
Chapter 5

Fuzzy topologies generated by fuzzy

relations

5.1 Introduction

Binary relations are fundamental concept for expressing preferences, but the two
valued concept is not suitable for expressing complexity of real life preferences.
Fuzzy relations are generally used to overcome this limitation of binary relations.
In literature, fuzzy relations have been studied by several authors(cf.[21–23, 40,
55, 65] etc).

Topologies induced by different types of binary relations have been studied by
several authors, in literature. Campión et al.[18] introduced and studied preorder-
able topologies. They obtained a characterization of preorderable topologies. Ear-
lier, Dallen and Wattel[27] had obtained a characterization of orderable topologies.
Smithson[102] initiated the study of topologies induced by binary relations of a
general kind. Since then, many researchers have been working in this direction(cf.
[6, 75, 95, 111, 112]). Knoblauch[62] introduced the notion of topologies induced
by a binary relation R of a general kind, in a different way, where the topology
on a non empty set X is generated by the set of all upper and lower contours
of elements of X with respect to R. He had also obtained a characterization for
topologies induced by a binary relation of a general kind. Further, Induráin et
al.[53] had studied topologies induced by binary relations in the sense of

The contents of this chapter, in the form of a research paper, has been published in ‘Soft
Computing’, DOI: 10.1007/s00500-016-2458-6(2016).
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Knoblauch[62] and also introduced and studied bitopological spaces induced by
binary relations. Motivated by these facts, in this chapter, we have introduced
fuzzy topologies generated by a fuzzy relation, which is a generalization of the
corresponding concept in [62] and studied related results in fuzzy setting. We
have also introduced and studied fuzzy bitopological spaces generated by a fuzzy
relation. In particular, we have introduced the notions of preorderable and order-
able fuzzy topologies and obtained characterizations of a fuzzy topology generated
by a fuzzy relation, a fuzzy topology generated by a fuzzy interval order, preorder-
able and orderable fuzzy topologies and a fuzzy bitopological space generated by
a fuzzy relation.

5.2 Fuzzy topology generated by a fuzzy relation

Knoblauch[62] had introduced a topology generated by a binary relation. Here
we extend this concept in the case of fuzzy topology.

Definition 5.1. Let R be a fuzzy relation on a set X. Then for x ∈ X, the fuzzy
sets Lx and Rx, which are defined as

Lx(y) = R(y, x), for all y ∈ X,

Rx(y) = R(x, y), for all y ∈ X,

are called lower and upper contours, respectively of the element x ∈ X.

The fuzzy topology generated by the collection S1 of all lower contours (i.e.,
S1 = {Lx : x ∈ X}) will be denoted by τ1 and the fuzzy topology generated by
the collection S2 of all upper contours (i.e, S2 = {Rx : x ∈ X}) will be denoted by
τ2.

Definition 5.2. The fuzzy topology which is generated by the subbase S =

{Lx}x∈X ∪ {Rx}x∈X is called the fuzzy topology generated by R and is denoted
by τR.

Example 5.1. Let R be a fuzzy relation on X = {x, y}, given by

R x y

x 0.5 0.7

y 0.3 0.4
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Then, Lx, Ly, Rx, Ry are the fuzzy sets in X given by:

Lx =
0.5

x
+

0.3

y
, Ly =

0.7

x
+

0.4

y
, Rx =

0.5

x
+

0.7

y
, Ry =

0.3

x
+

0.4

y
.

Therefore,

τ1 = {0X , 1X , Lx, Ly},

τ2 = {0X , 1X , Rx, Ry},

and τR = {0X , 1X , Lx, Ly, Rx, Ry,
0.5

x
+

0.4

y
,
0.3

x
+

0.3

y
,
0.7

x
+

0.7

y
}.

Example 5.2. Let R be a fuzzy relation on X = {x, y}, which is given as follows:

R x y

x 0.7 0.8

y 0.7 0.5

Then the fuzzy topology τR is generated by the following subbase S:

S = {Lx, Ly, Rx, Ry},

where Lx, Ly, Rx, Ry are given by:

Lx =
0.7

x
+

0.7

y
, Ly =

0.8

x
+

0.5

y
, Rx =

0.7

x
+

0.8

y
, Ry =

0.7

x
+

0.5

y
.

Therefore, τR = {0X , 1X , Lx, Ly, Rx, Ry,
0.8
x

+ 0.7
y
, 0.8
x

+ 0.8
y
} and since for x, y ∈ X

such that x 6= y, there exists Ly ∈ τR such that Ly(x) 6= Ly(y), so (X, τR) is fuzzy
T0.

Example 5.3. Let R be a fuzzy relation on X = {x, y, z}, which is given as
follows:

R x y z

x 1 0.5 0

y 0 1 0.8

z 0.7 0 1

Then the fuzzy topology τR is generated by the following subbase S:

S = {Lx, Ly, Lz, Rx, Ry, Rz},
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where Lx, Ly, Lz, Rx, Ry, Rz are given by:

Lx =
1

x
+

0

y
+

0.7

z
, Ly =

0.5

x
+

1

y
+

0

z
, Lz =

0

x
+

0.8

y
+

1

z
,

Rx =
1

x
+

0.5

y
+

0

z
, Ry =

0

x
+

1

y
+

0.8

z
, Rz =

0.7

x
+

0

y
+

1

z
.

Note that (X, τR) is fuzzy T1, since for the fuzzy points xr, ys in X, there exist fuzzy
open sets U = Lx∪Rz and V = Lz ∪Ry such that xr ∈ U, xr /∈ V, ys /∈ U, ys ∈ V ,
for the fuzzy points yr, zs in X, there exist fuzzy open sets U = Rx ∪ Ly and
V = Lx ∪ Rz such that yr ∈ U, yr /∈ V, zs /∈ U, zs ∈ V and for fuzzy points
xr, zs in X, there exist fuzzy open sets U = Rx ∪ Ly and V = Lz ∪ Ry such that
xr ∈ U, xr /∈ V, zs /∈ U, zs ∈ V.

