $a, b \in A$ and $x, y \in X$. Equivalently,

$$\mathcal{R}\mathcal{R}^d\mathcal{R}\subseteq\mathcal{R}.\tag{7.6}$$

Definition 7.9. [34] A binary relation \mathcal{R} between A and X is said to be a *biorder* if \mathcal{R} satisfies the Ferrers property.

7.2 Fuzzy biorder and its representability

Corresponding to (7.5) and (7.6), in case of fuzzy relations on A we have the following:

Definition 7.10. [42] Let T be a t-norm and S be a t-conorm. Then a fuzzy relation \mathcal{R} on A is said to satisfy type1 T - S Ferrers property if $T\{\mathcal{R}(a,b), \mathcal{R}(c,d)\} \leq S\{\mathcal{R}(a,d), \mathcal{R}(c,b)\}$, for each $a, b, c, d \in A$. In case T is a t-norm and S is the corresponding t-conorm(or dual t-conorm), then the type1 T - S Ferrers property is simply called type1 T Ferrers property.

Definition 7.11. [31] A fuzzy relation \mathcal{R} on A is said to satisfy *type2* T *Ferrers* property if $\mathcal{R}o_T \mathcal{R}^d o_T \mathcal{R} \subseteq \mathcal{R}$.

Now we state the following important result in this context, given by Fodor[42], which shows under which condition, the two types of Ferrers properties turn out to be equivalent.

Proposition 7.12. [41] The following statements are equivalent for a fuzzy relation on A:

- 1. A type1 T Ferrers relation is also type2 T Ferrers.
- 2. A type2 T Ferrers relation is also type1 T Ferrers.
- 3. T is rotational invariant (i.e., $T(x,y) \le z \Leftrightarrow T(x,1-z) \le (1-y)$, for each $x, y, z \in [0,1]$).

From the above proposition, it is clear that type1 T Ferrers property and type2 TFerrers property are not equivalent in general. Keeping this in view, in literature, there are two different definitions of fuzzy biorders, one corresponding to type1 T_M Ferrers property of a fuzzy relation between A and X and another corresponding to type2 T Ferrers property of a fuzzy relation on A(cf.[41, 97]), which we have called here as type1 T_M biorder and type2 T biorder respectively.

Definition 7.13. [97] A fuzzy relation \mathcal{R} between A and X is said to be *type1* T_M biorder if min{ $\mathcal{R}(a, x), \mathcal{R}(b, y)$ } $\leq \max{\mathcal{R}(a, y), \mathcal{R}(b, x)}$, for every $a, b \in A$ and $x, y \in X$.

Definition 7.14. [41] A fuzzy relation \mathcal{R} on A is said to satisfy *type2* T *biorders* if $\mathcal{R}o_T \mathcal{R}^d o_T \mathcal{R} \subseteq \mathcal{R}$.

Proposition 7.15. Let \mathcal{R} be a fuzzy relation between A and X. Then \mathcal{R} is a type T_M biorder iff each \mathcal{R}_{α} is a biorder between A and X.

Proof. Let \mathcal{R} be a type T_M biorder between A and X. Then

$$\min\{\mathcal{R}(a,x),\mathcal{R}(b,y)\} \le \max\{\mathcal{R}(a,y),\mathcal{R}(b,x)\},\$$

for each $a, b \in A$ and $x, y \in X$.

We have to show that \mathcal{R}_{α} is a biorder between A and X, for each $\alpha \in [0, 1]$. Assume the contrary. Let for some $\alpha \in [0, 1]$, there exist $a, b \in A$ and $x, y \in X$ such that

$$a\mathcal{R}_{\alpha}x, b\mathcal{R}_{\alpha}y, a(\mathcal{R}_{\alpha})^{c}y, b(\mathcal{R}_{\alpha})^{c}x$$

$$\Rightarrow \mathcal{R}(a, x) \geq \alpha, \mathcal{R}(b, y) \geq \alpha, \mathcal{R}(a, y) < \alpha, \mathcal{R}(b, x) < \alpha$$

$$\Rightarrow \min\{\mathcal{R}(a, x), \mathcal{R}(b, y)\} \geq \alpha > \max\{\mathcal{R}(a, y), \mathcal{R}(b, x)\},\$$

which is a contradiction.

Conversely, assume that each \mathcal{R}_{α} is a biorder between A and X, for $\alpha \in [0, 1]$. We have to show that \mathcal{R} is a type T_M biorder between A and X i.e,

$$\min\{\mathcal{R}(a,x),\mathcal{R}(b,y)\} \le \max\{\mathcal{R}(a,y),\mathcal{R}(b,x)\}\$$

for each $a, b \in A$ and $x, y \in X$. For this, we need to consider the following cases: **Case 1:** If $\mathcal{R}(a, x) = 0$ or $\mathcal{R}(b, y) = 0$. Then the above inequality is obviously satisfied.

