Chapter 3

On T_0 and T_1 fuzzy soft topological spaces

3.1 Introduction

Separation axioms in a fuzzy soft topological space have been introduced and studied earlier by Mahanta and Das[72]. In fuzzy topological spaces, there exist several definitions of fuzzy T_0 and fuzzy T_1 separation axioms(cf. [5, 71, 109, 110], etc.). The definition given by Lowen and Srivastava [71] turns out to be 'categorically right' definition of fuzzy T_0 separation axiom.

In this chapter, we have extended this definition to the case of a fuzzy soft topological space. Further, we have introduced T_1 separation axiom in a fuzzy soft toplogical space as an extension of the definition of T_1 -ness in a fuzzy topological space given by Srivastava et al.[110]. We have given a complete comparison of our definitions with those of Mahanta and Das[72]. It has been proved that our definitions satisfy the basic desirable properties e.g., hereditary, productive and projective.

Throughout the chapter we mean a fuzzy soft topological space in the sense of Definition 1.21.

The contents of this chapter, in the form of a research paper, has been published in 'Ann. Fuzzy Math. Inform., 10(2015)591-605'.

3.2 Fuzzy soft T_0 topological spaces

Lowen and Srivastava[71] have given the following definition of T_0 separation axiom in fuzzy topological spaces.

Definition 3.1. [71] A fuzzy topological space (X, τ) is said to be *fuzzy* T_0 if for every pair of distinct points $x, y \in X$, there exists a fuzzy open set U in X such that $U(x) \neq U(y)$.

Motivated by this, we give the following definition of fuzzy soft T_0 separation axiom in a fuzzy soft topological space:

Definition 3.2. Let (X, τ) be a fuzzy soft topological space relative to the parameters set E. Then (X, τ) is said to be *fuzzy soft* T_0 if for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exists $f_A \in \tau$ such that $f_A(e_1)(x_1) \neq f_A(e_2)(x_2)$.

Mahanta and Das[72] had given the following definition of fuzzy soft T_0 topological spaces:

Definition 3.3. [72] A fuzzy soft topological space (X, τ) is said to be *fuzzy soft* T_0 if for every pair of disjoint fuzzy soft sets e_{h_A} , e_{g_B} (where e_{h_A} is a fuzzy soft set over X such that $e_{h_A}(e) \neq 0_X$ and $e_{h_A}(e') = 0_X$, for $e' \neq e$, similarly e_{g_B} is defined), there exists a fuzzy soft open set p_A over X containing one but not the other.

The above two definitions of a fuzzy soft T_0 space are independent as exhibited through the following examples.

Example 3.1. Definition $3.2 \Rightarrow$ Definition 3.3

Let $X = \{a, b\}$ and E be the parameter set which consists of only one element, say $E = \{e\}$ and $\tau = \{p_A : E \to I^X \mid p_A(e)(a) = 1/2, p_A(e)(b) = 0\} \cup \{0_E, 1_E\}$. Then (X, τ) is fuzzy soft T_0 in the sense of Definition 3.2, since for $(a, e), (b, e) \in X \times E$, there exists $p_A \in \tau$ such that $p_A(e)(a) \neq p_A(e)(b)$. But it fails to be a fuzzy soft T_0 space in the sense of Definition 3.3, since for the two disjoint fuzzy soft sets e_{h_A} and e_{g_B} such that

$$h_A(e)(x) = \begin{cases} 3/4, & \text{if } x = a \\ 0, & \text{if } x = b \end{cases}$$

and

$$g_B(e)(x) = \begin{cases} 0, & \text{if } x = a \\ 1, & \text{if } x = b, \end{cases}$$

there does not exist any non trivial fuzzy soft open set over X containing any of them.

Example 3.2. Definition $3.3 \Rightarrow$ Definition 3.2

Let $X = \{a, b\}$ and E be the parameters set which consists of two elements, say $E = \{e_1, e_2\}$ and $\tau = \{p_A : E \to I^X \mid p_A(e_1) = p_A(e_2) = \chi_{\{a\}}\} \cup \{0_E, 1_E\}$. Then (X, τ) is fuzzy soft T_0 in the sense of Definition 3.3. To show this, consider the disjoint fuzzy soft sets $(e_1)_{h_A}$ and $(e_1)_{g_B}$. Since $h_A(e_1) \cap g_B(e_1) = 0_X$, we may assume that $h_A(e_1) = a_\lambda$ and $g_B(e_1) = b_s$, where $\lambda, s \in (0, 1]$. Then there exists $p_A \in \tau$ such that p_A contains $(e_1)_{h_A}$ but does not contain $(e_1)_{g_B}$. Similarly, we can deal with the case of disjoint fuzzy soft open sets of the form $(e_2)_{h_A}$ and $(e_2)_{g_B}$. But it fails to be a fuzzy soft T_0 space in the sense of Definition 3.2, since for $(a, e_1) \neq (a, e_2)$, there does not exist any fuzzy soft open set f_A such that $f_A(e_1)(a) \neq f_A(e_2)(a)$.