Example 5.4. Let R be a fuzzy relation on X = {x, y, z}, which is given as
follows:

R x y z

x 1 0.3 0.5

y 0 1 0

z 0 0.9 1

Then the fuzzy topology τR is generated by the following subbase S:

S = {Lx, Ly, Lz, Rx, Ry, Rz},

where Lx, Ly, Lz, Rx, Ry, Rz are given by:

Lx =
1

x
+

0

y
+

0

z
, Ly =

0.3

x
+

1

y
+

0.9

z
, Lz =

0.5

x
+

0

y
+

1

z
,

Rx =
1

x
+

0.3

y
+

0.5

z
, Ry =

0

x
+

1

y
+

0

z
, Rz =

0

x
+

0.9

y
+

1

z
.

Note that (X, τR) is fuzzy T2, since for the fuzzy points xr, ys in X, there exist
fuzzy open sets U = Lx and V = Ry such that xr ∈ U, ys ∈ V , U ∩ V = 0X , for
the fuzzy points yr, zs in X, there exist fuzzy open sets U = Ry and V = Lz ∩ Rz

such that yr ∈ U, zs ∈ V, U ∩ V = 0X and for fuzzy points xr, zs in X, there exist
fuzzy open sets U = Lx and V = Lz ∩Rz such that xr ∈ U, zs ∈ V, U ∩ V = 0X .

Definition 5.3. ([61]) A fuzzy relation R on a set X is called

1. reflexive if R(x, x) = 1, for each x ∈ X;
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2. irreflexive if R(x, x) 6= 1, for some x ∈ X;

3. antireflexive if R(x, x) = 0, for each x ∈ X;

4. symmetric if R(x, y) = R(y, x), for each (x, y) ∈ X ×X.
The following definitions are from [40]:

5. transitive if R(x, z) ≥ min{R(x, y),R(y, z)}, for each x, y, z ∈ X;

6. asymmetric if min{R(x, y),R(y, x)} = 0, for each (x, y) ∈ X ×X;

7. antisymmetric if min{R(x, y),R(y, x)} = 0, for each (x, y) ∈ X×X such thatx 6=
y ;

8. negatively transitive if max{R(x, y),R(y, z)} ≥ R(x, z), for each x, y, z ∈
X.

9. total if max{R(x, y),R(y, x)} = 1, for each x, y ∈ X.

10. connecting if max{R(x, y),R(y, x)} = 1, for each (x, y) ∈ X×X, such thatx 6=
y.

We mention here that the definitions 9 and 10 have been called as ‘strongly
complete’ and ‘complete’ respectively in [40] and the definition 3 has been called
‘irreflexive’ in [41].

Definition 5.4. [123] A fuzzy relation is called a fuzzy preorder relation if it is
reflexive and transitive.

Definition 5.5. [123] A fuzzy relation is called a fuzzy partial order relation if it
is reflexive, transitive and antisymmetric.

Definition 5.6. [123] A fuzzy relation is called a similarity relation if it is reflexive,
symmetric and transitive.

Now we prove:

Proposition 5.7. If R is a symmetric fuzzy relation, then τ1 = τ2.

Proof. Since R is a symmetric fuzzy relation, so R(x, y) = R(y, x), for each
x, y ∈ X. This implies that Rx(y) = Lx(y), for each x, y ∈ X and hence Rx = Lx,

for each x ∈ X. Thus the topologies τ1 and τ2, which are generated by {Lx : x ∈
X} and {Rx : x ∈ X} respectively, are same.
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Proposition 5.8. If R is a fuzzy preorder relation, then

1. If A ∈ τ1, then A ⊇
⋃

x:A(x)=1

Rx.

2. If A ∈ τ2, then A ⊇
⋃

x:A(x)=1

Lx.

Proof. 1. To show that A ⊇
⋃

x:A(x)=1

Lx, let yr ∈
⋃

x:A(x)=1

Lx. This implies that

there exists some x such that A(x) = 1 and yr ∈ Lx. So r < R(y, x). Now
since A is open and A(x) = 1, so xr ∈ A and there exists a basic fuzzy open

set
n⋂
i=1

Lxi such that

xr ∈
n⋂
i=1

Lxi ⊆ A

⇒ r < R(x, xi), for each i = 1, 2, ..., n

⇒ r < min{R(y, x),R(x, xi)} ≤ R(y, xi), for each i = 1, 2, ..., n

⇒ yr ∈ Lxi , for each i = 1, 2, ..., n

⇒ yr ∈
n⋂
i=1

Lxi ⊆ A

⇒ yr ∈ A

⇒ A ⊇
⋃

x:A(x)=1

Lx

2. The proof is similar to that of part 1.

Theorem 5.9. Let (X, τ) be a fuzzy topological space. Then the fuzzy topology τ
is generated by a fuzzy relation R if and only if it has a subbase {Ux, Vx : x ∈ X}
such that Uy(x) = Vx(y), for each x, y ∈ X.

Proof. First assume that τ is generated by some fuzzy relation R, then obviously
it has a subbase {Ux, Vx : x ∈ X}, where Ux = Lx and Vx = Rx, for each x ∈ X
such that Uy(x) = Vx(y), for each x, y ∈ X.

Conversely, assume that τ has a subbase {Ux, Vx : x ∈ X} such that Uy(x) =

Vx(y), for each x, y ∈ X. Now to show that τ is generated by some fuzzy relation
R, define a fuzzy relation R : X ×X → I by R(x, y) = Uy(x) = Vx(y), for each
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(x, y) ∈ X ×X. Then for x ∈ X,Lx(y) = R(y, x) = Ux(y) and Rx(y) = R(x, y) =

Vx(y), for each y ∈ X which implies that Lx = Ux and Rx = Vx, for each x ∈ X.
So from the hypothesis of the theorem, we have that the family {Lx, Rx : x ∈ X}
is a subbase for τ . Hence τ is generated by the fuzzy relation R.

Theorem 5.10. Let (X, τ) be a fuzzy topological space. Suppose that τ has a
subbase {Ux, Vx : x ∈ X} such that Uy(x) = Vx(y), for each x, y ∈ X. Let a, b ∈ X
such that ar ∈ O ⇒ br ∈ O, for each O ∈ τ and r ∈ (0, 1). Then Ua ⊆ Ub and
Va ⊆ Vb.

Proof. Let zr ∈ Ua, for some r ∈ (0, 1).

⇒ r < Ua(z) = Vz(a)

⇒ ar ∈ Vz
⇒ br ∈ Vz (SinceVz ∈ τ)

⇒ r < Vz(b) = Ub(z)

⇒ zr ∈ Ub
⇒ Ua ⊆ Ub

Similarly we can prove that Va ⊆ Vb.

