Table of Contents

	Particulars	Page No.
Certificate	25	
Acknowle	lgement	
List of Ab	breviations and Symbols	
List of Fig	ures	
List of Tal	bles	
Preface		
1. Introdu	ıction	1-7
2. Literat	ure review	9
2.1.	Diabetes Mellitus	9
2.2.	Epidemiology of diabetes	10
2.3.	Diabetic cardiomyopathy	12
2.3.1.	Morphology and functional alterations of heart in diabetic cardiomyopathy	13
2.3.2.	Dysfunction of excitation-contraction coupling of diabetic myocardium	14
2.3.3.	Metabolic derangements in diabetic myocardium	15
2.3.4.	Remodeling of extracellular matrix in diabetic hearts	16
2.3.5.	Abnormalities in the microvasculature	16
2.3.6.	Diabetes-induced changes in myocardial tolerance against	17
	ischemia/reperfusion injury	
2.4.	Mechanisms responsible for diabetic cardiomyopathy	18
2.4.1.	Oxidative, nitrosative and nitrative stress	18
2.4.2.	Inflammation in diabetic cardiomyopathy	21
2.4.3.	Defective intracellular protective mechanisms in diabetes	24
2.5.	Principal targets for the prevention of diabetic cardiomyopathy	25
2.5.1.	AMP-activated protein kinase (AMPK)	26
2.5.2.	Nuclear factor-erythroid (NF-E) 2-related factor 2 (Nrf2)	31
2.5.3.	Hemoxygenase-1 (HO-1)	35
2.6.	Need and Scope of Herbal Medicine for diabetic cardiomyopathy	38
2.7.	Pterostilbene	38
2.7.1.	Structure and history	38
2.7.2.	Sources of PT	40
2.7.3.	Effects of PT on metabolic and cardiovascular diseases	40
	Antidiabetic mechanism of PT	40
	Antihyperlipidemic mechanism of PT	43
	Antiatherosclerotic mechanism of PT	45
	Infarct sparing mechanism of PT	47
	Antihypertensive mechanism of PT	48

2.7.3.6. Antihematologic action of	of PT	48
2.7.4. Safety		50
3. Objectives		51
4. Materials and Methods		53
4.1. Ethical approval		53
4.2. Drugs, chemicals and ant	bodies :	53
4.3. Equipment and software		55
4.4. Animal husbandry		55
4.5. Experimental groups		56
4.5.1. Experimental groups for o	bjective-I :	56
4.5.2. Experimental groups for o	bjective-II :	57
4.5.3. Experimental groups for o	objective-III :	58
4.5.3.1. In vivo experiments		58
4.5.3.2. In vitro experiments		59
4.6. Experimental design		61
4.6.1. Study design for objective	e-I (61
4.6.2. Study design for objective	e-II (62
4.6.3. Study design for objective	e-III (62
4.7. Methods		63
4.7.1. Diabetes induction by hig	h fructose diet (for experiments related	63
to Objective-I and Object	ive-II)	
4.7.2. Diabetes induction by intr	ravenous streptozotocin injection (for	63
experiments related to Ob	jective-III)	
4.7.3. Myocardial ischemia-repe	erfusion by coronary artery ligation	64
model (Objective-III)		
4.7.4. Histological evaluation	(66
4.7.5. Primary adult rat cardiom	yocytes isolation and	68
hypoxia/reoxygenation (H		
4.7.5.1. Primary rat cardiomyocyt	es isolation	68
4.7.5.2. Hypoxia/Reoxygenation (HR) of Cardiomyocytes	73
4.7.5.3. Extraction of primary rat	cardiomyocytes from the plates (cell	74
scraping)		
4.7.5.4. Estimation of protein con	centration of cardiomyocyte	75
suspension		
4.7.6. Determination of heart rat	te and blood pressure	76
4.7.7. Oral glucose tolerance tes	t (OGTT)	76
4.7.8. Collection of samples and	preparation of tissue homogenates	77
4.7.8.1. Preparation of cardiac and	l liver homogenates	77
4.7.8.2. Preparation of cardiomyo		77
4.7.9. Paraffin embedding		78
4.7.10. Hematoxylin & Eosin (He	&E) staining	78
4.8. Biochemical estimations		79

