
Chapter 1

Introduction, Preliminaries and

Plan of the Thesis

1.1 Introduction

Zadeh[122] introduced fuzzy sets to deal with classes of objects which do not
have precisely defined criteria of membership. Mathematically, a fuzzy set in
a set X is a function from X to the unit interval [0,1]. The theory of fuzzy
sets had been extensively applied to widespread disciplines. Several books and
monographs are available to provide good coverage of the applications of fuzzy
set theory e.g., Dubois and Prade[35], Zimmermann[124], Klir and Yuan[61], Liu
and Luo[68], Ross[90], Hanss[47], Smithson and Verkuilen[103], Rodabaugh and
Klement[89](eds.), etc.

Chang[24] introduced a fuzzy topology on a set X, by replacing ‘subsets’ by
‘fuzzy sets’ in the usual definition of a topology on X. He also introduced the
basic concepts in fuzzy topology, e.g., fuzzy continuity, fuzzy compactness, etc.,
as obvious generalizations of the corresponding concepts in topology. Subse-
quently, Goguen[44] generalized this concept and introduced L−fuzzy topology
using L−fuzzy sets, where L is an arbitrary bounded lattice. Lowen[69] observed
that in Chang’s fuzzy topological spaces, some basic desirable properties are not
satisfied e.g., a constant map between two such spaces is not necessarily contin-
uous. So he modified Chang’s definition. He defined a fuzzy topology on a set
X as a collection of fuzzy sets in X which contains all constant fuzzy sets and is
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closed under arbitrary suprema and finite infima. Höhle[49] introduced ‘fuzzifying
topology’. Šostak[104] defined I− fuzzy topology on a set X. There are other
approaches e.g., due to Hutton[51], Rodabaugh[88], Wang[118], etc.

The theory of fuzzy sets had progressed rapidly but there is difficulty regard-
ing assignment of membership function characterizing a fuzzy set, it extremely
depends upon the individual. Molodtsov[78] observed that the possible reason for
this difficulty was the inadequacy of the parametric tool in the theory of fuzzy
sets. Keeping this in mind, he introduced soft sets. He defined a soft set over
X as a mapping from a set of parameters E to the set of all subsets of X. He
applied the theory of soft sets to stability and regularization, game theory, op-
erations research, Riemann integration, Perron integration, etc. Maji et al.[74]
presented an application of soft sets in decision making problems. Chen[25] pro-
posed a reasonable definition of soft set parametrization reduction and compared
it with attributes reduction in rough set theory. Pie and Mio[85] showed that
soft sets are a class of special information systems. Zou and Xiao[125] presented
a data analysis approach of soft sets under incomplete information. Kharal and
Ahmad[60] defined ‘soft image’ and ‘inverse image’ of a soft set and they applied
these notions to the problems of medical diagnosis in medical systems.

Algebraic structure of soft sets has been studied by many researchers, e.g.,
[3, 4, 39, 57, 58, 80, 81, 99], etc.

Topological structure of soft sets has been studied by several authors. Shabir
and Naz[100] introduced soft topological spaces by replacing ‘sets’ by ‘soft sets’
in the usual definition of topology. They gave the notions of basic concepts e.g.,
soft open, soft closed, soft interior, soft closure, soft subspace, soft neighborhood
of a point, soft separation axioms Ti, i = 0, 1, 2, 3, 4, soft regular and soft nor-
mal spaces etc. and studied their basic properties. Soft Hausdorff topological
spaces were further studied by Varol and Aygün[117]. They also introduced the
concepts of convergence of a sequence and homeomorphism in soft topological
spaces. They have investigated the relation between convergence of a sequence
and Hausdorffness in soft topological spaces. Hussain[50] studied soft connected
spaces. Aygünoǧlu and Aygün[9] introduced enriched soft topology and defined
soft continuity, soft product topology, soft compactness, proved Alexander’s sub-
base theorem and Tychonoff theorem in these spaces. They observed that constant
soft mappings between two non-enriched soft topological spaces are not generally
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soft continuous, however they are soft continuous between two enriched soft topo-
logical spaces. Several other applications of soft sets have been presented by many
researchers(cf.[15, 16, 45, 48, 56, 64], etc.).

Maji et al.[73] introduced the notion of a fuzzy soft set. Since then, many
researchers have been working in constructing theoretical and applicative back-
ground of fuzzy soft sets. Some related works are as follows:

1. Roy and Maji[92] presented a novel fuzzy soft set theoretic approach to
decision making problems.

2. Kharal and Ahmad[59] introduced the concept of a mapping on the classes
of fuzzy soft sets and studied properties of fuzzy soft images and fuzzy soft
inverse images of fuzzy soft sets. They[2] studied some more properties of
fuzzy soft sets, which were introduced and studied by Maji et al.[73], Roy et
al.[92] and Yang et al.[120] and defined arbitrary fuzzy soft union and fuzzy
soft intersection. Further, they proved De Morgan’s laws in fuzzy soft set
theory.