So far we have obtained the result that τ is generated by some fuzzy relationR if
τ exhibits a subbase {Ux, Vx : x ∈ X} such that Uy(x) = Vx(y), for each x, y ∈ X.
From this result, for the given fuzzy topology τ with the above mentioned subbase,
the fuzzy relation R that generates τ(i.e, τ = τR) can directly be obtained by
defining R : X × X → I by R(x, y) = Uy(x) = Vx(y), for each (x, y) ∈ X × X,
and in this case the lower contour Lx and the upper contour Rx of the element
x ∈ X are same as Ux and Vx, respectively.

In the following theorem we have obtained that the fuzzy relation R that gen-
erates τ will satisfy some additional properties if we impose some conditions on
the subbase elements Ux and Vx.

Theorem 5.11. Let (X, τ) be a fuzzy topological space where τ has a subbase
{Ux, Vx : x ∈ X} such that Uy(x) = Vx(y), for each x, y ∈ X. Consider the
fuzzy relation R : X × X → I defined by R(x, y) = Uy(x) = Vx(y), for each
(x, y) ∈ X ×X. Then the following properties hold good:
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1. R is reflexive if and only if Ux(x) = 1, for each x ∈ X.

2. R is irreflexive if and only if Ux(x) 6= 1, for some x ∈ X.

3. R is antireflexive if and only if Ux(x) = 0, for each x ∈ X

4. R is symmetric if and only if Ux = Vx, for each x ∈ X.

5. R is asymmetric if and only if Ux ∩ Vx = 0X , for each x ∈ X.

6. R is antisymmetric if and only if (Ux ∩ Vx)(y) = 0, for each x, y ∈ X such
that x 6= y.

7. R is transitive if and only if Uz(x) ≥ (Vx∩Uz)(y) holds for each x, y, z ∈ X.

8. R is negatively transitive if and only if (Vx∪Uz)(y) ≥ Uz(x), for each x, y, z ∈
X.

9. R is total if and only if Ux ∪ Vx = 1X , for each x ∈ X.

10. R is connecting if and only if (Ux ∪ Vx)(y) = 1, for each x, y ∈ X such that
x 6= y.

The proof is straightforward.

Definition 5.12. [13] Let R be a fuzzy preorder relation (resp., fuzzy partial
order relation). Then the associated asymmetric fuzzy relation R1 is given by:

R1(x, y) = max{R(x, y)−R(y, x), 0}, for each (x, y) ∈ X ×X.

R1 is called the asymmetric part of the fuzzy preorder (resp., fuzzy partial order)
R.

Now we define a preorderable fuzzy topology on similar lines as in [18].

Definition 5.13. Let (X, τ) be a fuzzy topological space. Then the fuzzy topol-
ogy τ is said to be a preorderable(resp., orderable) on X if it is generated by
the asymmetric part of some total fuzzy preorder(resp., total fuzzy partial order)
relation.

Example 5.5. Let R be a fuzzy relation on X = {x, y}, given by
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R x y

x 1 0.7

y 0.6 1

It is easy to verify that R is a fuzzy preorder relation and its associated asymmetric
part R1 is the fuzzy relation on X = {x, y}, given by

R1 x y

x 0 0.1

y 0 0

Now, LR1
x , LR1

y , RR1
x , RR1

y are the fuzzy sets in X, given by

LR1
x =

0

x
+

0

y
, LR1

y =
0.1

x
+

0

y
, RR1

x =
0

x
+

0.1

y
, RR1

y =
0

x
+

0

y
.

Therefore, the preorderable fuzzy topology τR1 on X is given by

τR1 = {0X , 1X , LR1
y , RR1

x ,
0.1

x
+

0.1

y
}

Example 5.6. Let R be a fuzzy relation on X = {x, y}, given by

R x y

x 1 0.3

y 0 1

It is easy to verify that R is a fuzzy partial order relation and its associated asym-
metric part R1 is the fuzzy relation on X = {x, y}, given by

R1 x y

x 0 0.3

y 0 0

Now, LR1
x , LR1

y , RR1
x , RR1

y are the fuzzy sets in X, given by

LR1
x =

0

x
+

0

y
, LR1

y =
0.3

x
+

0

y
, RR1

x =
0

x
+

0.3

y
, RR1

y =
0

x
+

0

y
.

Therefore, the orderable fuzzy topology τR1 on X is given by

τR1 = {0X , 1X , LR1
y , RR1

x ,
0.3

x
+

0.3

y
}
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Theorem 5.14. A fuzzy relation is asymmetric part of a total fuzzy preorder
relation if and only if it is asymmetric and negatively transitive.

Proof. Let R be a total fuzzy preorder relation and R1 be its associated asym-
metric part. Since R is a total fuzzy preorder relation so the following conditions
are satisfied for each x, y, z ∈ X:

max{R(x, y),R(y, x)} = 1, (5.1)

R(x, x) = 1, (5.2)

R(x, z) ≥ min{R(x, y),R(y, z)}. (5.3)

It has been already shown in [29] that R1 is asymmetric. So we only need to show
that R1 is negatively transitive i.e.,

max{R1(x, y),R1(y, z)} ≥ R1(x, z), for eachx, y, z ∈ X.

In view of 5.1, we have to consider the following cases:
Case 1: If R(x, y) = 1, R(y, z) = 1, then by the transitivity of R, R(x, z) = 1.
Now max{R1(x, y),R1(y, z)} = max{1−R(y, x), 1−R(z, y)} = 1−min{R(y, x),R(z, y)} ≥
1−R(z, x)) = max{R(x, z)−R(z, x), 0} = R1(x, z).
Case 2: If R(x, y) = 1, R(z, y) = 1, then max{R1(x, y),R1(y, z)} = max{1 −
R(y, x), 0} = 1−R(y, x) ≥ 1−R(z, x) ≥ max{R(x, z)−R(z, x), 0} = R1(x, z) as
by the transitivity ofR, we haveR(z, x) ≥ min{R(z, y),R(y, x)} = min{1,R(y, x)} =

R(y, x) which implies that 1−R(z, x) ≤ 1−R(y, x).
Case 3: If R(y, x) = 1, R(y, z) = 1, then max{R1(x, y),R1(y, z)} = max{0, 1 −
R(z, y)} = 1−R(z, y) ≥ 1−R(z, x) ≥ max{R(x, z)−R(z, x), 0} = R1(x, z) as by
the transitivity ofR, we haveR(z, x) ≥ min{R(z, y),R(y, x)} = min{R(z, y), 1} =

R(z, y) which implies that 1−R(z, x) ≤ 1−R(z, y).
Case 4: If R(y, x) = 1, R(z, y) = 1. Then by the transitivity of R, R(z, x) = 1.
Now max{R1(x, y),R1(y, z)} = 0 and R1(x, z) = max{R(x, z)−R(z, x), 0} = 0.