Case 2: If $\mathcal{R}(a, x) = \beta \neq 0$ and $\mathcal{R}(b, y) = \gamma \neq 0$. Set $\delta = \min\{\beta, \gamma\}$. Then

$$\mathcal{R}(a, x) \ge \delta \text{ and } \mathcal{R}(b, y) \ge \delta$$

$$\Rightarrow a\mathcal{R}_{\delta}x \text{ and } b\mathcal{R}_{\delta}y$$

$$\Rightarrow a\mathcal{R}_{\delta}y \text{ or } b\mathcal{R}_{\delta}x \quad (\text{Since } \mathcal{R}_{\delta} \text{ is a biorder})$$

$$\Rightarrow \mathcal{R}(a, y) \ge \delta \text{ or } \mathcal{R}(b, x) \ge \delta$$

$$\Rightarrow \max\{\mathcal{R}(a, y), \mathcal{R}(b, x)\} \ge \delta = \min\{\mathcal{R}(a, x), \mathcal{R}(b, y)\}.$$

Thus \mathcal{R} is a type T_M biorder.

The following Example 7.1 shows that Proposition 7.15 is not true if we replace type1 T_M biorder with type2 T_M biorder or type2 T_{nM} biorder(which is equivalent to type1 T_{nM} biorder using Proposition 7.12, as T_{nM} is the largest rotational invariant t-norm[28]).

Example 7.1. Consider the following fuzzy relation \mathcal{R} between A and X, where $A = X = \{a, b\}$ as follows:

\mathcal{R}	a	b
a	1	0.5
b	0.5	0.6

- 1. It can be checked easily that \mathcal{R} is a type T_M biorder.
- 2. It can also be verified that \mathcal{R} is a type T_{nM} biorder. Further, since T_{nM} is the largest rotational invariant t-norm(cf.[28]) and hence in view of Proposition 7.12, it is also a type T_{nM} biorder.

Now if we take $\alpha = 0.6$, then $(a, a) \in \mathcal{R}_{\alpha}$ and $(b, b) \in \mathcal{R}_{\alpha}$, but (a, b) and (b, a) both do not belong to \mathcal{R}_{α} , which implies that $\mathcal{R}_{0.6}$ is not a biorder.

The representability of a fuzzy total preorder additive fuzzy preference structure without incomparability and a compatible fuzzy semiorder, in terms of the α -cuts of their corresponding fuzzy weak preference relation have been respectively studied by Agud et al.[1] and Induráin et al.[52]. Motivated by these facts and keeping in view the Proposition 7.15, from now onwards we mean fuzzy biorders in the sense of Definition 7.13 i.e., a fuzzy relation \mathcal{R} between A and X will be called a fuzzy biorder relation if min $\{\mathcal{R}(a, x), \mathcal{R}(b, y)\} \leq \max\{\mathcal{R}(a, y), \mathcal{R}(b, x)\}$, for each $a, b \in A$ and $x, y \in X$.

In [41], It has been shown that if \mathcal{R} is a fuzzy relation on A, then \mathcal{R} is a fuzzy biorder if and only if \mathcal{R}^d is a fuzzy biorder. In the following proposition, we show that this result also holds good if we take a fuzzy relation between A and X.

Proposition 7.16. Let \mathcal{R} be a fuzzy relation between A and X. Then \mathcal{R} is a fuzzy biorder between A and X iff \mathcal{R}^d is a fuzzy biorder between X and A.

Proof. Let \mathcal{R} be a fuzzy biorder between A and X. So, we have

$$\min\{\mathcal{R}(a,x),\mathcal{R}(b,y)\} \le \max\{\mathcal{R}(a,y),\mathcal{R}(b,x)\},\tag{7.7}$$

for each $a, b \in A$ and $x, y \in X$. Now,

$$\begin{aligned} \min\{\mathcal{R}^d(x,a), \mathcal{R}^d(y,b)\} &= \min\{1 - \mathcal{R}(a,x), 1 - \mathcal{R}(b,y)\} \\ &= 1 - \max\{\mathcal{R}(a,x), \mathcal{R}(b,y)\} \\ &\leq 1 - \min\{\mathcal{R}(a,y), \mathcal{R}(b,x)\} \quad (\text{Since } \mathcal{R} \text{ is a fuzzy biorder}) \\ &= \max\{1 - \mathcal{R}(a,y), 1 - \mathcal{R}(b,x)\} \\ &= \max\{\mathcal{R}^d(y,a), \mathcal{R}^d(x,b)\}, \end{aligned}$$

for each $a, b \in A$ and $x, y \in X$. Therefore \mathcal{R}^d is a fuzzy biorder between X and A.

Conversely, assume that \mathcal{R}^d is a fuzzy biorder between X and A. So, we have

$$\min\{\mathcal{R}^d(x,a), \mathcal{R}^d(y,b)\} \le \max\{\mathcal{R}^d(x,b), \mathcal{R}^d(y,a)\},\tag{7.8}$$

for each $a, b \in A$ and $x, y \in X$.

Now,

$$\min\{\mathcal{R}(a, x), \mathcal{R}(b, y)\} = \min\{1 - \mathcal{R}^d(x, a), 1 - \mathcal{R}^d(y, b)\}$$
$$= 1 - \max\{\mathcal{R}^d(x, a), \mathcal{R}^d(y, b)\}$$
$$\leq 1 - \min\{\mathcal{R}^d(x, b), \mathcal{R}^d(y, a)\} \quad (\text{Since } \mathcal{R}^d \text{ is a fuzzy biorder})$$
$$= \max\{1 - \mathcal{R}^d(x, b), 1 - \mathcal{R}^d(y, a)\}$$
$$= \max\{\mathcal{R}(b, x), \mathcal{R}(a, y)\},$$

for each $a, b \in A$ and $x, y \in X$. Therefore \mathcal{R} is a fuzzy biorder between A and X.