3. Aygünoǧlu and Aygün[8] introduced the concept of fuzzy soft groups, using
a t-norm.

4. Caǧman et al.[17] proposed fuzzy soft aggregation operator and used it in
constructing an efficient decision making method.

5. Kong et al.[63] proposed a new algorithm based on grey relational analysis
and applied it to decision making problems.

Topological structure of fuzzy soft sets was introduced by Tanay and Kandemir[113].
It was further studied by Varol and Aygün[115], Çetkin and Aygün[20], Roy and
Samanta[93], etc. Varol et al.[115] presented the notion of fuzzy soft topological
spaces in both Chang’s sense(which is similar to Tanay and Kandemir’s definition)
and Lowen’s sense and showed that a fuzzy soft topological space gives rise to a
parametrized family of fuzzy topological spaces. In [115], a fuzzy soft topology
in Lowen’s sense is called an enriched fuzzy soft topology. They had also intro-
duced fuzzy soft continuity of fuzzy soft mappings and shown that a constant
mapping between fuzzy soft topological spaces is not fuzzy soft continuous, in
general. However, a constant mapping between enriched fuzzy soft topological
spaces is always fuzzy soft continuous. Further, they had introduced and studied
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the notions of fuzzy soft closure operator, fuzzy soft interior operator and initial
fuzzy soft topology. Mahanta and Das[72] studied fuzzy soft topological spaces,
which was introduced by Tanay et al.[113]. They have also introduced and studied
the notions of a fuzzy soft point, fuzzy soft closure, fuzzy soft interior, separation
axioms and connectedness in fuzzy soft topological spaces. Varol et al.[116] de-
fined soft topology using a new approach. They defined soft topology over a set
X as a soft set over 22X . They also introduced L−soft topology, L−fuzzifying soft
topology and L−fuzzy soft topology on a set X with respect to a parameter set
E and studied soft compactness and L−fuzzy soft compactness in soft topological
spaces and L−fuzzy soft topological spaces respectively. Several other researchers
have been working in this area(cf. [43, 83, 105], etc.).

Binary relations are an important tool to express preferences, but they are not
sufficient to deal with real life preferences. To tackle those cases, L−relations
were introduced and studied by Salii[96]. Fuzzy relations are special cases of
L−relations, when L=[0,1]. They have been studied in detail by several authors,
e.g., [21–23, 40, 55, 65], etc., and used in different areas, such as linguistic[26],
decision making[66], clustering[12], etc. It is a well known fact by now that topo-
logical structure on a set is closely related to an ordered structure on that set.
Some of the well known results are as follows:

As mentioned in [38]:

1. Given a preordered set (X,≤), the family of all upper sets in X forms a
topology on X, called the Alexandrov topology induced by (X,≤).

2. On the other hand, given a topological space (X, τ), the relation ≤ defined
by the following, is a preorder on X:

x ≤ y if x ∈ cl{y},

where cl{y} denotes the closure of the set {y} in τ .

In literature, similar studies in fuzzy context have been done by several authors.
Some of these are as follows:

1. In [54], the authors have introduced fuzzy and metric topologies induced by
T -indistinguisibility operators(or T -fuzzy equivalence relations) and studied
their relationship.
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2. In [87], the authors have established a one to one correspondence between
the family of all fuzzy preorders on X and the family of all fuzzy topologies
on X which satisfy the (TC) axiom.

3. In [121], the authors have established a one to one correspondence between
the family of all fuzzy preorders on X and the family of all fuzzy topologies
τ on X, in the sense of Lowen[69] such that τ is closed under arbitrary inter-
section and whose associated closure operators(say, c) satisfy the condition:
c(α ∧ λ) = α ∧ c(λ), ∀λ ∈ IX , α ∈ I, where IX is the family of all fuzzy sets
in X.

4. In [67], the authors have shown that there is a one to one correspondence
between the family of all fuzzy preorders on a set X and the family of
all fuzzy (*)-Alexandrov spaces(here a fuzzy (*)-Alexandrov space means a
fuzzy topological space in the sense of Lowen[69] in which the fuzzy topology
is closed under arbitary intersection and satisfies the additional conditions:
(i)α ∗ λ ∈ τ and (ii)α → λ ∈ τ , ∀α ∈ I, λ ∈ τ , where ‘→’ denotes the
implication operator with respect to the left continuous t-norm *).

5. In [38], the authors have discussed how fuzzifying topologies are induced from
fuzzy preorder relations on a set X and conversely how a specialization order
can be induced by a fuzzifying topology on a set X. In [37], the authors have
established a one to one correspondence between the family of all fuzzifying
topologies and that of fuzzy preorders on a set X.