From now onwards we mean a fuzzy soft T_0 topological space in the sense of Definition 3.2.

Theorem 3.4. Let (Y, σ) be an indiscrete enriched fuzzy soft topological space relative to the parameters set K. Then (X, τ) is fuzzy soft T_0 implies that every fuzzy soft continuous mapping $(\varphi, \psi) : (Y, \sigma) \to (X, \tau)$ is constant.

Proof. First suppose that (X, τ) is fuzzy soft T_0 . Then for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exists $f_A \in \tau$ such that $f_A(e_1)(x_1) \neq f_A(e_2)(x_2)$. We have to show that every fuzzy soft continuous mapping $(\varphi, \psi) : (Y, \sigma) \to (X, \tau)$ is constant. For this, suppose on the contrary that there exists a fuzzy soft continuous mapping $(\varphi, \psi) : (Y, \sigma) \to (X, \tau)$ which is not constant. Then,

Case 1: If φ is not constant and ψ is constant.

Let $\varphi(y_1) \neq \varphi(y_2)$, for some $y_1, y_2 \in Y$ and $\psi(k) = e$, for each $k \in K$. Then, for $(\varphi(y_1), e)$, $(\varphi(y_2), e) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(e)(\varphi(y_1)) \neq f_A(e)(\varphi(y_2))$. Now, for $k \in K$, we have

$$\begin{aligned} (\varphi, \psi)^{-1} f_A(k)(y_1) &= f_A(\psi(k))(\varphi(y_1)) \\ &= f_A(e)(\varphi(y_1)) \\ &\neq f_A(e)(\varphi(y_2)) \\ &= f_A(\psi(k))(\varphi(y_2)) \\ &= (\varphi, \psi)^{-1} f_A(k)(y_2). \end{aligned}$$

which implies that $(\varphi, \psi)^{-1} f_A$ is not a constant fuzzy soft set over Y. Therefore (φ, ψ) is not fuzzy soft continuous, a contradiction.

Case 2: If φ is constant and ψ is not constant.

Let $\varphi(y) = x, \forall y \in Y$ and $\psi(k_1) \neq \psi(k_2)$, for some $k_1, k_2 \in K$. Then, for $(x, \psi(k_1))$, $(x, \psi(k_2)) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(\psi(k_1))(x) \neq f_A(\psi(k_2))(x)$. Now, for $y \in Y$, we have

$$\begin{aligned} (\varphi, \psi)^{-1} f_A(k_1)(y) &= f_A(\psi(k_1))(x) \\ &\neq f_A(\psi(k_2))(x) \\ &= f_A(\psi(k_2))(\varphi(y)) \\ &= (\varphi, \psi)^{-1} f_A(k_2)(y), \end{aligned}$$

which implies that $(\varphi, \psi)^{-1} f_A$ is not a constant fuzzy soft set over Y. Therefore (φ, ψ) is not fuzzy soft continuous, a contradiction.

Case 3: If φ and ψ both are not constant.

Let $\varphi(y_1) \neq \varphi(y_2)$ and $\psi(k_1) \neq \psi(k_2)$, for some $y_1, y_2 \in Y$ and $k_1, k_2 \in K$. Then, for $(\varphi(y_1), \psi(k_1)), (\varphi(y_2), \psi(k_2)) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(\psi(k_1))(\varphi(y_1)) \neq f_A(\psi(k_2))(\varphi(y_2))$. Now,

$$\begin{aligned} (\varphi,\psi)^{-1}f_A(k_1)(y_1) &= f_A(\psi(k_1))(\varphi(y_1)) \\ &\neq f_A(\psi(k_2))(\varphi(y_2)) \\ &= (\varphi,\psi)^{-1}f_A(k_2)(y_2), \end{aligned}$$

which implies that $(\varphi, \psi)^{-1} f_A$ is not a constant fuzzy soft set over Y. Therefore (φ, ψ) is not fuzzy soft continuous, a contradiction.

 T_0 -ness in fuzzy soft topological spaces satisfies the hereditary property as shown in the following proposition.

Proposition 3.5. Fuzzy soft subspace of a fuzzy soft T_0 space is fuzzy soft T_0 .