Conversely, assume that R′ is an asymmetric and negatively transitive fuzzy
relation. Then to show that it is the asymmetric part of some total fuzzy preorder
relation, define a fuzzy relation given by R(x, y) = max{R′(x, y), 1−R′(y, x)}, for
each (x, y) ∈ X×X. Since R′ is asymmetric so min{R′(x, x),R′(x, x)} = 0 which
implies that R′(x, x) = 0. Hence R(x, x) = max{R′(x, x), 1 − R′(x, x)} = 1.
Thus R is reflexive. Since R′ is asymmetric so min{R′(x, y),R′(y, x)} = 0
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which implies that R′(x, y) = 0 or R′(y, x) = 0. Hence max{R(x, y),R(y, x)} =

max{max{R′(x, y), 1−R′(y, x)},max{R′(y, x), 1−R′(x, y)}} = 1. Next to show
that R is transitive i.e., R(x, z) ≥ min{R(x, y),R(y, z)}, for each x, y, z ∈ X.
Since R′ is asymmetric( i.e, min{R′(x, y),R′(y, x)} = 0, for each x, y ∈ X) so we
have to consider the following cases:
Case 1: Let R′(x, y) = 0 and R′(y, z) = 0. Since R′ is negatively transitive
so R′(x, z) ≤ max{R′(x, y),R′(y, z)} = 0 which implies that R′(x, z) = 0. Now
R(x, z) = max{R′(x, z), 1−R′(z, x)}=1−R′(z, x) ≥ 1−max{R′(y, x),R′(z, y)} =

min{1−R′(y, x), 1−R′(z, y)} = min{R(x, y),R(y, z)}.
Case 2: Let R′(x, y) = 0 and R′(z, y) = 0. Now min{R(x, y),R(y, z)} = min{1−
R′(y, x), 1} = 1−R′(y, x) ≤ 1−R′(z, x) ≤ max{R′(x, z), 1−R′(z, x)} = R(x, z)

as R′ is negatively transitive so R′(z, x) ≤ max{R′(z, y),R′(y, x)} = R′(y, x)

which implies that 1−R′(z, x) ≥ 1−R′(y, x).
Case 3: Let R′(y, x) = 0 and R′(y, z) = 0, then min{R(x, y),R(y, z)} =

min{1, 1−R′(z, y)} = 1−R′(z, y) ≤ 1−R′(z, x) ≤ max{R′(x, z), 1−R′(z, x)} =

R(x, z) as R′ is negatively transitive so R′(z, x) ≤ max{R′(z, y),R′(y, x)} =

R′(z, y) which implies that 1−R′(z, x) ≥ 1−R′(z, y).
Case 4: Let R′(y, x) = 0 and R′(z, y) = 0, then min{R(x, y),R(y, z)} =

min{1, 1} = 1 and R(x, z) = max{R′(x, z), 1 − R′(z, x)} = 1 as R′ is nega-
tively transitive so R′(z, x) ≤ max{R′(z, y),R′(y, x)} = 0 which implies that
R′(z, x) = 0.

Now it remains to prove that R′ is asymmetric part of R. Let R1 be the asym-
metric part of R. Then by definition, R1 is given by R1(x, y) = max{R(x, y) −
R(y, x), 0}. We show that R1 = R′. Since R′ is asymmetric, therefore
min{R′(x, y),R′(y, x)} = 0 which implies that R′(x, y) = 0 or R′(y, x) = 0. Let
R′(x, y) = 0. ThenR1(x, y) = max{max{R′(x, y), 1−R′(y, x)}−max{R′(y, x), 1−
R′(x, y)}, 0} = max{1−R′(y, x)−1, 0} = 0 = R′(x, y). Next, ifR′(y, x) = 0. Then
R1(x, y) = max{max{R′(x, y), 1 − R′(y, x)} − max{R′(y, x), 1 − R′(x, y)}, 0} =

max{1− (1−R′(x, y)), 0} = R′(x, y). This completes the proof.

Proposition 5.15. A fuzzy relation is asymmetric part of a total fuzzy partial
order relation if and only if it is asymmetric, negatively transitive and connecting.

Proof. Since it has already been shown in Theorem 5.14 that a fuzzy relation is
asymmetric part of a total preorder if and only if it is asymmetric and negatively
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transitive, so we need to show that the asymmetric part of a total fuzzy partial
order is connecting also and conversely we have to show that a fuzzy relation
which is asymmetric, transitive and connecting, is the asymmetric part of some
total fuzzy partial order.

Let R be a total fuzzy partial order and R1 be its asymmetric part. Then the
following conditions are satisfied:

max{R(x, y),R(y, x)} = 1, for eachx, y ∈ X,

R(x, x) = 1, for eachx ∈ X

R(x, z) ≥ min{R(x, y),R(y, z)} for eachx, y, z ∈ X,

min{R(x, y),R(y, x)} = 0, for eachx, y ∈ X, x 6= y.

Therefore, for x, y ∈ X, x 6= y either R(x, y) = 0 and R(y, x) = 1 or R(x, y) = 1

and R(y, x) = 0. Thus, for x, y ∈ X, x 6= y either R1(x, y) = 1 or R1(y, x) = 1

and hence max{R1(x, y),R1(y, x)} = 1, for each x, y ∈ X, x 6= y, which implies
R1 is connecting.