6. In [114], the authors have considered fuzzy topologies given by Lai and
Zhang[67], Qin and Pei[87] and Yeung et al.[121] and shown that they are
either dual or same and hence the corresponding results in these papers are
essentially equivalent.

The study of topologies induced by binary relations was initiated by Smithson[102].
Since then, many researchers have been working in this area (cf. [6, 75, 95, 111,
112]). Topologies induced by different kinds of fuzzy relations have also been
studied in literature(cf. [18, 27], etc.).

Guttman[46] had given the idea of representability of a binary relation R be-
tween two non empty sets A and X, by proposing two functions f : A → R and
g : X → R such that

aRx⇔ f(a) > g(x)



Chapter 1. Introduction, Preliminaries and Plan of the Thesis 6

for each a ∈ A and x ∈ X.

It was further studied by Ducamp and Falmagne[36], Doigon et al.[34] etc. Rep-
resentations of different types of ordering have also been studied by several au-
thors(see e.g., [19, 82, 86]).

In fuzzy set theory, the representability of a fuzzy total preorder additive fuzzy
preference structure without incomparability and a compatible fuzzy semiorder,
in terms of the α−cuts of their corresponding fuzzy weak preference relation have
been respectively studied by Agud et al.[1] and Induráin et al.[52].

Fuzzy weak orders with respect to a left continuous t-norm T and their repre-
sentability by means of the residual implication operator associated with T (called
T−representable fuzzy weak orders) have been studied by Baets et al.[11] and Sali
et al.[98]. Baets et al.[11] have obtained characterizations for a TM−representable
(also called Gödel representable) fuzzy weak orders and for the fuzzy relation which
can be written as the union or intersection of a finite family of TM−representable(or
Gödel representable) fuzzy weak orders. Sali et al.[98] have obtained characteriza-
tions for a TP−representable fuzzy weak order and for finite intersections of fuzzy
weak orders with respect to any left continuous t-norm T .

In the present thesis, chapters two and three are on separation axioms of fuzzy
soft topological spaces. In chapter four, we have introduced and studied the notion
of compactness in fuzzy soft topological spaces. In chapters five and six, we have
introduced and studied fuzzy topologies generated by fuzzy relations. Chapter
seven is devoted to a study of representability of fuzzy biorders and fuzzy weak
orders.

1.2 Preliminaries

In this section, we mention the definitions, notations and basic results which
will be used throughout the thesis. Here we use symbols A, X and Y to denote
non empty sets.

Mathematically, a fuzzy set f in X is a function f : X → [0, 1], where f(x)

gives the degree of membership of x in f(cf.[122]). Standard fuzzy set operations,
which are obtained as a natural extension of the corresponding operations in set
theory, are as follows:
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Let f and g be fuzzy sets in X. Then

1. f and g are said to be equal if f(x) = g(x), for each x ∈ X.

2. f is said to be subset of g if f(x) 6 g(x), for each x ∈ X.

3. Union of f and g is the fuzzy set inX, given by (f∪g)(x) = max{f(x), g(x)},
for each x ∈ X.

4. Intersection of f and g is the fuzzy set inX, given by (f∩g)(x) = min{f(x), g(x)},
for each x ∈ X.

5. Complement of f is the fuzzy set in X, given by f c(x) = 1− f(x), for each
x ∈ X.

A constant fuzzy set f inX, taking value α ∈ [0, 1], is given by f(x) = α, ∀x ∈ X
and denoted by αX . The fuzzy sets 0X and 1X are usually denoted by φ and X,
respectively.

The definitions (3) and (4) of the union and intersection of fuzzy sets respectively
can be extended for an arbitrary family of fuzzy sets(cf. [76]). For an arbitrary
family {fi : i ∈ Ω} of fuzzy sets in X, the union

⋃
i∈Ω

fi and the intersection
⋂
i∈Ω

fi,

both are fuzzy sets in X, defined as follows:

1. (
⋃
i∈Ω

fi)(x)=sup {fi(x) : i ∈ Ω}, for each x ∈ X.

2. (
⋂
i∈Ω

fi)(x)=inf {fi(x) : i ∈ Ω}, for each x ∈ X.

Support of a fuzzy set f in X, denoted by suppf , is the crisp subset of X, given
by(cf. [76]):

suppf = {x ∈ X : f(x) > 0}.

We use the following definition of fuzzy points, given by Srivastava et al.[106].

Definition 1.1. A fuzzy point xλ (0 < λ < 1) in X is a fuzzy set in X given by

xλ(x
′) =

λ, if x′ = x

0, otherwise.