Union and intersection of fuzzy biorders need not be a fuzzy biorder. This is exhibited through the following examples.

Example 7.2. Let \mathcal{R}_1 and \mathcal{R}_2 be two fuzzy relations between A and X, where $A = X = \{a, b\}$ and are given as follows:

\mathcal{R}_1	a	b
a	0.7	0.7
b	0.3	0.8

and

\mathcal{R}_2	a	b
a	0.6	0.3
b	0.6	0.8

It is easy to verify that \mathcal{R}_1 and \mathcal{R}_2 both are fuzzy biorder between A and X, but $\mathcal{R}_1 \cap \mathcal{R}_2$ which is given as follows:

$\mathcal{R}_1 \cap \mathcal{R}_2$	a	b
a	0.6	0.3
b	0.3	0.8

is not a fuzzy biorder between A and X as

$$\min\{\mathcal{R}(a,a), \mathcal{R}(b,b)\} = 0.6 > \max\{\mathcal{R}(a,b), \mathcal{R}(b,a)\} = 0.3,$$

where $\mathcal{R} = \mathcal{R}_1 \cap \mathcal{R}_2$.

Example 7.3. Let \mathcal{R}_1 and \mathcal{R}_2 be two fuzzy relations between A and X, where $A = X = \{a, b\}$ and are given as follows:

\mathcal{R}_1	a	b
a	0.7	0.5
b	0.4	0.4

and

\mathcal{R}_2	\mathcal{R}_2 a	
a	0.6	0.6
b	0.3	0.8

It is easy to verify that \mathcal{R}_1 and \mathcal{R}_2 both are fuzzy biorder between A and X, but $\mathcal{R}_1 \cup \mathcal{R}_2$ which is given as follows:

$\mathcal{R}_1 \cup \mathcal{R}_2$	a	b
a	0.7	0.6
b	0.4	0.8

is not a fuzzy biorder between A and X as

$$\min\{\mathcal{R}(a, a), \mathcal{R}(b, b)\} = 0.7 > \max\{\mathcal{R}(a, b), \mathcal{R}(b, a)\} = 0.6,$$

where $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$.

Definition 7.17. [61, 97] Let T be a left continuous t-norm. Then the residual implication operator I_T associated with T is defined as $I_T(x, y) = \sup\{z \in [0, 1] : T(x, z) \le y\}$, for each $(x, y) \in [0, 1] \times [0, 1]$. For example,

1. If $T = T_P$, then the residual implication operator I_{T_P} associated with T_P is given by

$$I_{T_P}(x, y) = \begin{cases} 1, & \text{if } x \le y \\ \frac{y}{x}, & \text{otherwise,} \end{cases}$$

for each $(x, y) \in [0, 1] \times [0, 1]$.

2. If $T = T_L$, then the residual implication operator I_{T_L} associated with T_L is given by

$$I_{T_L}(x,y) = \min\{1, 1 - x + y\} = \begin{cases} 1, & \text{if } x \le y\\ 1 - x + y, & \text{otherwise,} \end{cases}$$

for each $(x, y) \in [0, 1] \times [0, 1]$.

Definition 7.18. [34] Let \mathcal{R} be a binary relation between A and X and for any $a \in A$ and $x \in X$, $a\mathcal{R} = \{y \in X : a\mathcal{R}y\}$ and $\mathcal{R}x = \{c \in A : c\mathcal{R}x\}$. Then the binary relations \mathcal{R}_A on A and \mathcal{R}_X on X are defined as follows:

$$a\mathcal{R}_A b$$
 if $b\mathcal{R} \subseteq a\mathcal{R}$
 $x\mathcal{R}_X y$ if $\mathcal{R} x \subseteq \mathcal{R} y$.

Now, we prove the following:

Proposition 7.19. Let \mathcal{R} be a fuzzy biorder on A. Then

- 1. If \mathcal{R} is reflexive on A, then \mathcal{R} is strongly S_M complete and negatively S_M transitive on A.
- 2. If \mathcal{R} is irreflexive on A, then \mathcal{R} is T_M -asymmetric and T_M -transitive on A.
- *Proof.* 1. Since T_M has no zero divisors, it follows from Theorem 3 in [32] that \mathcal{R} is strongly S_M complete on A. Now we prove that \mathcal{R} is negatively S_M transitive as follows:

Since $\min\{\mathcal{R}(a,b), \mathcal{R}(c,c)\} \leq \max\{\mathcal{R}(a,c), \mathcal{R}(c,b)\}$, for each $a, b, c \in A$ and $\mathcal{R}(a',a') = 1$, for each $a' \in A$, so $\mathcal{R}(a,b) \leq \max\{\mathcal{R}(a,c), \mathcal{R}(c,b)\}$, for each $a, b, c \in A$.