Conversely suppose that R′ is a asymmetric, negatively transitive and connect-
ing fuzzy relation. Then to show that it is the asymmetric part of some total fuzzy
partial order, define a fuzzy relation R by R(x, y) = max{R′(x, y), 1−R′(y, x)}.
Since it has been already shown in Theorem 5.14 that this fuzzy relation R
is total preorder, so we only need to show that R is antisymmetric also i.e,
min{R(x, y),R(y, x)} = 0, for each x, y ∈ X, x 6= y. SinceR′ is asymmetric as well
as connecting, so for each x, y ∈ X, x 6= y, either R′(x, y) = 0 and R′(y, x) = 1 or
R′(x, y) = 1 and R′(y, x) = 0. Therefore for x, y ∈ X, x 6= y, either R(x, y) = 0 or
R(y, x) = 0 and hence min{R(x, y),R(y, x)} = 0 for each x, y ∈ X, x 6= y. Finally
R′ is asymmetric part of the total fuzzy partial order R has already been proved
in Theorem 5.14.

Proposition 5.16. A fuzzy topology on a non empty set X is preorderable if and
only if it has a subbase {Ux, Vx : x ∈ X} such that the following conditions are
satisfied:

1. Uy(x) = Vx(y), for each x, y ∈ X.

2. Ux ∩ Vx = 0X , for each x ∈ X.

3. (Vx ∪ Uz)(y) ≥ Uz(x), for each x, y, z ∈ X.
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Proof. A fuzzy topology is preorderable if it is generated by asymmetric part of
some total fuzzy preorder relation. Since it has already been shown in the Theorem
5.14 that a fuzzy relation is asymmetric part of a total fuzzy preorder relation if
and only if it is asymmetric and negatively transitive so the required conditions
follow from Theorem 5.11.

Proposition 5.17. A fuzzy topology on a non empty set X is orderable if and
only if it has a subbase {Ux, Vx : x ∈ X} such that the following conditions are
satisfied:

1. Uy(x) = Vx(y), for each x, y ∈ X.

2. Ux ∩ Vx = 0X , for each x ∈ X.

3. (Vx ∪ Uz)(y) ≥ Uz(x), for each x, y, z ∈ X.

4. (Ux ∪ Vx)(y) = 1, for each x, y ∈ X such that x 6= y.

Proof. A fuzzy topology is orderable if it is generated by asymmetric part of a total
fuzzy partial order relation. Since it has already been shown in the Proposition
5.15 that a fuzzy relation is asymmetric part of a total fuzzy partial order relation
if and only if it is asymmetric, negatively transitive and connecting so the required
conditions follow from Theorem 5.11.

Corresponding to the definition 5.3 in [53], we give here the following:

Definition 5.18. Let X be a non empty set. A fuzzy relation R on a set X is
said to be a selection if it is antireflexive and for every x, y ∈ X, x 6= y either
R(x, y) = 1 and R(y, x) = 0 or R(x, y) = 0 and R(y, x) = 1.

Theorem 5.19. If (X, τ) is a fuzzy topological space such that τ is generated by a
selection, then it has a subbase {Ux, Vx : x ∈ X} such that the following conditions
are satisfied:

1. Uy(x) = Vx(y), for each x, y ∈ X.

2. {Ux, Vx, {x}} is a fuzzy partition of X, for each x ∈ X.
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Proof. Assume that τ is generated by a selection. Since in Theorem 5.9, we have
already shown that if τ is generated by a fuzzy relation R then it has a subbase
{Ux, Vx : x ∈ X} such that Uy(x) = Vx(y), for each x, y ∈ X, so we only need
to show that if a fuzzy relation R is a selection then {Ux, Vx, {x}} is a fuzzy
partition of X, for each x ∈ X. Since R is a selection it is antireflexive (i.e.,
R(x, x) = 0, for each x ∈ X) implying that Ux(x) = 0 and Vx(x) = 0, for each
x ∈ X and for x, y ∈ X, x 6= y either R(x, y) = 1 and R(y, x) = 0 or R(x, y) = 0

and R(y, x) = 1. This implies that for x, y ∈ X, x 6= y either Vx(y) = 1 and
Ux(y) = 0 or Ux(y) = 1 and Vx(y) = 0. So the only thing which remains to
prove is that if Ux(z1) = Vx(z2) = 1, for some z1, z2 ∈ X, then Ux(z2) = Vx(z1).
Since R(z1, x) = Ux(z1) = 1, so x 6= z1 and therefore R(x, z1) = 0. Similarly,
R(z2, x) = 0. Therefore Ux(z2) = R(z2, x) = R(x, z1) = Vx(z1).

Definition 5.20. [40] A fuzzy relation R on a set X is said to be fuzzy interval
order if

1. max{R(x, y),R(y, x)} = 1, for each x, y ∈ X.

2. min{R(x, y),R(z, w)} ≤ max{R(x,w),R(z, y)}, for each x, y, z, w ∈ X.

Definition 5.21. [40] A fuzzy relation R on a set X is said to be fuzzy semiorder
if

1. It is a fuzzy interval order.

2. min{R(x, y),R(y, w)} ≤ max{R(x, z),R(z, w)}, for each x, y, z, w ∈ X.

Theorem 5.22. Let (X, τ) be a fuzzy topological space. Then τ is generated by a
fuzzy interval order if and only if it has a subbase {Ux, Vx : x ∈ X} satisfying the
following properties:

1. Uy(x) = Vx(y), for each x, y ∈ X.

2. Vx ∪ Ux = 1X , for each x ∈ X.

3. Ux × Uy ⊆ (Uy × 1X) ∪ (1X × Ux), for each x, y ∈ X.

If in addition, Vx∩Uy 6= φ⇒ Vx∪Uy = 1X , for each x, y ∈ X, then τ is generated
by a fuzzy semiorder.
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Proof. Let (X, τ) be a fuzzy topological space which is generated by a fuzzy interval
order R. Since it has already been proved in Theorem 5.9 that a fuzzy topology τ
is generated by some fuzzy relation if and only if it has a subbase {Ux, Vx : x ∈ X}
such that Uy(x) = Vx(y) for each x, y ∈ X, so we only need to show that if the
fuzzy relation R is a fuzzy interval order then the conditions (2) and (3) of the
theorem are satisfied. Let R be a fuzzy interval order. Then

max{R(x, y),R(y, x)} = 1 and min{R(x, y),R(z, w)} ≤ max{R(x,w),R(z, y)},

for each, x, y, z, w ∈ X

⇒ max{Vx(y), Ux(y)} = 1 and min{Uy(x), Uw(z)} ≤ max{Uw(x), Uy(z)},

for eachx, y, z, w ∈ X

⇒ Vx ∪ Ux = 1X and min{Uy(x), Uw(z)} ≤ max{min{Uw(x), 1},min{1, Uy(z)}},

for eachx, y, z, w ∈ X

⇒ Vx ∪ Ux = 1X andUx × Uy ⊆ (Uy × 1X) ∪ (1X × Ux),

for eachx, y ∈ X.

