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(a, b, c) show the variation of magnetization (M) vs. 

applied field (H) for the Co doped samples (x= 0.02, 0.06, 

0.10) respectively. Inset of Fig.7.7 (a), (b) and (c) 

represents the zoom picture of MH behavior at 2K. Fig. 

7.7 (d) represents compile picture of M vs. H behavior for 
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the compile picture of M vs. H for the samples (x= 0.02, 

0.06, 0.10) at 300K, Inset (II) represents the variation of 

coeresive field (HC) as a function of Temperature (T) for 

the samples x=0.02 and x=0.06. 
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