2. We show that $\min\{\mathcal{R}(a,b), \mathcal{R}(b,a)\} = 0$, for each $a, b \in A$. Since

$$\min\{\mathcal{R}(a,b), \mathcal{R}(b,a)\} \le \max\{\mathcal{R}(b,b), \mathcal{R}(a,a)\},\$$

for each $a, b \in A$ and by the irreflexivity of \mathcal{R} , $\mathcal{R}(a', a') = 0$, for each $a' \in A$, so we get $\min{\{\mathcal{R}(a, b), \mathcal{R}(b, a)\}} \leq 0$ and hence $\min{\{\mathcal{R}(a, b), \mathcal{R}(b, a)\}} = 0$, for each $a, b \in A$. Now it follows from Lemma 5.1(i) in [33] that \mathcal{R} is T_M transitive on A.

Definition 7.20. [34] A binary relation \mathcal{R} between A and X is said to be *representable* with respect to \leq (resp.,<) if there exist two mappings $u : A \to \mathbb{R}$ and $v : X \to \mathbb{R}$ such that $(a, x) \in \mathcal{R}$ iff $u(a) \leq v(x)$ (resp., u(a) < v(x)), for each $a \in A$ and $x \in X$.

In the case of biorders, we have the following result related to its representability.

Proposition 7.21. [34] Let \mathcal{R} be a binary relation between A and X, where A and X both are countable. Then the following statements are equivalent:

- 1. \mathcal{R} is a biorder.
- 2. \mathcal{R} is representable with respect to \leq .
- 3. \mathcal{R} is representable with respect to <.

Now we prove the fuzzy analogue of this proposition.

Proposition 7.22. Let \mathcal{R} be a fuzzy relation between A and X, where A and X both are countable. Then the following statements are equivalent:

- 1. \mathcal{R} is a fuzzy biorder.
- 2. Each \mathcal{R}_{α} , $\alpha \in [0,1]$ is representable with respect to \leq .
- 3. Each \mathcal{R}_{α} , $\alpha \in [0,1]$ is representable with respect to <.

Proof. (1) \Rightarrow (2) Let \mathcal{R} be a fuzzy biorder between A and X, where A and X both are countable. Then in view of Proposition 7.15, each \mathcal{R}_{α} , $\alpha \in [0, 1]$ is a biorder between A and X, where A and X both are countable. Therefore from the Proposition 7.21, we get a representation of \mathcal{R}_{α} with respect to \leq , for each $\alpha \in [0, 1]$.

 $(2) \Rightarrow (3)$ Let each $\mathcal{R}_{\alpha}, \alpha \in [0,1]$ be representable with respect to \leq . Then from

the Proposition 7.21, each \mathcal{R}_{α} , $\alpha \in [0, 1]$ is representable with respect to $\langle .$ (3) \Rightarrow (1) Let each \mathcal{R}_{α} , $\alpha \in [0, 1]$ be representable with respect to $\langle .$ Then from the Proposition 7.21, each \mathcal{R}_{α} , $\alpha \in [0, 1]$ is a biorder between A and X. Finally from the Proposition 7.15, we get \mathcal{R} is a fuzzy biorder.

Definition 7.23. [34] Let \mathcal{R} be a binary relation between A and X. A subset $M^* \subseteq A \cup X$ is said to be *widely dense* if for each $a \in A$ and $x \in X$, $a\mathcal{R}^c x$ implies that there exists an element $m^* \in M^*$ such that either $m^* \in A$, $m^*\mathcal{R}^c x$ and $m^*\mathcal{R}_A a$ or $m^* \in X$, $x\mathcal{R}_X m^*$ and $a\mathcal{R}^c m^*$.

Proposition 7.24. [34] Let \mathcal{R} be a binary relation between A and X. Then the following statements are equivalent:

- 1. \mathcal{R} is a biorder with a countable widely dense subset M^* .
- 2. \mathcal{R} is representable with respect to \leq .

Now we give the fuzzy analogue of the this proposition.

Proposition 7.25. Let \mathcal{R} be a fuzzy relation between A and X. Then the following statements are equivalent:

- 1. \mathcal{R} is a fuzzy biorder and for each $\alpha \in [0,1]$, there exists a countable subset $M^*_{\alpha} \subseteq A \cup X$ such that for each $a \in A$ and $x \in X$, $a(\mathcal{R}_{\alpha})^c x$ implies that there exists an element $m^* \in M^*_{\alpha}$ such that either $m^* \in A$, $m^*(\mathcal{R}_{\alpha})^c x$ and $m^*(\mathcal{R}_{\alpha})_A a$ or $m^* \in X$, $x(\mathcal{R}_{\alpha})_X m^*$ and $a(\mathcal{R}_{\alpha})^c m^*$.
- 2. Each \mathcal{R}_{α} , $\alpha \in [0,1]$ is representable with respect to \leq .

The proof follows from Proposition 7.15 and 7.24.

