Fig 1.1:	The ITRS roadmap of transistor development [Internet resource (IR1)]	2
Fig 1.2:	Variation of supply voltage and threshold voltage against technology generation [Packan (2007)]	5
Fig 1.3:	Variation of power density against gate length scaling of MOS device [Meyerson (2004)]	6
Fig 1.4:	Variation of drain current against gate-to-source voltage of MOS device [Internet resource (IR2)]	8
Fig 1.5(a):	2-D cross-sections view of MOS device	10
Fig 1.5(b):	2-D cross-sections view of Tunnel FET	10
Fig 1.6(a):	The current mechanism of MOS device	10
Fig 1.6(b):	The current mechanism of Tunnel FET	10
Fig 1.7(a):	Conventional structure of n-TFET device	12
Fig 1.7(b):	Conventional structure of p-TFET device	12
Fig 1.8(a):	Energy band diagram of typical Tunnel FET device in OFF-state	14
Fig 1.8(b):	Energy band diagram of typical Tunnel FET device in ON-state	14
Fig 1.9:	Variation of energy barrier width against gate voltage of typical Tunnel FET [Boucart and Ionescu (2007c)]	14
Fig 1.10(a):	The ON-state energy band diagram for typical Tunnel FET	15
Fig 1.10(b):	The triangular potential barrier for typical Tunnel FET	15
Fig 1.11:	Transfer characteristics for Ideal device, Bulk MOSFET and Tunnel FET [Kim and Fossum (2001)]	18
Fig 1.12(a):	Planar Double-Gate Tunnel FET Structure	20
Fig 1.12(b):	Fin-FET (Double-Gate) Tunnel FET Structure	21
Fig 1.12(c):	Tri-gate Tunnel FET Structure	21
Fig 1.12(d):	Quadruple Gate Tunnel FET Structure	22

Fig 1.12(e):	Cylindrical Gate Tunnel FET Structure	23
Fig 1.13:	Dual material gate Tunnel FET structure	25
Fig 1.14:	Triple material gate Tunnel FET structure	25
Fig 1.15:	Vertical Stacked Gate SiO ₂ /high-k DG TFET Structure	27
Fig 1.16:	Lateral Stacked Gate SiO2/high-k DG TFET Structure	27
Fig 1.17:	Heterojunction Ge/Si DG TFET Structure	29
Fig 1.18:	Strained-Si channel based DG TFET Structure	30
Fig 1.19:	Low-band gap materials based DG TFET structure	31
Fig 2.1(a):	Schematic of high-k stacked gate DG TFET	51
Fig 2.1(b):	Junction potential of high-k stacked gate DG TFET	51
Fig 2.2:	Surface potential along the channel for different V_{GS} of stacked gate SiO ₂ /HfO ₂ DG TFET at $L = 50$ nm, $t_{si} = 12$ nm, $\varphi_M = 4.4$ eV	62
Fig 2.3:	Surface potential along the channel for different V_{DS} of stacked gate SiO ₂ /HfO ₂ DG TFET at $L = 50$ nm, $t_{\text{si}} = 12$ nm, $\varphi_{\text{M}} = 4.4$ eV	62
Fig 2.4:	Variation of depletion length against V_{GS} of stacked gate SiO ₂ /HfO ₂ DG TFET at $L = 50$ nm, $t_{si} = 12$ nm, $\varphi_M = 4.4$ eV	63
Fig 2.5:	Variation of E_x and E_y along the channel for different combinations of dielectric constant DG TFET at $L = 50$ nm, $t_{si} = 12$ nm, $\varphi_M = 4.4$ eV	63
Fig 2.6:	Energy band diagram of stacked gate SiO ₂ /HfO ₂ DG TFET in ON- state ($V_{\text{DS}} = V_{\text{DS}} = 1$ V) at $L = 50$ nm, $t_{\text{si}} = 12$ nm, $\varphi_{\text{M}} = 4.4$ eV	64
Fig 2.7:	Variation of L_t^{min} against V_{GS} for different combination of dielectric constant of DG TFET	65
Fig 2.8:	Variation of L_t^{min} against V_{GS} for different t_{si} of stacked gate SiO ₂ /HfO ₂ DG TFET	66
Fig 2.9:	Variation of I_d against V_{GS} for different combinations of dielectric constant of DG TFET	66
Fig 2.10:	Variation of I_d against V_{GS} for different t_{si} of stacked gate SiO ₂ /HfO ₂ DG TFET	67
Fig 2.11:	Variation of I_d against V_{DS} for different V_{GS} of stacked gate SiO ₂ /HfO ₂ DG TFET	67