Here x and λ are respectively called the support and value of xλ.
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The intersection of two fuzzy sets f and g is in general, defined in terms of a
binary operation i : [0, 1]× [0, 1]→ [0, 1] as follows:

(f ∩ g)(x) = i(f(x), g(x)), ∀x ∈ X, (1.1)

which gives the degree of membership of x in the intersection f ∩ g, in terms
of degrees of membership of x in f and g both(cf.[61]). It is required that this
binary operation i must possess the properties of t-norms, given in the following
definition.

Definition 1.2. [61] A triangular norm or a t-norm is a mapping T : [0, 1] ×
[0, 1]→ [0, 1] such that the following conditions are satisfied:

1. commutativity: T (x, y) = T (y, x), for each x, y ∈ [0, 1];

2. monotonicity: y ≤ z implies that T (x, y) ≤ T (x, z), for each x, y, z ∈ [0, 1];

3. associativity: T (T (x, y), z) = T (x, T (y, z)), for each x, y, z ∈ [0, 1];

4. boundary condition: T (x, 1) = x, for each x ∈ [0, 1].

Some examples of t-norms are as follows:

1. Nilpotent minimum TnM :

TnM(x, y) =

min{x, y}, if x+ y > 1

0, otherwise,

for each (x, y) ∈ [0, 1]× [0, 1].

2. Standard intersection TM :

TM(x, y) = min{x, y}, for each (x, y) ∈ [0, 1]× [0, 1].

3. Algebraic product TP :

TP (x, y) = xy, for each (x, y) ∈ [0, 1]× [0, 1].

4. Lukasiewicz TL:

TL(x, y) = max{0, x+ y − 1}, for each (x, y) ∈ [0, 1]× [0, 1].
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Note that the definition (4) of fuzzy intersection can be obtained by replacing i
by TM in 1.1.

A value x ∈ (0, 1) is said to be a zero divisor of a t-norm T if there exists
y ∈ (0, 1) such that T (x, y) = 0. In that case T is said to admit or to have a zero
divisor. If for T , there is no x ∈ (0, 1) such that it is a zero divisor of T , then T
is said to be a t-norm without zero divisors(cf. [32]).

Similarly, as in case of fuzzy intersections, the union of two fuzzy sets f and g
is in general, defined in terms of a binary operation u : [0, 1] × [0, 1] → [0, 1] as
follows:

(f ∪ g)(x) = u(f(x), g(x)), ∀x ∈ X, (1.2)

which gives the degree of membership of x in the union f∪g, in terms of degrees of
membership of x in f and g both(cf.[61]). It is required that this binary operation
u must possess the properties of t-conorms, given in the following definition.

Definition 1.3. [61] A triangular conorm or a t-conorm is a mapping S : [0, 1]×
[0, 1]→ [0, 1] such that the following conditions are satisfied:

1. commutativity: S(x, y) = S(y, x), for each x, y ∈ [0, 1];

2. monotonicity: y ≤ z implies that S(x, y) ≤ S(x, z), for each x, y, z ∈ [0, 1];

3. associativity: S(S(x, y), z) = S(x, S(y, z)), for each x, y, z ∈ [0, 1];

4. boundary condition: S(x, 0) = x, for each x ∈ [0, 1].

Some examples of t-conorms are as follows:

1. Nilpotent maximum SnM :

SnM(x, y) =

max{x, y}, if x+ y < 1

1, otherwise,

for each (x, y) ∈ [0, 1]× [0, 1].

2. Maximum SM :

SM(x, y) = max{x, y}, for each (x, y) ∈ [0, 1]× [0, 1].
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3. Algebraic sum SP :

SP (x, y) = x+ y − xy, for each (x, y) ∈ [0, 1]× [0, 1].

4. Bounded sum SL:

SL(x, y) = min{x+ y, 1}, for each (x, y) ∈ [0, 1]× [0, 1].

Note that the definition (3) of fuzzy union can be obtained by replacing u by
SM in 1.2. Further, for any t-conorm S, S(a, b) ≥ SM(a, b), for each (a, b) ∈
[0, 1]× [0, 1].

Next, t-norms and t-conorms are closely related. For any t-norm T , the map-
ping S : [0, 1] × [0, 1] → [0, 1] defined as S(x, y) = 1 − T (1 − x, 1 − y), for each
(x, y) ∈ [0, 1]×[0, 1] is a t-conorm. It is called dual t-conorm of T . Conversely, cor-
responding to a t-conorm S, the mapping defined as T (x, y) = 1−S(1−x, 1− y),

for each (x, y) ∈ [0, 1]× [0, 1] is a t-norm.

Now we recall the definitions of a binary relation and some related concepts.