Conversely, assume that there exists a subbase {Ux, Vx : x ∈ X} for τ satisfying
the hypothesis (1)-(3) of the theorem. Since it has been already shown in the
Theorem 5.9 that if τ has a subbase {Ux, Vx : x ∈ X} such that Uy(x) = Vx(y), for
each x, y ∈ X, then τ is generated by the fuzzy relation R, where R : X ×X → I

is given by R(x, y) = Uy(x) = Vx(y), for each (x, y) ∈ X × X. We only need to
show that R is a fuzzy interval order. Since

Ux ∪ Vx = 1X , for eachx ∈ X

⇒ max{Ux(y), Vx(y)} = 1, for eachx, y ∈ X

⇒ max{R(y, x),R(x, y)} = 1, for eachx, y ∈ X.

Also,

Ux × Uy ⊆ (Uy × 1X) ∪ (1X × Ux), for eachx, y ∈ X

⇒ (Ux × Uy)(z, w) ≤ {(Uy × 1X) ∪ (1X × Ux)}(z, w), for eachx, y, z, w ∈ X

⇒ min{R(z, x),R(w, y)} ≤ max{R(z, y),R(w, x)}, for eachx, y, z, w ∈ X.
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This implies that the fuzzy relation R is a fuzzy interval order.

In addition, assume that Vx ∩ Uy 6= φ⇒ Vx ∪ Uy = 1X , for each x, y ∈ X, then
we have to show that the fuzzy relationR is a fuzzy semiorder. Since the condition
Vx∩Uy 6= φ⇒ Vx∪Uy = 1X implies that if (Vx∩Uy)(z) > 0 for some z ∈ X, then
(Vx∪Uy)(w) = 1, for each w ∈ X, so we have (Vx∩Uy)(z) ≤ (Vx∪Uy)(w), for each
x, y, z, w ∈ X. This implies that min{R(x, z),R(z, y)} ≤ max{R(x,w),R(w, y)}
for each x, y, z, w ∈ X and hence R is a fuzzy semiorder.

Now we define the adjoint of a fuzzy relation as a generalization of the corre-
sponding concept given in [53].

Definition 5.23. Let R be a fuzzy relation on a non empty set X. Then the
adjoint Ra of R is defined as the complement of the transpose of R i.e., Ra =

(Rt)c.

We note that the adjoint operator Ra is idempotent, i.e., (Ra)a = R.

Theorem 5.24. Let R be a fuzzy relation on a set X. Then the following prop-
erties are satisfied:

1. If {Lx, Rx}, {Ltx, Rt
x}, {Lcx, Rc

x}, {Lax, Ra
x} represent the lower and upper con-

tours of the element x ∈ X with respect to R, Rt,Rc,Ra respectively. Then

Lx = Rt
x, Rx = Ltx, for each x ∈ X.

Lcx = 1X r Lx = Ra
x, Rc

x = 1X rRx = Lax, for each x ∈ X.

2. τR = τRt.

3. τRa = τRc.

Proof. 1. Since Lx(y) = R(y, x) = Rt(x, y) = Rt
x(y), for each y ∈ Y and

Rx(y) = R(x, y) = Rt(y, x) = Ltx(y), for each y ∈ Y . Therefore, Lx = Rt
x

and Rx = Ltx.

Since Lcx(y) = Rc(y, x) = 1 − R(y, x) = (1X r Lx)(y) = (1X r Rt
x)(y) =

1 − Rt
x(y) = Ra

x(y), for each y ∈ X and Rc
x(y) = Rc(x, y) = 1 − R(x, y) =

(1X r Rx)(y) = (1X r Ltx)(y) = 1 − Ltx(y) = Lax(y), for each y ∈ X, so we
have Lcx = 1X r Lx = Ra

x and Rc
x = 1X rRx = Lax.
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2. Since τR and τRt are respectively generated by the families {Lx, Rx : x ∈ X}
and {Ltx, Rt

x : x ∈ X} and Lx = Rt
x, Rx = Ltx, for each x ∈ X (by part (1)),

so τR = τRt .

3. Since τRa and τRc are respectively generated by the families {Lax, Ra
x : x ∈ X}

and {Lcx, Rc
x : x ∈ X} and also Lcx = Ra

x and Rc
x = Lax, for each x ∈ X (by

part (1)), so τRa = τRc .

5.3 Fuzzy bitopological spaces generated by a fuzzy

relation

In [53], authors had introduced and studied bitopological spaces generated by
binary relations. In this section, we introduce and study fuzzy bitopological spaces
generated by fuzzy relations.

Definition 5.25. [94] A fuzzy bitopological space is a triple (X, τ1, τ2), where X
is a non empty set and τ1, τ2 are any fuzzy topologies on X.

The following is a generalization of the corresponding concept given in [53].

Definition 5.26. A fuzzy bitopological space (X, τ1, τ2) is said to be generated
by a fuzzy relation R on X if τR = τ1 and τRa = τ2

Example 5.7. Let R be a fuzzy relation on X = {x, y}, given by

R x y

x 0.5 0.7

y 0.3 0.4

It is easy to verify that the adjoint Ra of R is the fuzzy relation on X = {x, y},
given by

Ra x y

x 0.5 0.7

y 0.3 0.6
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Then in view of Example 5.1, the fuzzy topology τ1 generated by a fuzzy relation
R is given by:

τR = {0X , 1X , Lx, Ly, Rx, Ry,
0.5

x
+

0.4

y
,
0.3

x
+

0.3

y
,
0.7

x
+

0.7

y
}.

Now, the fuzzy topology τ2 generated byRa is generated by the subbasis {Lax, Lay, Ra
x, R

a
y},

where Lax, Lay, Ra
x and Ra

y are given as follows:

Lax =
0.5

x
+

0.3

y
, Lay =

0.7

x
+

0.6

y
, Ra

x =
0.5

x
+

0.7

y
, Ra

y =
0.3

x
+

0.6

y

and hence

τ2 = {0X , 1X , Lax, Lay, Ra
x, R

a
y,

0.3

x
+

0.3

y
,
0.5

x
+

0.6

y
,
0.7

x
+

0.7

y
}.