Definition 7.26. [34] Let \mathcal{R} be a binary relation between A and X. A subset M^* of $A \cup X$ is said to be *strictly dense* if for all $a \in A$ and $x \in X$, $a\mathcal{R}x$ implies that there exists an element $m^* \in M^*$ such that either $m^* \in X$, $a\mathcal{R}m^*$ and $m^*\mathcal{R}_X x$ or $m^* \in A$, $a\mathcal{R}_A m^*$ and $m^*\mathcal{R}x$.

Proposition 7.27. [34] Let \mathcal{R} be a binary relation between A and X. Then the following statements are equivalent:

1. \mathcal{R} is a biorder with a countably strictly dense subset M^* .

2. \mathcal{R} is representable with respect to <.

Now we give the fuzzy analogue of this proposition.

Proposition 7.28. Let \mathcal{R} be a fuzzy relation between A and X. Then the following statements are equivalent:

- 1. \mathcal{R} is a fuzzy biorder and for each $\alpha \in [0,1]$, there exists a countable subset $M^*_{\alpha} \subseteq A \cup X$ such that for each $a \in A$ and $x \in X$, $a\mathcal{R}_{\alpha}x$ implies that there exists an element $m^* \in M^*$ such that either $m^* \in X$, $a\mathcal{R}_{\alpha}m^*$ and $m^*(\mathcal{R}_{\alpha})_X x$ or $m^* \in A$, $a(\mathcal{R}_{\alpha})_A m^*$ and $m^*\mathcal{R}_{\alpha}x$.
- 2. Each \mathcal{R}_{α} , $\alpha \in [0,1]$ is representable with respect to <.

The proof follows from Proposition 7.15 and 7.27.

Definition 7.29. [14] A binary relation \mathcal{R} on A is said to be an *interval order* if:

- 1. it is asymmetric i.e, if $(a, b) \in \mathcal{R}$, then $(b, a) \notin \mathcal{R}$;
- 2. it satisfies the Ferrers property i.e, $(a,b) \in \mathcal{R}$ and $(c,d) \in \mathcal{R} \Rightarrow (a,d) \in \mathcal{R}$ or $(c,b) \in \mathcal{R}$.

Now we prove the following result which is a corollary of Proposition 7.15:

Corollary 7.30. Let \mathcal{R} be a fuzzy relation on A. Then \mathcal{R} is an irreflexive fuzzy biorder on A iff for each $\alpha \in (0, 1]$, \mathcal{R}_{α} is an interval order on A.

The proof follows from Proposition 7.15, Proposition 7.19 and the facts that a fuzzy relation is T_M -asymmetric if and only if its α -cuts are asymmetric for every $\alpha \in (0, 1]$ and every T_M -asymmetric fuzzy relation is irreflexive.

Proposition 7.31. [34] Let \mathcal{R} be a binary relation on A. Then the following statements are equivalent:

- 1. \mathcal{R} is an interval order with a countable widely dense subset M^* .
- 2. There exist two mappings $u : A \to \mathbb{R}$ and $r : A \to \mathbb{R}_0^+$ such that for $a, b \in A$, $a\mathcal{R}b \Leftrightarrow u(a) + r(a) \leq u(b)$.

Proposition 7.32. [34] Let \mathcal{R} be a binary relation on A. Then the following statements are equivalent:

- 1. \mathcal{R} is an interval order with a countable strictly dense subset M^* .
- 2. There exist two mappings $u : A \to \mathbb{R}$ and $r : A \to \mathbb{R}^+$ such that for all $a, b \in A$, $a\mathcal{R}b$ iff u(a) + r(a) < u(b).

We now give the following two propositions:

Proposition 7.33. Let \mathcal{R} be a fuzzy relation on A. Then the following statements are equivalent:

- 1. \mathcal{R} is an irreflexive fuzzy biorder such that for each $\alpha \in (0, 1]$, there exists a countable widely dense subset M^*_{α} .
- 2. For each $\alpha \in (0, 1]$, there exist two mappings $u_{\alpha} : A \to \mathbb{R}$ and $r_{\alpha} : A \to \mathbb{R}_0^+$ such that for $a, b \in A$, $a\mathcal{R}_{\alpha}b \Leftrightarrow u_{\alpha}(a) + r_{\alpha}(a) \leq u_{\alpha}(b)$.

The proof follows from Corollary 7.30 and Proposition 7.31.

Proposition 7.34. Let \mathcal{R} be a fuzzy relation on A. Then the following statements are equivalent:

- 1. \mathcal{R} is an irreflexive fuzzy biorder such that for each $\alpha \in (0, 1]$, there exists a countable strictly dense subset M^*_{α} .
- 2. For each $\alpha \in (0, 1]$, there exist two mappings $u_{\alpha} : A \to \mathbb{R}$ and $r_{\alpha} : A \to \mathbb{R}^+$ such that for $a, b \in A$, $a\mathcal{R}_{\alpha}b \Leftrightarrow u_{\alpha}(a) + r_{\alpha}(a) < u_{\alpha}(b)$.

The proof follows from Corollary 7.30 and Proposition 7.32.