Definition 1.4. [34] A binary relation R between A and X is a subset of A×X,
i.e., R ⊆ A × X. If (a, b) ∈ R, then it is customary to write this as aRb. The
transpose Rt, complement Rc and dual Rd of R are binary relations between X
and A, A and X, X and A respectively and are defined as follows:

1. Rt = {(x, a) : (a, x) ∈ R}.

2. Rc = {(a, x) : (a, x) /∈ R}.

3. Rd = {(x, a) : (a, x) /∈ R}.

If we take A = X i.e., R ⊆ A× A, then R is said to be a binary relation on A.

Next, we mention the definitions of a fuzzy relation and of its different types.

Definition 1.5. [122] A fuzzy relation R between A and X is a fuzzy subset of
A ×X i.e. R is a mapping from A ×X to [0, 1]. The transpose Rt, complement
Rc and dual Rd of R are respectively the fuzzy relations between X and A, A and
X and X and A(cf.[61],[123]) and are defined as follows:
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1. Rt(x, a) = R(a, x), for each (x, a) ∈ X × A;

2. Rc(a, x) = 1−R(a, x), for each (a, x) ∈ A×X;

3. Rd(x, a) = 1−R(a, x), for each (x, a) ∈ X × A.

If X = A, then R is called a fuzzy relation on A.

Definition 1.6. [41] Let T be a t-norm and S be its dual t-conorm. Then a fuzzy
relation R on A is said to be:

1. reflexive if R(a, a) = 1, for each a ∈ A;

2. irreflexive if R(a, a) = 0, for each a ∈ A;

3. T−transitive if R(a, b) ≥ T{R(a, c),R(c, b)}, for each a, b, c ∈ A;

4. negatively S−transitive if R(a, b) ≤ S{R(a, c),R(c, b)}, for each a, b, c ∈ A;

5. strongly S−complete if S{R(a, b),R(b, a)} = 1, for each a, b ∈ A;

6. S−complete if S{R(a, b),R(b, a)} = 1, for each a, b ∈ A, a 6= b;

7. T−asymmetric if T{R(a, b),R(b, a)} = 0, for each a, b ∈ A.

The following two definitions of a fuzzy topological space are given by Chang([24])
and Lowen([69]), respectively.

Definition 1.7. [24] A fuzzy topological space is a pair (X, τ) consisting of a non
empty set X and a family τ of fuzzy sets in X satisfying the following conditions:

1. 0X , 1X ∈ τ.

2. If {fi : i ∈ Ω} is an arbitrary family of fuzzy sets in τ , then
⋃
i∈Ω

fi ∈ τ.

3. If f, g ∈ τ , then f ∩ g ∈ τ .

Definition 1.8. [69] A fuzzy topological space is a pair (X, τ), where X is a non
empty set and τ is a family of fuzzy sets in X such that the following conditions
are satisfied:

1. αX ∈ τ, ∀α ∈ [0, 1].
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2. If {fi : i ∈ Ω} is an arbitrary family of fuzzy sets in τ , then
⋃
i∈Ω

fi ∈ τ.

3. If f, g ∈ τ , then f ∩ g ∈ τ.

In both the definitions 1.7 and 1.8, τ is called a fuzzy topology onX and members
of τ are called fuzzy open sets. A fuzzy set in X is called fuzzy closed if f c ∈ τ .

Let (X, τ) be a fuzzy topological space. Then a subfamily B of τ is called a
base for τ if every member of τ can be written as a union of members of B and a
subfamily S of τ is called a subbase for τ if the family of finite intersections of its
members forms a base for τ(cf.[76]). A fuzzy topology τ is said to be generated by
a family S of fuzzy sets in X if every member of τ is a union of finite intersections
of members of S(cf. [108]).

Now we give the definitions of separation axioms and compactness in fuzzy
topological spaces.

Let (X, τ) be a fuzzy topological space. Then:

Definition 1.9. [71] (X, τ) is said to be fuzzy T0 if for x, y ∈ X, x 6= y, there
exists a fuzzy open set U such that U(x) 6= U(y).

Definition 1.10. [107] (X, τ) is said to be fuzzy T1 if for two distinct fuzzy points
xr, ys in X, there exist two fuzzy open sets U, V such that xr ∈ U, xr /∈ V, ys /∈
U, ys ∈ V .

Definition 1.11. [110] (X, τ) is said to be fuzzy T1 if for x, y ∈ X such that
x 6= y, there exist two fuzzy open sets U, V such that U(x) = 1, U(y) = 0, V (x) =

0, V (y) = 1.

Definition 1.12. [106] (X, τ) is said to be fuzzy T2 or Hausdorff if for two distinct
fuzzy points xr, ys inX, there exist two fuzzy open sets U, V such that xr ∈ U, ys ∈
V and U ∩ V = 0X .