Proof. Let (X, τ) be a fuzzy soft T_0 space relative to the parameters set E and $G \subseteq E$. Then, for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exists $f_A \in \tau$ such that $f_A(e_1)(x_1) \neq f_A(e_2)(x_2)$. In particular, for $(x_1, g), (x_2, g') \in X \times G, (x_1, g) \neq (x_2, g')$, there exists $f_A \in \tau$ such that $f_A(g)(x_1) \neq f_A(g')(x_2)$. So, $f_A \mid_G (g)(x_1) \neq f_A \mid_G (g')(x_2)$. This implies that (X, τ_G) is fuzzy soft T_0 .

In the following theorem it is proved that T_0 -ness in fuzzy soft topological spaces satisfies the productive and projective properties.

Theorem 3.6. If $\{(X_i, \tau_i) : i \in \Omega\}$ is a family of fuzzy soft topological spaces relative to the parameters sets E_i , respectively. Then the product fuzzy soft topological space $(X, \tau) = \prod_{i \in \Omega} (X_i, \tau_i)$ is fuzzy soft T_0 iff each coordinate fuzzy soft topological space (X_i, τ_i) is fuzzy soft T_0 .

Proof. First, let us assume that (X_i, τ_i) is fuzzy soft T_0 , for each $i \in \Omega$. To show that (X, τ) is fuzzy soft T_0 , choose $(x, e), (y, e') \in X \times E, (x, e) \neq (y, e')$, where $x = \prod_{j \in \Omega} x_j$, $y = \prod_{j \in \Omega} y_j$, $e = \prod_{j \in \Omega} e_j$ and $e' = \prod_{j \in \Omega} e'_j$. Then $x_i \neq y_i$ or $e_k \neq e'_k$ for some $i, k \in \Omega$. Let $x_i \neq y_i$. Since (X_i, τ_i) is fuzzy soft T_0 , for $(x_i, e_i), (y_i, e'_i) \in X_i \times E_i$, there exists $f_{A_i} \in \tau_i$ such that $f_{A_i}(e_i)(x_i) \neq f_{A_i}(e'_i)(y_i)$. Set $f_A = \prod_{j \in \Omega} f_{A_j}^1$ such that $f_{A_j}^1 = 1_{E_j}$, for $j \neq i$ and $f_{A_i}^1 = f_{A_i}$. Then f_A is a fuzzy soft open set such that $f_A(e)(x) \neq f_A(e')(y)$ implying that (X, τ) is fuzzy soft T_0 . The other cases can be handled similarly.

Conversely, assume that (X, τ) is fuzzy soft T_0 . To show (X_i, τ_i) is fuzzy soft T_0 , choose $(x_i, e_i), (y_i, e'_i) \in X_i \times E_i, (x_i, e_i) \neq (y_i, e'_i)$. Then $x_i \neq y_i$ or $e_i \neq e'_i$. Let $x_i \neq y_i$. Now construct two points $x = \prod_{j \in \Omega} x'_j$ and $y = \prod_{j \in \Omega} y'_j$ in X, where $x'_j = y'_j$, for $j \neq i$ and $x'_i = x_i, y'_i = y_i$ and two points $e^1 = \prod_{j \in \Omega} e^1_j$ and $e^2 = \prod_{j \in \Omega} e^2_j$ in E, where $e^1_j = e^2_j$, for $j \neq i$ and $e^1_i = e_i, e^2_i = e'_i$. Then, since (X, τ) is fuzzy soft T_0 , for $(x, e^1), (y, e^2) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(e^1)(x) \neq f_A(e^2)(y)$. Also, since each fuzzy soft open set can be written as a union of basic fuzzy soft

open sets, so we can write f_A in the following form:

$$f_A = \bigcup_{k \in T} \prod_{j \in \Omega} (f_{A_j})_k,$$

where T is an arbitrary set.

Now, if we assume that

$$\prod_{j\in\Omega} (f_{A_j})_k(e^1)(x) = \prod_{j\in\Omega} (f_{A_j})_k(e^2)(y), \quad \text{for each } k \in T$$

$$\Rightarrow \inf_j (f_{A_j})_k(e^1_j)(x'_j) = \inf_j (f_{A_j})_k(e^2_j)(y'_j), \quad \text{for each } k \in T$$

$$\Rightarrow \sup_k \inf_j (f_{A_j})_k(e^1_j)(x'_j) = \sup_k \inf_j (f_{A_j})_k(e^2_j)(y'_j)$$

$$\Rightarrow (\bigcup_{k\in T} \prod_{j\in\Omega} (f_{A_j})_k)(e^1)(x) = (\bigcup_{k\in T} \prod_{j\in\Omega} (f_{A_j})_k)(e^2)(y)$$

$$\Rightarrow f_A(e^1)(x) = f_A(e^2)(y), \text{ a contradiction.}$$

Therefore, there exists some $k \in T$ such that

$$\prod_{j \in \Omega} (f_{A_j})_k(e^1)(x) \neq \prod_{j \in \Omega} (f_{A_j})_k(e^2)(y)$$

$$\Rightarrow \inf_j (f_{A_j})_k(e^1_j)(x'_j) \neq \inf_j (f_{A_j})_k(e^2_j)(y'_j).$$

Since, for $j \neq i$, $x'_j = y'_j$, $e^1_j = e^2_j$, so we have

$$(f_{A_i})_k(e_i)(x_i) \neq (f_{A_i})_k(e'_i)(y_i),$$

which implies that (X_i, τ_i) is fuzzy soft T_0 . The other cases can be handled similarly.