- **Fig 2.12:** Variation of point SS against t_{Si} for different combinations of **69** dielectric constant for DG TFET at $V_{GS} = 1$ V, $V_{DS} = 1$ V, L = 50nm, $t_{si} = 12$ nm
- **Fig 2.13:** Extraction of V_{th} from current parameters of stacked gate SiO₂/HfO₂ **69** DG TFET by TC method
- **Fig 2.14:** Extraction of V_{th} of stacked gate SiO₂/HfO₂ DG TFET by TC **70** method for different t_{si}
- **Fig 2.15:** Variation of V_{th} against *L* for different combinations of dielectric **70** constant for DG TFET at $V_{\text{DS}} = 1$ V, $t_{\text{si}} = 12$ nm, $\varphi_{\text{M}} = 4.4$ eV
- Fig 3.1:Schematic of DM DG TFET with SiO_2/HfO_2 stacked gate-oxide75
- **Fig 3.2:** Surface potential along the channel for different models (with S/D 84 Dep. & without S/D Dep.) of DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, $t_{si} = 12$ nm, $V_{DS} = V_{GS} = 1$ V, EOT = 1.3nm
- **Fig 3.3:** Variation of E_x and E_y along the channel for different **85** combinations of dielectric constant of DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, $t_{si} = 12$ nm, $V_{DS} = V_{GS} = 1$ V, EOT = 1.3nm
- **Fig 3.4:** Energy band diagram in ON state ($V_{GS} = V_{DS} = 1V$) of stacked **86** gate SiO₂/HfO₂ DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{si} = 12$ nm, EOT = 1.3nm
- **Fig 3.5:** Variation of L_t^{min} against V_{GS} for different combinations of gate **87** work function (φ_M) of stacked gate SiO₂/HfO₂ DG TFET at L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 1$ V
- **Fig 3.6:** Variation of I_d against V_{GS} for different combinations of **87** dielectric constant of DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 1$ V
- **Fig 3.7:** Variation of I_d against V_{DS} for different V_{GS} of stacked gate **88** SiO₂/HfO₂ DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{si} = 12$ nm
- **Fig 3.8:** Variation of I_d against V_{GS} for different combinations of gate work **89** function (φ_M) of stacked gate SiO₂/HfO₂ DG TFET at L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 1$ V
- **Fig 3.9:** Comparison of point SS against t_{si} for different combinations **89** of gate work function (φ_M) of stacked gate SiO₂/HfO₂ DG TFET at L = 50nm, $V_{GS} = V_{DS} = 1$ V
- **Fig 3.10:** Variation of I_d against V_{GS} for different φ_t of stacked gate **91** SiO₂/HfO₂ DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{si} = 12$ nm, $\varphi_a = 4.4$ eV, $V_{DS} = 1$ V

- **Fig 3.11:** Variation of I_d against V_{GS} for different φ_a of stacked gate **91** SiO₂/HfO₂ DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{si} = 12$ nm, $\varphi_t = 4.2$ eV, $V_{DS} = 1$ V
- **Fig 3.12:** Variation of I_d against V_{GS} for different $L_1:L_2$ of stacked gate **92** SiO₂/HfO₂ DM DG TFET at L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 1$ V
- **Fig 3.13:** Variation of I_d against V_{DS} for different channel length, *L* of **93** stacked gate SiO₂/HfO₂ DM DG TFET at $L_2 : L_3 = 2:3$, $t_{si} = 12$ nm, EOT = 1.3nm, $V_{DS} = 1$ V
- **Fig 3.14:** Variation of I_d against V_{GS} for different combinations of energy **93** band gap structures of stacked gate SiO₂/HfO₂ DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 1$ V
- **Fig 3.15:** Extraction of V_{th} for different combination of gate work function **95** φ_{M} by a TC method of stacked gate SiO₂/HfO₂ DG TFET at L = 50nm, $t_{\text{si}} = 12$ nm, $V_{\text{DS}} = 1$ V
- **Fig 3.16:** Variation of V_{th} against t_{si} for different combinations of dielectric **96** constant of DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $V_{\text{DS}} = 1$ V
- **Fig 3.17:** Variation of I_d against V_{GS} for different N_1 of stacked gate **97** SiO₂/HfO₂ DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 1$ V
- **Fig 3.18:** Variation of V_{th} against N_1 for different combinations of dielectric **97** constant of DM DG TFET at $L_2 = 20$ nm, $L_3 = 30$ nm, L = 50nm, $t_{\text{si}} = 12$ nm, $V_{\text{DS}} = 1$ V
- Fig 4.1(a): Schematic of DM-HGD DG TFET with localized interface charges 101
- Fig 4.1(b):Surface junction potential of DM-HGD DG TFET101
- Fig 4.2(a): Comparisons of $|E_x|$ along the channel for different V_{GS} of DM- 106 HDG DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 0.5$ V
- Fig 4.2(b): Comparisons of G_{BTBT} along the channel for different V_{GS} of DM-HDG DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 0.5$ V
- **Fig 4.3:** Energy band diagram for forward gate bias ($V_{GS} = 0.5V$, $V_{DS} = 0.5V$) **107** of DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm
- **Fig 4.4:** Energy band diagram for ambipolar gate bias ($V_{GS} = -0.5V$, $V_{DS} = 108$ 0.5V) of DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm

- Fig 4.5: G_{BTBT} along the channel for forward gate bias *i.e.*, $V_{\text{GS}} = 1$ V, of **108** DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{\text{si}} = 12$ nm, $V_{\text{DS}} = 0.5$ V
- **Fig 4.6:** G_{BTBT} along the channel for ambipolar gate bias *i.e.*, $V_{\text{GS}} = -1\text{V}$, of **110** DM-HGD DG TFET at $L_2 = 10\text{nm}$, $L_3 = 40\text{nm}$, L = 50nm, $t_{\text{si}} = 12\text{nm}$, $V_{\text{DS}} = 0.5\text{V}$
- **Fig 4.7:** Variation of surface potential along the channel of DM-HGD **112** DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{GS} = 1.0$ V, $V_{DS} = 0.5$ V
- **Fig 4.8:** Extraction of V_{th} from surface potential versus V_{GS} curve (Fig. 4.7) by **113** using $L_{\text{t}}^{\text{min}}$ of DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{\text{si}} = 12$ nm, $V_{\text{DS}} = 0.5$ V
- **Fig 4.9:** Variation of surface potential along the channel for different V_{GS} of **115** DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 0.5$ V
- **Fig 4.10:** Variation of surface potential against V_{GS} for different V_{DS} of DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm
- **Fig 4.11:** Variation of surface potential along the channel for different V_{DS} of **116** DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{GS} = 1$ V
- **Fig 4.12:** Variation of surface potential against V_{DS} for different V_{GS} of DM- **116** HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm
- **Fig 4.13:** Variation of surface potential along the channel for different $N_{\rm f}$ of **117** DM-HGD DG TFET at $V_{\rm GS} = 0.2$ V, $V_{\rm DS} = 0.5$ V, $L_2 = 10$ nm, $L_3 = 40$ nm, $L_{\rm d} = 10$ nm, L = 50nm, $t_{\rm si} = 12$ nm
- Fig 4.14: Variation of amplitude of lateral electric field along the channel for 118 different $N_{\rm f}$ of DM-HGD DG TFET at $V_{\rm GS} = 0.2$ V, $V_{\rm DS} = 0.5$ V, $L_2 = 10$ nm, $L_3 = 40$ nm, $L_{\rm d} = 10$ nm, L = 50nm, $t_{\rm si} = 12$ nm, $V_{\rm DS} = 0.5$ V
- **Fig 4.15:** Comparisons of I_d against V_{GS} for different combinations of DM-HGD DG TFET structures at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 0.5$ V
- **Fig 4.16:** Comparisons of I_d against V_{GS} for different combinations of DM-HGD DG TFET structures at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 0.5$ V
- **Fig 4.17:** Comparisons of I_d against V_{GS} for different L_2 of DM-HGD DG **121** TFET structures at L = 50nm, $t_{si} = 12$ nm, $V_{DS} = 0.5$ V
- **Fig 4.18:** Variation of I_d against V_{GS} for different N_f of DM-HGD DG **122** TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, $L_d = 10$ nm, L = 50nm, $t_{si} = 12$ nm,