Next, let (X, τ) be a fuzzy topological space in the sense of Lowen[69]. Then:

Definition 1.13. [69] A fuzzy set f in X is said to be fuzzy compact if for any
family β ⊆ τ such that

⋃
µ∈β

µ ⊇ f and for all ε > 0, there exists a finite subfamily

βo ⊆ β such that
⋃
µ∈βo

µ ⊇ f − εX .
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Definition 1.14. [69] (X, τ) is said to be fuzzy compact if each constant fuzzy set
in X is fuzzy compact.

Definition 1.15. [55] A collection P of fuzzy sets in X is called a fuzzy partition
of X if the following conditions are satisfied:

1. For all U ∈ P , there is some x ∈ X such that U(x) = 1.

2. For all x ∈ X, there is exactly one U ∈ P such that U(x) = 1.

3. If U, V ∈ P such that U(x) = V (y) = 1 for some x, y ∈ X, then U(y) =

V (x).

Now we recall some definitions associated with fuzzy soft sets and with its
topological structure, which can be found in [113, 115] and [8].

Definition 1.16. [115] A fuzzy soft set fA over X is a mapping from E to
IX i.e., fA : E → IX such that fA(e) 6= 0X , if e ∈ A ⊆ E and fA(e) = 0X ,

otherwise. Here E is called the parameters set.

The set of all fuzzy soft sets over X will denote by F(X,E).

Definition 1.17. [115] A constant fuzzy soft set αE over X is given by αE(e) =

αX ,∀e ∈ E.

Definition 1.18. [115] Let fA, gB ∈ F(X,E).Then

1. fA is said to be a fuzzy soft subset of gB, denoted by fA v gB, if
fA(e) ⊆ gB(e), ∀e ∈ E.

2. fA and gB are said to be equal, denoted by fA = gB, if fA v gB and gB v fA.

3. The union of fA and gB, denoted by fA t gB, is the fuzzy soft set over X
defined by

(fA t gB)(e) = fA(e) ∪ gB(e), ∀e ∈ E.

4. The intersection of fA and gB, denoted by fA u gB, is the fuzzy soft set over
X defined by

(fA u gB)(e) = fA(e) ∩ gB(e), ∀e ∈ E.

Two fuzzy soft sets fA and gB over X are said to be disjoint if fAu gB = 0E.
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5. Let Ω be an index set and {fAi : i ∈ Ω} be a family of fuzzy soft sets over X.
Then their union

⊔
i∈Ω

fAi and intersection ui∈ΩfAi are defined, respectively

as follows:

(a) (
⊔
i∈Ω

fAi)(e)=
⋃
i∈Ω

fAi(e), ∀e ∈ E.

(b) (ui∈ΩfAi)(e)=
⋂
i∈Ω

fAi(e), ∀e ∈ E.

6. The complement of fA, denoted by f cA, is the fuzzy soft set over X, defined
by

f cA(e) = 1X − fA(e), ∀e ∈ E.

Definition 1.19. [8] Let F(X,E) and F(Y,K) be the collection of all the fuzzy
soft sets over X and Y respectively and E, K be parameters sets for the universe
X and Y respectively. Let ϕ : X → Y and ψ : E → K be two maps. Then a fuzzy
soft mapping from X to Y is the pair (ϕ, ψ) where,

(ϕ, ψ) : F(X,E)→ F(Y,K)

and the image and inverse image of a fuzzy soft set are defined as follows:

1. Let fA ∈ F(X,E). Then the image of fA under the fuzzy soft mapping
(ϕ, ψ) is the fuzzy soft set over Y , denoted by (ϕ, ψ)fA and is defined as:

((ϕ, ψ)fA)(k)(y) =


sup
ϕ(x)=y

sup
ψ(e)=k

fA(e)(x), if ϕ−1(y) 6= φ and ψ−1(k) 6= φ

0, otherwise,

∀y ∈ Y, ∀k ∈ K.

2. Let gB ∈ F(Y,K). Then the inverse image of gB under the fuzzy soft
mapping (ϕ, ψ) is the fuzzy soft set over X, denoted by (ϕ, ψ)−1gB and is
defined as:

((ϕ, ψ)−1gB)(e)(x) = gB(ψ(e))(ϕ(x)), ∀e ∈ E,∀x ∈ X.

A fuzzy soft mapping (φ, ψ) is said to be injective if φ and ψ both are injective
and surjective if φ and ψ both are surjective. Further, (φ, ψ) is said to be constant
if φ and ψ both are constant[115].