3.3 Fuzzy soft T_1 topological spaces

In this section, we introduce and study fuzzy soft T_1 topological spaces. The following definition of fuzzy soft T_1 topological spaces is motivated by the definition 5.1 of fuzzy T_1 -topological spaces given by Srivastava et al.[110].

Definition 3.7. Let (X, τ) be a fuzzy soft topological space relative to the parameters set E. Then (X, τ) is said to be *fuzzy soft* T_1 if for each pair $(x_1, e_1), (x_2, e_2) \in$

 $X \times E, (x_1, e_1) \neq (x_2, e_2), \text{ there exist } f_A, g_B \in \tau \text{ such that } f_A(e_1)(x_1) = 1, f_A(e_2)(x_2) = 0, g_B(e_1)(x_1) = 0, g_B(e_2)(y_2) = 1.$

Earlier Mahanta and Das[72] have introduced fuzzy soft T_1 topological spaces as follows:

Definition 3.8. [72] A fuzzy soft topological space (X, τ) is said to be *fuzzy soft* T_1 if for every pair of disjoint fuzzy soft sets e_{h_A} , e_{g_B} (where e_{h_A} is a fuzzy soft set over X such that $e_{h_A}(e) \neq 0_X$ and $e_{h_A}(e') = 0_X$, for $e' \neq e$, similarly e_{g_B} is defined), there exist fuzzy soft open sets p_A and q_A over X such that $e_{h_A} \subseteq p_A$ and $e_{g_B} \not\subseteq p_A$; $e_{h_A} \not\subseteq q_A$ and $e_{g_B} \subseteq q_A$.

We observe that Definition $3.7 \Rightarrow$ Definition 3.8, to show this we first prove the following proposition:

Proposition 3.9. The following statements are equivalent in a fuzzy soft topological space (X, τ) relative to the parameters set E:

- 1. (X, τ) is fuzzy soft T_1 .
- 2. $e_{\{x\}}$ is fuzzy soft closed, for each $e \in E$ and $x \in X$, where $e_{\{x\}}$ denotes the fuzzy soft set over X such that

$$e_{\{x\}}(e')(x') = \begin{cases} 1, & \text{if } e' = e, \ x' = x \\ 0, & \text{otherwise.} \end{cases}$$

Proof. $(1) \Rightarrow (2)$

First, assume that (X, τ) is fuzzy soft T_1 . Then, to show that $e_{\{x\}}$ is fuzzy soft closed, equivalently, $e_{\{x\}}^c$ is fuzzy soft open, choose any fuzzy soft point $e'_{y_{\lambda}} \in e_{\{x\}}^c$. Then,

Case 1: If y = x and $e' \neq e$. Then, for $(x, e), (x, e') \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e)(x) = 1$, $f_A(e')(x) = 0, g_B(e)(x) = 0, g_B(e')(x) = 1$. Now $e'_{x_\lambda} \in g_B \sqsubseteq e^c_{\{x\}}$. **Case 2:** If $y \neq x$ and e' = e. Then, for $(x, e), (y, e) \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e)(x) = 1$, $f_A(e)(y) = 0, g_B(e)(x) = 0, g_B(e)(y) = 1$. Now $e_{y_\lambda} \in g_B \sqsubseteq e^c_{\{x\}}$. **Case 3:** If $y \neq x$ and $e' \neq e$. Then, for $(x, e), (y, e') \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e)(x) = 1$, $f_A(e')(y) = 0$, $g_B(e)(x) = 0$, $g_B(e')(y) = 1$. Now $e'_{y_{\lambda}} \in g_B \sqsubseteq e^c_{\{x\}}$. Therefore, $e^c_{\{x\}}$ is fuzzy soft open.