Therefore, (X, τ1, τ2) is a fuzzy bitopological space generated by R.

Now we are going to obtain a characterization of a fuzzy bitopological space
which is generated by some fuzzy relation.

Theorem 5.27. A fuzzy bitopological space (X, τ1, τ2) is generated by a fuzzy re-
lation if and only if there exist collections {Ux : x ∈ X} and {Vx : x ∈ X} of
τ1-fuzzy open sets such that

1. {Ux : x ∈ X} ∪ {Vx : x ∈ X} is a subbase of τ1.

2. {1X r Ux : x ∈ X} ∪ {1X r Vx : x ∈ X} is a subbase for τ2.

3. Uy(x) = Vx(y), for each x, y ∈ X.

Proof. First suppose that (X, τ1, τ2) is generated by a fuzzy relation. Let R be a
fuzzy relation such that τ1 = τR and τ2 = τRa . By definition of τR, we know that
the family of contours {Lx}x∈X∪{Rx}x∈X is a subbase for τ1. Moreover, by part (1)
and part (3) of Theorem 5.24, we have that {1XrLx : x ∈ X}∪{1XrRx : x ∈ X} is
a subbase for τ2 = τRa = τRc . Also we have that Ly(x) = Rx(y), for each x, y ∈ X.
Put Ux = Lx and Vx = Rx, then the required conditions (1)-(3) are satisfied.

Conversely, assume that there exist collections {Ux : x ∈ X} and {Vx : x ∈ X}
of τ1-fuzzy open sets satisfying conditions (1)-(3). Then to show that (X, τ1, τ2)

is generated by some fuzzy relation, define a fuzzy relation R : X × X → I by
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R(x, y) = Uy(x) = Vx(y), for each (x, y) ∈ X × X. Then by using Theorem 5.9,
R generates τ1. Also note that the lower contour Lx and the upper contour Rx

of the element x ∈ X are Ux and Vx, respectively. Then by the hypothesis (2)
given in the theorem, Theorem 5.24(part (1) and part(3)), Ra generates τ2. This
completes the proof.

Now we prove the following theorem where we mean fuzzy T1−ness and fuzzy
T0−ness in the sense of Srivastava et al.[107] and Lowen et al.[71], respectively.

Theorem 5.28. Let (X, τ1, τ2) be a fuzzy bitopological space that is generated by
some fuzzy relation. Then the following properties hold:

1. The fuzzy topology τ1 is fuzzy T1 iff the fuzzy topology τ2 is fuzzy T1.

2. The fuzzy topology τ1 is fuzzy T0 iff the fuzzy topology τ2 is fuzzy T0.

Proof. 1. Let R be a fuzzy relation such that τ1 = τR and τ2 = τRa . Suppose
that τ1 is fuzzy T1. To show that τ2 is fuzzy T1, choose two distinct fuzzy
points x′r and y′s inX. Let s1 ∈ (0, 1) be such that s1 > s. Now x′1−r and y′1−s1
are two distinct fuzzy points in X. Since τ1 is fuzzy T1, there exist two fuzzy
open sets U, V ∈ τ1 such that x′1−r ∈ U, y′1−s1 /∈ U, x′1−r /∈ V, y′1−s1 ∈ V .
Since τ1 = τR, so U and V can be written respectively in the following form:
U =

⋃
i∈Ω

⋂
j∈I1

Uij and V =
⋃
i∈Ω1

⋂
j∈I2

Vij, where Uij and Vij are of the form Lx

or Ry, I1 and I2 are finite. Now

x′1−r ∈ U

⇒ x′1−r ∈
⋃
i∈Ω

⋂
j∈I1

Uij

⇒ x′1−r ∈
⋂
j∈I1

Ui1j, for some i1 ∈ Ω

⇒ 1− r < min
j∈I1

Ui1j(x
′)

⇒ 1− r < Ui1j(x
′), for each j ∈ I1

⇒ r > 1− Ui1j(x′), for each j ∈ I1

⇒ x′r /∈ U c
i1j
, for each j ∈ I1 (5.4)
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and

y′1−s1 /∈ U

⇒ 1− s > 1− s1 ≥ sup
i∈Ω

min
j∈I1

Uij(y
′)

⇒ 1− s > min
j∈I1

Uij(y
′), for each i ∈ Ω

⇒ 1− s > Ui1j1(y′), for some j1 ∈ I1(Since I1 is finite)

⇒ s < 1− Ui1j1(y′)

⇒ y′s ∈ U c
i1j1
. (5.5)

Therefore in view of (5.4) and (5.5), x′r /∈ U c
i1j1

and y′s ∈ U c
i1j1
. Now using

Theorem 5.24(1), U c
i1j1

is of the form Lax or Ra
y. Let U c

i1j1
= Aai1j1 , then

Aai1j1 ∈ τ2 is such that x′r /∈ Aai1j1 and y′s ∈ Aai1j1 .

Next consider two distinct fuzzy points x′1−r1 and y′1−s in X where r1 > r.
Since τ1 is fuzzy T1, there exist two fuzzy open sets U ′ =

⋃
i∈Ω′

⋂
j∈J1

U ′ij, V
′ =⋃

i∈Ω′1

⋂
j∈J2

V ′ij in τ1 such that x′1−r1 ∈ U
′, y′1−s /∈ U ′, x′1−r1 /∈ V

′, y′1−s ∈ V ′. Now

x′1−r1 /∈ V
′, y′1−s ∈ V ′ implies, as in the previous case that x′r ∈ (V ′i2j2)c and

y′s /∈ (V ′i2j2)c where (V ′i2j2)c is of the form Lax or Ra
y. Now put (V ′i2j2)c = Ba

i2j2
.

Then Ba
i2j2
∈ τ2 is such that x′r ∈ Ba

i2j2
and y′s /∈ Ba

i2j2
, showing that τ2 is

fuzzy T1.