7.3 Representability of fuzzy weak orders using the residual implication operator

Definition 7.35. [98] Let T be a left continuous t-norm. A fuzzy relation \mathcal{R} on a finite set A is called T-representable, if there exists a mapping $f : A \to [0, 1]$ such

that $\mathcal{R}(a,b) = \mathcal{R}_{T,f}(a,b)$, for each $(a,b) \in A \times A$, where $\mathcal{R}_{T,f}$ is the fuzzy relation defined by $\mathcal{R}_{T,f}(a,b) = I_T(f(b), f(a))$, for each $(a,b) \in A \times A$ and I_T denotes the residual implication operator associated with T.

Theorem 7.36. [97] A T-representable fuzzy relation on a finite set A is a fuzzy weak order on A with respect to T.

Theorem 7.37. [98] Let \mathcal{R} be a fuzzy relation on a finite set A and T be a left continuous t-norm. Then \mathcal{R} is a fuzzy quasi order with respect to T iff it is intersection of a finite family of fuzzy weak orders with respect to T.

Remark 7.38. Let \mathcal{R} be a T-transitive fuzzy relation on A. Then the following property holds for every $a, b, c \in A$:

$$(\mathcal{R}(a,b) = 1 \text{ and } \mathcal{R}(b,c) = 1) \Rightarrow (\mathcal{R}(a,c) = 1 \text{ and } \mathcal{R}(c,a) \le \mathcal{R}(c,b)).$$

The proof is trivial.

Baets et al.[11] had proved the following result in case of T_M . These authors have also given an example to show that the converse of the following result does not hold good in that case.

Proposition 7.39. [11] If a fuzzy relation \mathcal{R} on A is negatively S_M -transitive, then its strict part $P_{\mathcal{R}}$ is T_M -transitive.

Here we show that none of the implications hold good in case of T_P , through counter examples.

Example 7.4. Let \mathcal{R} be a fuzzy relation on $A = \{a, b, c\}$ whose matrix representation is as follows:

\mathcal{R}	a	b	С
a	0	0.84	0.6
b	0.8	0	0.7
с	0.7	0.6	0

Then its strict part $P_{\mathcal{R}}$ is as follows:

$P_{\mathcal{R}}$	a	b	с
a	0	0.84	0
b	0	0	0.7
с	0.7	0	0

Now it is easy to verify that \mathcal{R} is negatively S_P -transitive but $P_{\mathcal{R}}$ is not T_P -transitive as $P_{\mathcal{R}}(a, b) \cdot P_{\mathcal{R}}(b, c) = 0.84 \times 0.7 = 0.58 > P_{\mathcal{R}}(a, c) = 0.$

Example 7.5. Let \mathcal{R} be a fuzzy relation on $A = \{a, b, c\}$ whose matrix representation is as follows:

\mathcal{R}	a	b	c
a	1	0.5	0.9
b	1	1	0.6
с	1	1	1

Then its strict part $P_{\mathcal{R}}$ is as follows:

$P_{\mathcal{R}}$	a	b	с
a	0	0	0
b	1	0	0
С	1	1	0

Now it is easy to verify that $P_{\mathcal{R}}$ is T_P -transitive but \mathcal{R} is not negatively S_P -transitive as $\mathcal{R}(a, b) + \mathcal{R}(b, c) - \mathcal{R}(a, b) \cdot \mathcal{R}(b, c) = 0.5 + 0.6 - 0.3 = 0.8 < \mathcal{R}(a, c) = 0.9$.

Proposition 7.40. If \mathcal{R} is a fuzzy relation on A which is strongly S_M -complete. It satisfies, for each $a, b, c \in A$

$$P_{\mathcal{R}}(a,b) = 1 \text{ and } P_{\mathcal{R}}(b,c) = 1 \Rightarrow \mathcal{R}(c,a) \leq S(\mathcal{R}(c,b),\mathcal{R}(b,a)),$$

if and only if \mathcal{R} is negatively S-transitive.

Proof. To show that \mathcal{R} is negatively S-transitive, we have to show that

$$S(\mathcal{R}(a,b),\mathcal{R}(b,c)) \ge \mathcal{R}(a,c) \tag{7.9}$$

for each $a, b, c \in A$. Assume the contrary. Let

$$\mathcal{R}(a,c) > S(\mathcal{R}(a,b),\mathcal{R}(b,c)) \tag{7.10}$$

for some $a, b, c \in A$. Then from (7.10) and since \mathcal{R} is strongly S_M -complete, we get $\mathcal{R}(b, a) = 1 > \mathcal{R}(a, b)$ and $\mathcal{R}(c, b) = 1 > \mathcal{R}(b, c)$. This implies that $P_{\mathcal{R}}(b, a) = 1$

and $P_{\mathcal{R}}(c,b) = 1$. So by our assumption, we must have

$$\mathcal{R}(a,c) \le S(\mathcal{R}(a,b),\mathcal{R}(b,c)),$$

which contradicts (7.10).

Conversely, if \mathcal{R} is negatively S-transitive, then by its definition itself: $\mathcal{R}(c, a) \leq S(\mathcal{R}(c, b), \mathcal{R}(b, a))$, for each $a, b, c \in A$.

Proposition 7.41. The union \mathcal{R} of any finite family $\{\mathcal{R}_i\}_{i=1}^n$ of fuzzy weak orders on A with respect to T is a fuzzy quasi-transitive relation on A with respect to T.