 $(2) \Rightarrow (1)$

Suppose that $e_{\{x\}}$ is fuzzy soft closed for each $e \in X$, and $x \in X$. To show that (X, τ) is fuzzy soft T_1 , choose $(x', e'), (x'', e'') \in X \times E, (x', e') \neq (x'', e'')$. Now consider the fuzzy soft open sets $(e'_{\{x'\}})^c$ and $(e''_{\{x''\}})^c$. Then, $(e'_{\{x'\}})^c(e')(x') =$ $0, (e'_{\{x'\}})^c(e'')(x'') = 1, (e''_{\{x''\}})^c(e')(x') = 1$ and $(e''_{\{x''\}})^c(e'')(x'') = 0$. \Box

Now we prove that Definition $3.7 \Rightarrow$ Definition 3.8, as follows:

Let (X, τ) be a fuzzy soft T_1 space in the sense of Definition 3.7.

⇒ $e_{\{x\}}$ is fuzzy soft closed, for each $e \in E$ and $x \in X$ (in view of Proposition 3.9). ⇒ $(e_{\{x\}})^c$ is fuzzy soft open, for each $e \in E$ and $x \in X$.

Now choose any two disjoint fuzzy soft sets e_{h_A} and e_{g_B} . Since $e_{h_A}(e) \neq 0_X$ and $e_{g_B}(e) \neq 0_X$, there exist $a, b \in X$ such that $e_{h_A}(e)(a) \neq 0$ and $e_{g_B}(e)(b) \neq 0$. Since $h_A(e) \cap g_B(e) = 0_X$, so $a \neq b$. Now consider the fuzzy soft open sets $(e_{\{b\}})^c$, $(e_{\{a\}})^c$. Then $e_{h_A} \subseteq (e_{\{b\}})^c$ and $e_{g_B} \not\subseteq (e_{\{b\}})^c$; $e_{h_A} \not\subseteq (e_{\{a\}})^c$ and $e_{g_B} \subseteq (e_{\{a\}})^c$, showing that (X, τ) is fuzzy soft T_1 in the sense of Definition 3.8.

But the converse is not true which is exhibited from the following example.

Example 3.3. Let $X = \{a, b\}$, E be the parameters set which consists of two elements, say $E = \{e_1, e_2\}$ and $\tau = \{0_E, 1_E\} \cup \{p_A : E \to I^X, q_A : E \to I^X \mid p_A(e_1) = p_A(e_2) = \chi_{\{a\}}, q_A(e_1) = q_A(e_2) = \chi_{\{b\}}\}$. Then (X, τ) is a fuzzy soft T_1 space in the sense of Definition 3.8. For this, let $(e_1)_{h_A}$ and $(e_1)_{g_B}$ be disjoint fuzzy soft sets. Since $h_A(e_1) \cap g_B(e_1) = 0_X$, we may assume that $h_A(e_1) = a_\lambda$ and $g_B(e_1) = b_s$, where $\lambda, s \in (0, 1]$. Then for $(e_1)_{h_A}$ and $(e_1)_{g_B}$, there exist $p_A, q_A \in \tau$ such that p_A contains $(e_1)_{h_A}$ but does not contain $(e_1)_{g_B}$ and q_A contains $(e_1)_{g_B}$ but does not contain $(e_1)_{h_A}$. Similarly, we can deal with the case of disjoint fuzzy soft open sets of the form $(e_2)_{h_A}$ and $(e_2)_{g_B}$. But it fails to be a fuzzy soft T_1 space in the sense of Definition 3.7, since for $(a, e_1) \neq (a, e_2)$, there does not exist any fuzzy soft open set f_A such that $f_A(e_1)(a) = 1$ and $f_A(e_2)(a) = 0$.

From now onwards we mean a fuzzy soft T_1 topological space in the sense of Definition 3.7.

In the following proposition, we show that T_1 -ness in fuzzy soft topological spaces satisfies the hereditary property.

Proposition 3.10. Fuzzy soft subspace of a fuzzy soft T_1 space is fuzzy soft T_1 .

Proof. Let (X, τ) be a fuzzy soft T_1 space relative to the parameters set E and $G \subseteq E$. Then, for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exist $f_A, g_B \in \tau$ such that

$$f_A(e_1)(x_1) = 1, f_A(e_2)(x_2) = 0, g_B(e_1)(x_1) = 0, g_B(e_2)(x_2) = 1$$

In particular, for (x_1, g) , $(x_2, g') \in X \times G$, $(x_1, g) \neq (x_2, g')$, there exist $f_A, g_B \in \tau$ such that

$$f_A(g)(x_1) = 1, \ f_A(g')(x_2) = 0, \ g_B(g)(x_1) = 0, \ g_B(g')(x_2) = 1$$

$$\Rightarrow f_A \mid_G (g)(x_1) = 1, \ f_A \mid_G (g')(x_2) = 0, \ g_B \mid_G (g)(x_1) = 0, \ g_B \mid_G (g')(x_2) = 1.$$

This implies that (X, τ_G) is fuzzy soft T_1 .

In the following theorem we prove that T_1 -ness in fuzzy soft topological spaces, satisfies the productive and projective properties. The proof is based on the proof of the corresponding result given in [108].