Conversely, assume that τ2 is fuzzy T1. To show that τ1 is fuzzy T1, choose
two distinct fuzzy points x′r and y′s in X. Since τ2 is fuzzy T1, so for two
distinct fuzzy points x′1−r and y′1−s1 in X where 0 < s < s1 < 1, there exist
two fuzzy open sets Ua, V a ∈ τ2 such that x′1−r ∈ Ua, y′1−s1 /∈ Ua, x′1−r /∈
V a, y′1−s1 ∈ V

a. Since τ2 = τRa , so Ua and V a can be written respectively
in the following form: Ua =

⋃
i∈A

⋂
j∈I′1

Ua
ij and V a =

⋃
i∈A1

⋂
j∈I′2

V a
ij , where Ua

ij and

V a
ij are of the form Lax or Ra

y, I ′1 and I ′2 are finite. Then

x′1−r ∈ Ua

⇒ x′1−r ∈
⋃
i∈A

⋂
j∈I′1

Ua
ij

⇒ x′1−r ∈
⋂
j∈I′1

Ua
i′1j
, for some i′1 ∈ A

⇒ 1− r < min
j∈I′1

Ua
i′1j

(x′)
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⇒ 1− r < Ua
i′1j

(x′), for each j ∈ I ′1
⇒ r > 1− Ua

i′1j
(x′), for each j ∈ I ′1

⇒ x′r /∈ (Ua
i′1j

)c, for each j ∈ I ′1 (5.6)

and

y′1−s1 /∈ U
a

⇒ 1− s > 1− s1 ≥ sup
i∈A

min
j∈I′1

Ua
ij(y

′)

⇒ 1− s > min
j∈I′1

Ua
ij(y

′), for each i ∈ A

⇒ 1− s > Ua
i′1j
′
1
(y′), for some j′1 ∈ I ′1(Since I ′1 is finite)

⇒ s < 1− Ua
i′1j
′
1
(y′)

⇒ y′s ∈ (Ua
i′1j
′
1
)c (5.7)

So in view of (5.6),(5.7) and Theorem 5.24(1), there exists a member (Ua
i′1j
′
1
)c

of τ1 such that x′r /∈ (Ua
i′1j
′
1
)c and y′s ∈ (Ua

i′1j
′
1
)c. Similarly it can be shown that

there exists a member Bi′2j
′
2
∈ τ1, where Bi′2j

′
2
is of the form Lx or Ry, such

that x′r ∈ Bi′2j
′
2
and y′s /∈ Bi′2j

′
2
, showing that τ1 is fuzzy T1.

2. Suppose that τ1 is fuzzy T0. To show that τ2 is fuzzy T0, choose x′, y′ ∈
X, x′ 6= y′. Since τ1 is fuzzy T0, there exists a fuzzy open set U ∈ τ1 such
that U(x′) 6= U(y′). Now, U =

⋃
i∈Ω

⋂
j∈I1

Uij, where Uij is of the form Lx or Ry

and I1 is finite. Then,

U(x′) 6= U(y′)

⇒ (
⋃
i∈Ω

⋂
j∈I1

Uij)(x
′) 6= (

⋃
i∈Ω

⋂
j∈I1

Uij)(y
′)

⇒ (
⋂
j∈I1

Ui1j)(x
′) 6= (

⋂
j∈I1

Ui1j)(y
′), for some i1 ∈ Ω

⇒ min
j∈I1

Ui1j(x
′) 6= min

j∈I1
Ui1j(y

′)

⇒ Ui1j1(x′) 6= Ui1j1(y′), for some j1 ∈ I1

⇒ 1− Ui1j1(x′) 6= 1− Ui1j1(y′), for some j1 ∈ I1

⇒ U c
i1j1

(x′) 6= U c
i1j1

(y′),

where U c
i1j1

is of the form Lax or Ra
y(by using Theorem 5.24(1)). This implies

that τ2 is fuzzy T0.
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Conversely, assume that τ2 is fuzzy T0. To show that τ1 is fuzzy T0, choose
x′, y′ ∈ X, x′ 6= y′. Since τ2 is fuzzy T0, there exists a fuzzy open set Ua ∈ τ2

such that Ua(x′) 6= Ua(y′). Now, Ua =
⋃
i∈Ω′

⋂
j∈J

Ua
ij, where Ua

ij is of the form

Lax or Ra
y and J is finite. Then,

Ua(x′) 6= Ua(y′)

⇒ (
⋃
i∈Ω′

⋂
j∈J

Ua
ij)(x

′) 6= (
⋃
i∈Ω′

⋂
j∈J

Ua
ij)(y

′)

⇒ (
⋂
j∈J

Ua
i′1j

)(x′) 6= (
⋂
j∈J

Ua
i′1j

)(y′), for some i′1 ∈ Ω′

⇒ min
j∈J

Ua
i′1j

(x′) 6= min
j∈J

Ua
i′1j

(y′),

⇒ Ua
i′1j
′
1
(x′) 6= Ua

i′1j
′
1
(y′), for some j′1 ∈ J

⇒ 1− Ua
i′1j
′
1
(x′) 6= 1− Ua

i′1j
′
1
(y′), for some j′1 ∈ J

⇒ (Ua
i′1j
′
1
)c(x′) 6= (Ua

i′1j
′
1
)c(y′)

Now put (Ua
i′1j
′
1
)c = Ai′1j′1 , then Ai′1j′1 is of the form Lx or Ry( by using

Theorem 5.24(1)). Hence Ai′1j′1 ∈ τ1 is such that Ai′1j′1(x′) 6= Ai′1j′1(y′) which
implies that τ1 is fuzzy T0.

5.4 Conclusion

In this chapter, we have introduced the concepts of a fuzzy topological space
and a fuzzy bitopological space generated by a fuzzy relation as an extension of
the corresponding concepts in [62] and [53] respectively for the crisp case. Several
results have been proved. In particular, we have obtained necessary and sufficient
condition when a fuzzy topology τ on X is generated by a fuzzy relation, charac-
terizations for a fuzzy topology generated by a fuzzy interval order, a preorderable
fuzzy topology, an orderable fuzzy topology and a fuzzy bitopological space gener-
ated by a fuzzy relation. Further, it has been proved that if (X, τ1, τ2) is the fuzzy
bitopological space generated by a fuzzy relation R, then the fuzzy topology τ1 is
fuzzy Ti iff τ2 is fuzzy Ti, i = 0, 1.