Chapter 1. Introduction, Preliminaries and Plan of the Thesis 15

Definition 1.20. [115] Let fA ∈ F(X,E) and gB ∈ F(Y,K). Then the fuzzy soft
product of fA and gB, denoted by fA × gB, is the fuzzy soft set over X × Y and is
defined by

(fA × gB)(e, k) = fA(e)× gB(k), ∀(e, k) ∈ E ×K

and for (x, y) ∈ X × Y ,

(fA(e)× gB(k))(x, y) = min{fA(e)(x), gB(k)(y)}.

Definition 1.21. ([113],[115]) A fuzzy soft topological space relative to the pa-
rameters set E is a pair (X, τ) consisting of a non empty set X and a family τ of
fuzzy soft sets over X satisfying the following conditions :

1. 0E, 1E ∈ τ .

2. If fA, gB ∈ τ , then fA u gB ∈ τ .

3. If (fA)j ∈ τ, ∀j ∈ Ω , where Ω is some index set, then
⊔
j∈Ω

(fA)j ∈ τ .

Definition 1.22. ([113], [115]) A fuzzy soft topological space relative to the pa-
rameters set E is a pair (X, τ) consisting of a non empty set X and a family τ of
fuzzy soft sets over X satisfying the following conditions:

1. αE ∈ τ, ∀α ∈ [0, 1].

2. If fA, gB ∈ τ , then fA u gB ∈ τ.

3. If fAj ∈ τ, ∀j ∈ Ω, where Ω is some index set, then
⊔
j∈Ω

fAj ∈ τ .

In both the definitions 1.21 and 1.22, τ is called a fuzzy soft topology over X,
members of τ are called fuzzy soft open sets. A fuzzy soft set gB over X is called
fuzzy soft closed if (gB)c ∈ τ .

We mention here that the fuzzy soft topology given in the definition 1.22, has
been called ‘enriched fuzzy soft topology’, in [115].

Definition 1.23. [115] A fuzzy soft topology τ1 is called finer than a fuzzy soft
topology τ2 if τ2 ⊆ τ1 and then τ2 is called coarser than τ1.

Definition 1.24. ([115]) Let (X, τ) be a fuzzy soft topological space. Then a
subfamily B of τ is called a base for τ if every member of τ can be written as a
union of members of B.
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Definition 1.25. ([115]) Let (X, τ) be a fuzzy soft topological space. Then a
subfamily S of τ is called a subbase for τ if the family of finite intersection of its
members forms a base for τ .

Definition 1.26. ([115]) A fuzzy soft topology τ over X is said to be generated
by a family S of fuzzy soft sets over X if every member of τ is a union of finite
intersections of members of S.

Definition 1.27. ([115]) Let {(Xi, τi)}i∈Ω be a family of fuzzy soft topological
spaces relative to the parameters sets Ei and for each i ∈ Ω, we have a fuzzy soft
mapping

(ϕ, ψ)i : (X,E)→ (Xi, τi).

Then the fuzzy soft topology τ over X is said to be initial with respect to the
family {(ϕ, ψ)i}i∈Ω if τ has as subbase the set

S = {(ϕ, ψ)−1
i (fAi) : i ∈ Ω, fAi ∈ τi}

i.e., the fuzzy soft topology τ over X is generated by S.

Definition 1.28. ([115]) Let {(Xi, τi)}i∈Ω be a family of fuzzy soft topological
spaces relative to the parameters sets Ei. Then their product is defined as the fuzzy
soft topological space (X, τ) relative to the parameters set E, where X =

∏
i

Xi,

E =
∏
i

Ei and τ is the fuzzy soft topology over X which is initial with respect to

the family {(pXi , qEi)}i∈Ω, pXi :
∏
i

Xi → Xi and qEi :
∏
i

Ei → Ei, i ∈ Ω are the

projection maps i.e., τ is generated by the family

{(pXi , qEi)−1(fAi) : i ∈ Ω, fAi ∈ τi}.

In particular, let (X1, τ1) and (X2, τ2) be two fuzzy soft topological spaces rela-
tive to the parameters sets E1 and E2, respectively, then their product is the fuzzy
soft topological space (X1 ×X2, τ) relative to the parameters set E1 × E2, where
τ is generated by the set,

S = {(pX1 , qE1)−1fA1 , (pX2 , qE2)−1gA2 : fA1 ∈ τ1, gA2 ∈ τ2}.
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Note that

((pX1 , qE1)−1fA1)(e1, e2)(x, y) = fA1(qE1(e1, e2))(pX1(x, y))

= fA1(e1)(x)

= (fA1 × 1E2)(e1, e2)(x, y), ∀(x, y) ∈ X1 ×X2.

Therefore, (pX1 , qE1)−1fA1 = fA1 × 1E2 .
Similarly, (pX2 , qE2)−1gA2 = 1E1 × gA2 .

So, S has the following form

S = {fA1 × 1E2 , 1E1 × gA2 : fA1 ∈ τ1, gA2 ∈ τ2}

and τ has a base B of the form

B = {fA1 × gA2 : fA1 ∈ τ1, gA2 ∈ τ2}.