Theorem 3.11. If $\{(X_i, \tau_i); i \in \Omega\}$ is a family of fuzzy soft topological spaces relative to the parameters sets E_i respectively. Then the product fuzzy soft topological space $(X, \tau) = \prod_{i \in \Omega} (X_i, \tau_i)$ is fuzzy soft T_1 iff each coordinate fuzzy soft topological space (X_i, τ_i) is fuzzy soft T_1 .

Proof. Let (X_i, τ_i) be fuzzy soft T_1 , for each $i \in \Omega$. Let (x, e), $(y, e') \in X \times E$, $(x, e) \neq (y, e')$, where $x = \prod_{j \in \Omega} x_j$, $y = \prod_{j \in \Omega} y_j$, $e = \prod_{j \in \Omega} e_j$ and $e' = \prod_{j \in \Omega} e'_j$. Then there exist some $i, k \in \Omega$ such that $x_i \neq y_i$ or $e_k \neq e'_k$. Let $x_i \neq y_i$. Now since (X_i, τ_i) is fuzzy soft T_1 , for (x_i, e_i) , (y_i, e'_i) , there exist $f_{A_i}, g_{B_i} \in \tau_i$ such that $f_{A_i}(e_i)(x_i) = 1$, $f_{A_i}(e'_i)(y_i) = 0$, $g_{B_i}(e_i)(x_i) = 0$, $g_{B_i}(e'_i)(y_i) = 1$. Now consider the fuzzy soft open sets $f_A = (p_{X_i}, q_{E_i})^{-1}f_{A_i}$ and $g_B = (p_{X_i}, q_{E_i})^{-1}g_{B_i}$. Then, $f_A(e)(x) = ((p_{X_i}, q_{E_i})^{-1}f_{A_i})(e)(x) = f_{A_i}(q_{E_i}(e))(p_{X_i}(x)) = f_{A_i}(e_i)(x_i) = 1$ and

 $f_A(e')(y) = f_{A_i}(e'_i)(y_i) = 0$. Similarly, we get $g_B(e')(y) = 1, g_B(e)(x) = 0$. Hence (X, τ) is fuzzy soft T_1 . The other cases can be handled similarly.

Conversely, let us assume that (X, τ) is fuzzy soft T_1 . To show that (X_i, τ_i) is fuzzy soft T_1 , choose $(x_i, e_i), (y_i, e'_i) \in X_i \times E_i$ such that $(x_i, e_i) \neq (y_i, e'_i)$. Then $x_i \neq y_i$ or $e_i \neq e'_i$. Let $x_i \neq y_i$. Now consider two points $x = \prod_{j \in \Omega} x'_j$ and $y = \prod_{j \in \Omega} y'_j$ in X, where $x'_j = y'_j$, for $j \neq i$ and $x'_i = x_i, y'_i = y_i$ and two points $e^1 = \prod_{j \in \Omega} e^1_j$ and $e^2 = \prod_{j \in \Omega} e^2_j$ in E, where $e^1_j = e^2_j$, for $j \neq i$ and $e^1_i = e_i, e^2_i = e'_i$. Since the product space (X, τ) is fuzzy soft T_1 , for $(x, e^1), (y, e^2) \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e^1)(x) = 1, f_A(e^2)(y) = 0, g_B(e^1)(x) = 0, g_B(e^2)(y) = 1$. Since $f_A(e^1)(x) = 1$, so for each $r \in (0, 1), e^1_{x_r} \in f_A$ and similarly $e^2_{y_s} \in g_B$, for each $s \in (0, 1)$. Now since f_A and g_B are fuzzy soft open, so for $e^1_{x_r} \in f_A$ and $e^2_{y_s} \in g_B$, we can find basic fuzzy soft open sets $\prod_{j \in \Omega} f^r_{A_j}$ and $\prod_{j \in \Omega} g^s_{B_j}$ such that

$$e_{x_r}^1 \in \prod_{j \in \Omega} f_{A_j}^r \sqsubseteq f_A,$$

and

$$e_{y_s}^2 \in \prod_{j \in \Omega} g_{B_j}^s \sqsubseteq g_B$$

$$\Rightarrow \quad r < (\prod_{j \in \Omega} f_{A_j}^r)(e^1)(x) \leqslant f_A(e^1)(x), \quad \text{for each } r \in (0,1)$$

$$\Rightarrow \quad r < \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x'_j) \leqslant 1, \quad \text{for each } r \in (0,1) \quad (3.1)$$

$$\Rightarrow \quad 1 \leqslant \sup_{0 < r < 1} \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x'_j) \leqslant 1$$

$$\Rightarrow \quad \sup_{0 < r < 1} \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x'_j) = 1$$

$$\Rightarrow \quad (\bigcup_{0 < r < 1} \prod_j f_{A_j}^r)(e^1)(x) = 1 \quad (3.2)$$