Proof. Obviously, \mathcal{R} is strongly S_M -complete. Let $a, b, c \in A$ be such that $P_{\mathcal{R}}(a, b) = 1$ and $P_{\mathcal{R}}(b, c) = 1$. Now $P_{\mathcal{R}}(a, b) = 1$ implies that $1 > \mathcal{R}(b, a)$ and $P_{\mathcal{R}}(b, c) = 1$ implies that $1 > \mathcal{R}(c, b)$. Then for each $i \in \{1, 2, ..., n\}$, $\mathcal{R}_i(b, a) < 1$ and since \mathcal{R}_i is strongly S_M -complete so $\mathcal{R}_i(a, b) = 1$. Similarly, $\mathcal{R}(c, b) < 1$ implies that $\mathcal{R}_i(b, c) = 1$. Since each \mathcal{R}_i is a fuzzy weak order with respect to T, so by Remark 7.38, we have

$$\mathcal{R}_i(c,a) \le \mathcal{R}_i(c,b), \quad \text{for each } i \in \{1,2,...,n\}$$

$$(7.11)$$

Now, $\mathcal{R}(c, a) = \max_{i} \mathcal{R}_i(c, a) = \mathcal{R}_t(c, a)$, for some $t \in \{1, 2, ..., n\}$, then

$$S(\mathcal{R}(c,b),\mathcal{R}(b,a)) \geq S_M(\mathcal{R}(c,b),\mathcal{R}(b,a))$$
$$\geq \mathcal{R}(c,b)$$
$$\geq \mathcal{R}_t(c,b)$$
$$\geq \mathcal{R}_t(c,a) = \mathcal{R}(c,a)$$

Therefore, by Proposition 7.40, \mathcal{R} is negatively S- transitive. Thus, $\mathcal{R} = \bigcup_{i}^{i} \mathcal{R}_{i}$ is strongly S_{M} -complete as well as negatively S-transitive and hence it is a fuzzy quasi-transitive relation with respect to T.

Characterizations for fuzzy weak orders with respect to T_M and T_P on a finite set which are T_M -representable and T_P -representable have been respectively obtained by Baets et al.[11] and Sali et al.[98]. In the following theorem, we have obtained a characterization for fuzzy weak orders with respect to T_L on a finite set which are T_L representable. **Theorem 7.42.** A fuzzy weak order \mathcal{R} with respect to T_L on a finite set A is T_L -representable if and only if

$$\mathcal{R}(a,b) < 1 \text{ and } \mathcal{R}(b,c) < 1 \Rightarrow \mathcal{R}(a,c) = \mathcal{R}(a,b) + \mathcal{R}(b,c) - 1$$
(7.12)

holds for each $a, b, c \in A$.

To prove the above theorem, we need to prove the following lemma, the proof of which is on the similar lines as that of Lemma 7 in [98].

Lemma 7.43. Let \mathcal{R} be a reflexive fuzzy relation on a finite set A satisfying (7.12). Then there exists $c \in A$ such that $\mathcal{R}(c, a) = 1$ for each $a \in A$.

Proof. Assume the contrary, i.e, for each $c \in A$, there exists $a_c \in A$ such that $\mathcal{R}(c, a_c) < 1$. Now define an oriented graph $\vec{G} = (V, E)$, where V = A and there is an arc from a to b iff $\mathcal{R}(a, b) < 1$. By our assumption the out-degree of each node is atleast one, so there is a directed cycle C in \vec{G} , which is obtained by taking connected nodes in the cyclic order. Let the nodes of C be $\{a_1, a_2, ..., a_n\}$. Then by using (7.12), we have

$$1 = n - (n - 1) > \mathcal{R}(a_1, a_2) + \mathcal{R}(a_2, a_3) + \dots + \mathcal{R}(a_{n-1}, a_n) + \mathcal{R}(a_n, a_1) - (n - 1)$$

= $\mathcal{R}(a_1, a_1)$

which contradicts the reflexivity of \mathcal{R} .

Proof of the theorem. Let \mathcal{R} be a fuzzy weak order with respect to T_L which is T_L -representable. Then for each $a, b \in A$, $\mathcal{R}(a, b) = \mathcal{R}_{T_L, f}(a, b) = I_{T_L}(f(b), f(a))$ for some mapping $f : A \to [0, 1]$. If $\mathcal{R}(a, b) < 1$ and $\mathcal{R}(b, c) < 1$, for some $a, b, c \in A$, then $\mathcal{R}(a, b) = 1 - f(b) + f(a)$ and $\mathcal{R}(b, c) = 1 - f(c) + f(b)$ such that f(b) > f(a) and f(c) > f(b). This implies that f(c) > f(a) and hence $\mathcal{R}(a, c) = 1 - f(c) + f(a) = \mathcal{R}(a, b) + \mathcal{R}(b, c) - 1$.