 $V_{\rm DS} = 0.5 \rm V$

- **Fig 4.19:** Variation of I_d against V_{DS} for different N_f of DM-HGD DG **122** TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, $L_d = 10$ nm, L = 50nm, $t_{si} = 12$ nm, $V_{GS} = 0.4$ V
- **Fig 4.20:** Extraction of V_{th} from simulated current parameters by using TC **123** method of DM-HGD DG TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, L = 50nm, $t_{\text{si}} = 12$ nm, $V_{\text{DS}} = 0.5$ V
- **Fig 4.21:** Variation of V_{th} against V_{DS} for different N_{f} of DM-HGD DG **124** TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, $L_d = 10$ nm, L = 50nm, $t_{\text{si}} = 12$ nm
- **Fig 4.22:** Variation of V_{th} against N_{f} for different combinations of gate **124** dielectric constant (localized region) of DM-HGD DG TFET at L_2 = 10nm, L_3 = 40nm, L = 50nm, L_d = 10nm, t_{si} = 12nm, V_{DS} =0.5V
- **Fig 4.23:** Comparisons of ΔV_{th} against t_{Si} for different N_{f} of DM-HGD DG **125** TFET at $L_2 = 10$ nm, $L_3 = 40$ nm, $L_d = 10$ nm, L = 50nm, $t_{\text{si}} = 12$ nm, $V_{\text{DS}} = 0.5$ V
- **Fig 5.1(a):** Schematic of DG HJTFET with SiO₂/HfO₂ stacked gate oxide 129
- **Fig 5.1(b):** Energy band diagram of DG HJTFET with SiO₂/HfO₂ stacked gate **129** oxide
- Fig 5.2(a): Schematic of surface junction potentials for different regions in the 131 accumulation/inversion mode of DG HJTFET
- Fig 5.2(b): Surface potential along the channel for different mode of DG 131 HJTFET
- **Fig 5.3(a):** Comparisons of amplitude of E_x along the channel for different **135** V_{GS} and constant $V_{DS} = 0.5V$ of DG HJTFET
- **Fig 5.3(b):** Comparisons of G_{BTBT} along the channel for different V_{GS} and **135** constant $V_{DS} = 0.5V$ of DG HJTFET
- **Fig 5.4:** G_{BTBT} along the channel for high V_{GS} ($V_{\text{GS}} = 0.5$ V) of DG HJTFET **137** with SiO₂/HfO₂ stacked gate oxide at constant $V_{\text{DS}} = 0.5$ V
- **Fig 5.5:** G_{BTBT} along the channel for low V_{GS} ($V_{\text{GS}} = 0.1$ V) of DG HJTFET **139** with SiO₂/HfO₂ stacked gate oxide at constant $V_{\text{DS}} = 0.5$ V
- **Fig 5.6:** Electron concentration along the channel for different V_{GS} of DG **142** HJTFET with SiO₂/HfO₂ gate oxide at $V_{DS} = 0.5V$, L = 50nm, $t_{si} = 12$ nm
- **Fig 5.7:** Variation of surface potential against V_{GS} for different V_{DS} of DG **142** HJTFET with SiO₂/HfO₂ gate oxide at L = 50nm, $t_{si} = 12$ nm

List of Figures

- **Fig 5.8:** Variation of L_d against V_{GS} for different V_{DS} of DG HJTFET with **143** SiO₂/HfO₂ gate oxide at L = 50nm, $t_{si} = 12$ nm
- **Fig 5.9:** Comparisons of energy band diagram of homo (Si) and hetero **144** (Si/Ge) DG TFET in ON-state ($V_{GS} = V_{DS} = 0.5V$)
- **Fig 5.10:** Variation of I_d against V_{GS} for Si (Homo) and Si/Ge (Hetero) **144** SiO₂/HfO₂ stacked gate DG TFET with & without subthreshold regime oxide at L = 50nm, $t_{si} = 12$ nm
- **Fig 5.11:** Variation of I_d against against V_{DS} for different V_{GS} of DG HJTFET **145** with SiO₂/HfO₂ stacked gate oxide at L = 50nm, $t_{si} = 12$ nm
- **Fig 5.12:** Variation of I_d against V_{GS} for different homo and heterojunction **146** DG TFET device at $V_{DS} = 0.5V$, L = 50nm, $t_{si} = 12$ nm
- **Fig 5.13:** Variation of I_d against V_{GS} for different channel length of DG **146** HJTFET with SiO₂/HfO₂ stacked gate oxide at $V_{DS} = 0.5V$, L = 50nm, $t_{si} = 12$ nm
- **Fig 5.14:** Variation of I_d against V_{GS} for different source doping 147 concentration (N_1) of DG HJTFET device with SiO₂/HfO₂ stacked gate oxide at $V_{DS} = 0.5V$, L = 50nm, $t_{si} = 12$ nm
- **Fig 5.15:** Variation of I_d against V_{GS} for different combinations of dielectric **148** constant of SOI HJTFET with SiO₂/HfO₂ stacked gate oxide at $V_{DS} = 0.5V$, L = 50nm, $t_{si} = 12$ nm
- **Fig 5.16:** Variation of I_d against V_{GS} for different combinations of dielectric **148** constant of InAS/GaSb DG HJTFET with SiO₂/HfO₂ stacked gate oxide at $V_{DS} = 0.3$ V and $\varphi_M = 4.7$ eV.
- **Fig 5.17:** Comparisons of SS for different homo and heterojunction DG TFET **150** device with SiO₂/HfO₂ stacked gate oxide at $V_{DS} = 0.5V$, $V_{GS} = 1.0V$, L = 50nm, $t_{si} = 12$ nm
- **Fig 5.18:** Variation of V_{th} against *L* for different homo and heterojunction **151** DG TFET with SiO₂/HfO₂ stacked gate oxide at $V_{\text{DS}} = 0.5\text{V}$, L = 50nm, $t_{\text{si}} = 12\text{nm}$
- **Fig 5.19:** Variation of V_{th} against t_{si} for different combinations of dielectric **151** constant of DG HJTFET stracture at $V_{\text{DS}} = 0.5\text{V}$, L = 50nm, $t_{\text{si}} = 12\text{nm}$