Next, since

$$\begin{aligned} f_{A_j}^r(e_j^1)(x_j') &\leqslant \sup_r f_{A_j}^r(e_j^1)(x_j'), \quad \text{for each } r \in (0,1) \\ \Rightarrow \quad \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x_j') &\leqslant \inf_{j \in \Omega} \sup_r f_{A_j}^r(e_j^1)(x_j'), \quad \text{for each } r \in (0,1) \\ \Rightarrow \quad \sup_r \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x_j') &\leqslant \inf_{j \in \Omega} \sup_r f_{A_j}^r(e_j^1)(x_j') \\ \Rightarrow \quad (\bigcup_r \prod_{j \in \Omega} f_{A_j}^r)(e^1)(x) &\leqslant (\prod_{j \in \Omega} \bigcup_r f_{A_j}^r)(e^1)(x), \\ \Rightarrow \quad (\prod_{j \in \Omega} \bigcup_r f_{A_j}^r)(e^1)(x) = 1, \quad (\text{using } 3.2) \end{aligned}$$

$$\Rightarrow \inf_{j} \sup_{r} f_{A_{j}}^{r}(e_{j}^{1})(x_{j}') = 1 \Rightarrow \sup_{r} f_{A_{j}}^{r}(e_{j}^{1})(x_{j}') = 1, \quad \text{for each } j \in \Omega \Rightarrow (\bigcup_{r} f_{A_{i}}^{r})(e_{i})(x_{i}) = 1.$$

Further, since

$$f_A(e^2)(y) = 0$$

$$\Rightarrow \qquad (\prod_{j \in \Omega} f_{A_j}^r)(e^2)(y) = 0, \quad \text{for each } r \in (0,1)$$

$$\Rightarrow \qquad \inf_{j \in \Omega} f_{A_j}^r(e_j^2)(y_j') = 0, \quad \text{for each } r \in (0,1)$$

Next, since $x'_j = y'_j$ and $e^1_j = e^2_j$ for $j \neq i$, so

$$\begin{aligned} f_{A_j}^r(e_j^2)(y_j') &= f_{A_j}^r(e_j^1)(x_j'), \quad j \neq i, \quad \text{for each } r \in (0,1) \\ &> 0 \quad (\text{ using } 3.1) \end{aligned}$$

Therefore, $f_{A_i}^r(e_i')(y_i) = 0$, for each $r \in (0, 1)$. Put $f_{A_i} = \bigcup_{0 < r < 1} f_{A_i}^r$. Then $f_{A_i} \in \tau_i$ such that $f_{A_i}(e_i)(x_i) = 1$ and $f_{A_i}(e_i')(y_i) = 0$. Similarly, we can obtain another fuzzy soft open set g_B such that $g_{B_i}(e_i)(x_i) = 0$ and $g_{B_i}(e_i')(y_i) = 1$. The other cases can be handled similarly.

Theorem 3.12. Let (X, τ) be a fuzzy soft topological space. Then (X, τ) is fuzzy soft Hausdorff $\Rightarrow (X, \tau)$ is fuzzy soft $T_1 \Rightarrow (X, \tau)$ is fuzzy soft T_0 .

Proof. First, assume that (X, τ) is fuzzy soft Hausdorff. Then to show that (X, τ) is fuzzy soft T_1 , choose $(x, e), (y, e') \in X \times E, (x, e) \neq (y, e')$. Consider $e_{x_{\lambda}}$ and e'_{y_s} , which are distinct fuzzy soft points over X. Next, since (X, τ) is fuzzy soft Hausdorff, there exist f_A^{λ} and $g_B^s \in \tau$ such that

$$e_{x_{\lambda}} \in f_{A}^{\lambda}, e_{y_{s}}^{\prime} \in g_{B}^{s} \text{ and } f_{A}^{\lambda} \sqcap g_{B}^{s} = 0_{E}$$

$$\Rightarrow \lambda < f_{A}^{\lambda}(e)(x) \text{ and } s < g_{B}^{s}(e')(y)$$

$$\Rightarrow 1 \leq \sup_{0 < \lambda < 1} f_{A}^{\lambda}(e)(x) \text{ and } 1 \leq \sup_{0 < s < 1} g_{B}^{s}(e')(y)$$

$$\Rightarrow \sup_{0 < \lambda < 1} f_{A}^{\lambda}(e)(x) = 1 \text{ and } \sup_{0 < s < 1} g_{B}^{s}(e')(y) = 1.$$
(3.4)