Definition 1.29. [115] Let (X1, τ1) and (X2, τ2) be two fuzzy soft topological
spaces. Then a fuzzy soft mapping

(ϕ, ψ) : (X1, τ1)→ (X2, τ2)

is said to be fuzzy soft continuous if (ϕ, ψ)−1fB ∈ τ1,∀fB ∈ τ2.

1.3 Plan of the thesis

The plan of the thesis is as follows:

It consists of 7 chapters. Chapter 1 is introductory and contains necessary
preliminaries and plan of the thesis.

In chapter 2, we have introduced and studied Hausdorff separation axiom in
fuzzy soft topological spaces. We have shown that Hausdorff fuzzy soft topological
spaces satisfy productive, projective and hereditary properties. Further, we have
obtained a characterization of a Hausdorff fuzzy soft topological space.

In chapter 3, we have introduced the notions of T0 and T1 separation axioms
in fuzzy soft topological spaces. We have given a complete comparison of our
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definitions with those given by Mahanta and Das[72]. We have also shown that T0

and T1 fuzzy soft topological spaces satisfy productive, projective and hereditary
properties and obtained a characterization for a T1 fuzzy soft topological space.

In chapter 4, we have introduced and studied compactness in fuzzy soft topolog-
ical spaces as an extension of the fuzzy compactness in a fuzzy topological space
given by Lowen[69]. We have proved the counterparts of the Alexander’s subbase
lemma and the Tychonoff theorem for fuzzy soft topological spaces.

In chapter 5, we have introduced the notion of fuzzy topologies generated by
fuzzy relations as a generalization of the corresponding concept given by Knoblauch[62].
We have introduced the notions of preorderble and orderable fuzzy topologies and
obtained characterizations of a fuzzy topology generated by a fuzzy relation, fuzzy
topology generated by a fuzzy interval order, preorderable and orderable fuzzy
topologies. We have also introduced the notion of fuzzy bitopological spaces gen-
erated by a fuzzy relation and obtained some related results. In particular, we
have obtained a characterization of a fuzzy bitopological space generated by a
fuzzy relation and it has also been proved that if (X, τ1, τ2) is the fuzzy bitopolog-
ical space generated by a fuzzy relation R, then the fuzzy topology τ1 is fuzzy Ti
iff τ2 is fuzzy Ti, i = 0, 1.

In chapter 6, we have introduced the notion of fuzzy topologies generated
by fuzzy relations, as a generalization of the corresponding concept given by
Smithson[102]. We have obtained sufficient conditions under which this generated
fuzzy topology becomes fuzzy T0, fuzzy T1 and fuzzy T2. We have also intro-
duced the notion of ‘finite intersection property’ in fuzzy topological spaces and
established a characterization of the Lowen’s fuzzy compactness in terms of this
property. Using this result, we have obtained a sufficient condition under which
the fuzzy topology generated by a fuzzy relation, becomes fuzzy compact.

In chapter 7, we have studied representability of fuzzy biorders and fuzzy weak
orders. Several results have been obtained. In particular, we have shown that
union of a finite family of fuzzy weak orders with respect to a t-norm T is a
fuzzy quasi-transitive relation with respect to T . Further, we have obtained a
characterization for a TL−representable fuzzy weak order.



Chapter 2

Hausdorff fuzzy soft topological

spaces

2.1 Introduction

Topological structure of fuzzy soft sets has been introduced and studied by
Tanay and Kandemir[113]. It was further studied by Mahanta and Das[72], Varol
and Aygün[115] and Çetkin and Aygün[20], etc. Mahanta and Das[72] had in-
troduced fuzzy soft points and studied the concept of neighbourhoods of a fuzzy
soft point in a fuzzy soft topological space. They have also introduced and stud-
ied fuzzy soft closure, fuzzy soft interior, separation axioms and connectedness in
fuzzy soft topological spaces.

In this chapter, we have given an alternative definition of a ‘fuzzy soft point’and
‘belonging of a fuzzy soft point to a fuzzy soft set’. Using these concepts, we have
introduced and studied the notion of Hausdorff separation axiom in fuzzy soft
topological spaces. Several basic desirable results have been proved. In particular,
we have obtained a characterization of a Hausdorff fuzzy soft topological space, in
terms of the diagonal set. It has been further shown that Hausdorffness in a fuzzy
soft topological space satisfies productive, projective and hereditary properties.

Throughout the chapter we mean a fuzzy soft topological space in the sense of
Definition 1.21.

The contents of this chapter, in the form of a research paper, has been published in ‘Ann.
Fuzzy Math. Inform., 9(2015)247-260’.
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