Conversely, let \mathcal{R} be a fuzzy weak order with respect to T_L satisfying (7.12). Then \mathcal{R} is reflexive and so by the previous lemma, there exists $c \in A$ such that $\mathcal{R}(c, a) = 1$, for each $a \in A$. Now define the mapping $f : A \to [0, 1]$ by f(a) =

 $\mathcal{R}(a,c)$, for each $a \in A$. We show that

$$\mathcal{R}(a,b) = \mathcal{R}_{T_L,f}(a,b) = I_{T_L}(f(b), f(a)) = \begin{cases} 1, & \text{if } f(b) \le f(a) \\ 1 - f(b) + f(a), & \text{otherwise,} \end{cases}$$

To prove this we need to consider the following cases:

Case 1: If $f(a) \ge f(b)$ (i.e, $\mathcal{R}(a,c) \ge \mathcal{R}(b,c)$). In this case $I_{T_L}(f(b), f(a)) = 1$, so we have to show that $\mathcal{R}(a,b) = 1$. Assume the contrary that $\mathcal{R}(a,b) < 1$. If $\mathcal{R}(b,c) < 1$, then by (7.12),

$$\begin{aligned} \mathcal{R}(a,c) &= \mathcal{R}(a,b) + \mathcal{R}(b,c) - 1 \\ &\leq \mathcal{R}(a,b) + \mathcal{R}(a,c) - 1 \\ &< \mathcal{R}(a,c) \quad (\text{since } \mathcal{R}(a,b) < 1) \end{aligned}$$

which is a contradiction. Next, if $\mathcal{R}(b,c) = 1$, then $\mathcal{R}(a,c) = 1$ and in view of the previous lemma, $\mathcal{R}(c,b) = 1$. So by the T_L -transitivity of \mathcal{R} , we have

$$T_L(\mathcal{R}(a,c),\mathcal{R}(c,b)) \le \mathcal{R}(a,b)$$
$$1 = \max\{0,\mathcal{R}(a,c) + \mathcal{R}(c,b) - 1\} \le \mathcal{R}(a,b) < 1$$

which is again a contradiction. Hence in this case we are done.

Case 2: If f(a) < f(b) (i.e., $\mathcal{R}(a,c) < \mathcal{R}(b,c)$). In this case $I_{T_L}(f(b), f(a)) = 1 - f(b) + f(a)$, so we have to show that $\mathcal{R}(a,b) = 1 - f(b) + f(a)$. Let $\mathcal{R}(b,c) < 1$. Now by the T_L -transitivity of \mathcal{R} , we have $T_L(\mathcal{R}(a,b),\mathcal{R}(b,c)) = \max\{0,\mathcal{R}(a,b) + \mathcal{R}(b,c) - 1\} \leq \mathcal{R}(a,c)$. If $\max\{0,\mathcal{R}(a,b) + \mathcal{R}(b,c) - 1\} = \mathcal{R}(a,b) + \mathcal{R}(b,c) - 1$, then $\mathcal{R}(a,b) + \mathcal{R}(b,c) - 1 \leq \mathcal{R}(a,c) < \mathcal{R}(b,c)$ which implies that $\mathcal{R}(a,b) < 1$. If $\max\{0,\mathcal{R}(a,b) + \mathcal{R}(b,c) - 1\} = 0$, then $\mathcal{R}(a,b) \leq 1 - \mathcal{R}(b,c)$ and hence $0 < \mathcal{R}(a,b) < 1$ (since $0 < \mathcal{R}(b,c) < 1$). Now by using (7.12), we have $\mathcal{R}(a,c) = \mathcal{R}(a,b) + \mathcal{R}(b,c) - 1$ which implies that $\mathcal{R}(a,b) = 1 - \mathcal{R}(b,c) + \mathcal{R}(a,c) = 1 - f(b) + f(a)$. Next, if $\mathcal{R}(b,c) = 1$, then by the T_L -transitivity of \mathcal{R} , we have $T_L(\mathcal{R}(a,b),\mathcal{R}(b,c)) = \max\{0,\mathcal{R}(a,b) + \mathcal{R}(b,c) - 1\} \leq \mathcal{R}(a,c) - 1\} \leq \mathcal{R}(a,c)$ which implies that $\mathcal{R}(a,b) \leq \mathcal{R}(a,c)$. Again by using T_L -transitivity of \mathcal{R} , we have $T_L(\mathcal{R}(a,c),\mathcal{R}(c,b)) = \max\{0,\mathcal{R}(a,c) + \mathcal{R}(c,b) - 1\} \leq \mathcal{R}(a,b)$ which implies that $\mathcal{R}(a,c) \leq \mathcal{R}(a,b)$, since $\mathcal{R}(c,b) = 1$ using the previous lemma. Hence $\mathcal{R}(a,b) = \mathcal{R}(a,c) = 1 - \mathcal{R}(b,c) + \mathcal{R}(a,c) = \mathcal{R}(a,b) + \mathcal{R}(a,c) = 1 - \mathcal{R}(b,c) + \mathcal{R}(a,c) = 1 -$

7.4 Conclusion

In this chapter, representability of fuzzy biorders in terms of their α -cuts and fuzzy weak orders using residual implication operators, have been studied. Further, we have shown that union of a finite family of fuzzy weak orders with respect to a t-norm T is fuzzy quasi-transitive with respect to T and counter examples have been produced to show that unions and intersections of fuzzy biorders need not be fuzzy biorder. In the last theorem, we have also obtained a characterization for a T_L -representable fuzzy weak orders.