Now, set $f_A = \bigcup_{0 < \lambda < 1} f_A^{\lambda}$. Then,

$$f_A(e)(x) = \sup_{0 < \lambda < 1} f_A^{\lambda}(e)(x)$$

= 1 (using 3.4)

Next, since

$$f_A^{\lambda} \sqcap g_B^s = 0_E, \quad \text{for each } \lambda \in (0, 1), \text{ for each } s \in (0, 1)$$

$$\Rightarrow \min\{f_A^{\lambda}(e_1)(y), g_B^s(e_1)(y)\} = 0, \quad \text{for each } \lambda \in (0, 1), s \in (0, 1) \text{ and } e_1 \in E$$

$$\Rightarrow f_A^{\lambda}(e')(y) = 0, \quad \text{for each } \lambda \in (0, 1) \text{ (using 3.3)}$$
(3.5)

Therefore,

$$f_A(e')(y) = \sup_{0 < \lambda < 1} f_A^{\lambda}(e')(y)$$

= 0, (using 3.5)

Similarly, we can construct a fuzzy soft open set g_B such that $g_B(e)(x) = 0$, $g_B(e')(y) = 1$.

Next, assume that (X, τ) is fuzzy soft T_1 . So, for $(x_1, e_1), (x_2, e_2) \in X \times E$, $(x_1, e_1) \neq (x_2, e_2)$, there exist $f_A, g_B \in \tau$ such that $f_A(e_1)(x_1) = 1, f_A(e_2)(x_2) = 0, g_B(e_1)(x_1) = 0, g_B(e_2)(y_2) = 1$. Then, clearly (X, τ) is fuzzy soft T_0 . \Box

The converse of the above Theorem 3.12 does not hold good as can be seen in the following counter examples.

Example 3.4. Let X be an infinite set and E be a parameters set. Suppose

$$\tau = \{ f_A : E \to I^X \} \cup \{ 0_E \},\$$

where f_A is defined as follows:

$$f_A(e)(x) = \begin{cases} 1, & except for finitely many pairs (e, x) \\ 0, & otherwise. \end{cases}$$

Then τ is a fuzzy soft topology over X as shown below:

1.
$$0_E, 1_E \in \tau$$
.

2. If $f_A, g_B \in \tau$, then

$$\begin{aligned} (f_A \sqcap g_B)(e)(x) &= \min\{f_A(e)(x), g_B(e)(x)\} \\ &= \begin{cases} 1, & except \text{ for finitely many pairs } (e, x) \\ 0, & otherwise. \end{cases} \end{aligned}$$

Hence $f_A \sqcap g_B \in \tau$.

3. If $(f_A)_i \in \tau$, for $i \in \Omega$. Then

$$\begin{split} (\bigsqcup_{i\in\Omega} (f_A)_i)(e)(x) &= \sup_{i\in\Omega} (f_A)_i(e)(x) \\ &= \begin{cases} 1, & except \ for \ finitely \ many \ pairs \ (e,x) \\ 0, & otherwise. \end{cases}$$

Hence $\bigsqcup_{i\in\Omega} f_{A_i} \in \tau$.

Now this fuzzy soft topological space is fuzzy soft T_1 as $e_{\{x\}}$ is fuzzy soft closed, for each $e \in E$ and $x \in X$. But (X, τ) is not fuzzy soft T_2 , since there does not exist any pair of non trivial disjoint fuzzy soft open sets.

Example 3.5. Let $X = \{a, b\}$ and E be a parameter set which consists of only one element say, $E = \{e\}$ and $\tau = \{f_A : E \to I^X \mid f_A(e) = \chi_{\{a\}}\} \cup \{0_E, 1_E\}$. Then (X, τ) is a fuzzy soft topological space which is fuzzy soft T_0 , since for $(a, e), (b, e) \in$ $X \times E$, there exists $f_A \in \tau$ such that $f_A(e)(a) \neq f_A(e)(b)$ but it is not fuzzy soft T_1 , since there does not exist any fuzzy soft open set g_B such that $g_B(e)(b) = 1$ and $g_B(e)(a) = 0$.

3.4 Conclusion

In this chapter, we have introduced T_0 and T_1 separation axioms in fuzzy soft topological spaces. We have also given a complete comparison of our definitions with those given by Mahanta and Das[72]. Further, we have proved that these axioms satisfy productive, projective and hereditary properties. A characterization for a fuzzy soft T_1 topological space in terms of the fuzzy soft set $e_{\{x\}},$ where

$$e_{\{x\}}(e')(x') = \begin{cases} 1, & \text{if } e' = e, \ x' = x \\ 0, & \text{otherwise.} \end{cases}$$

has been obtained. It has also been shown that $T_2 \Rightarrow T_1 \Rightarrow T_0$ but none of the implications is reversible.