	101	Estimation of footing block later (EDC) for the later	70
	4.8.1.	Estimation of fasting blood glucose (FBG), fasting serum insulin	79
		(FSI) and insulin sensitivity index (ISI) and homeostasis model	
		of insulin resistance (HOMA-IR)	
	4.8.2.	Estimation of glycated haemoglobin (HbA1c), hydrogen sulfide,	80
		peroxynitrite and uric acid	
	4.8.3.	Estimation of lipid profile, cardiovascular risk indices and	80
		antiatherogenic index	
	4.8.4.	Detection of oxidative stress and antioxidant markers	81
	4.8.5.	Determination of proinflammatory cytokines by ELISA	81
	4.8.6.	Measurement of plasma creatine kinase-MB and free 8-	81
		isoprostane levels	
	4.8.7.	Determination of LDH levels in diabetic rats and primary rat	82
		cardiomyocytes	
	4.8.7.1.	Procedure for <i>in vitro</i> experiments	82
		Procedure for <i>in vivo</i> experiments	82
		Determination of cardiac cell viability	83
		Determination of apoptotic cell death in diabetic IR hearts and	84
		primary rat cardiomyocytes	
	4.8.9.1.	For adherent cells/ <i>in vitro</i> studies	84
	4.8.9.2.	For <i>in vivo</i> studies	85
		Determination of reactive oxygen species (ROS)	86
		Reverse transcriptase-polymerase chain reaction (RT-PCR)	86
		Western blotting	88
	4.9	Statistical analysis	92
5.	Results		93
	5.1.	To explore the efficacy of PT on insulin resistance, metabolic	93
		syndrome and hepatic oxidative stress in high fructose (65%)	
		diet-induced type 2 diabetic rats (Objective-I).	
	5.1.1.	Effect of PT treatment on body weight and weight gain of	93
	~	fructose-fed diabetic rats	20
	5.1.2.	Effect of PT treatment on fasting blood glucose (FBG) levels of	94
		fructose-fed rats	<i>.</i>
	5.1.3.	Effect of PT treatment on OGTT of fructose-fed rats	95
	5.1.4.	Effect of PT treatment on insulin sensitivity of fructose-fed	96
	2.1.1.	diabetic rats	20
	5.1.5.	Effect of PT treatment on blood pressure of fructose-fed	97
	5.1.5.	diabetic rats	71
	5.1.6.	Effect of PT treatment on lipid profile, cardiovascular risk	98
	2.1.0.	indices and antiatherogenic index (AAI) of fructose-fed diabetic	70
		rats	
	5.1.7.	Effect of PT treatment on glycated haemoglobin, uric acid,	100
	5.1.7.	peroxynitrite and hydrogen sulfide levels in fructose-fed	100
		diabetic rats	

5.1.8.	Effect of PT treatment on liver thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) and	101
	glutathione (GSH) levels of fructose-fed diabetic rats	
5.2.	To investigate the therapeutic potency and signalling mechanism of pterostilbene against diabetes induced-cardiac oxidative stress, inflammation and mitochondrial impairment in fructose- fed diabetic rats (Objective-II)	103
5.2.1.	Effect of PT treatment on the MAP, heart rate, body weight and hypertrophy index in the fructose-fed diabetic rats	103
5.2.2.	Effect of PT treatment on glycemic control and cardiac injury markers in fructose-fed diabetic rats	104
5.2.3.	Effect of PT treatment on the myocardial oxidative stress in fructose-fed diabetic rats	105
5.2.4.	Effect of PT treatment on the antioxidant defence system in the myocardium of fructose-fed diabetic rats	106
5.2.5.	Effect of PT treatment on the myocardial inflammation in fructose-fed diabetic rats	108
5.2.6.	Effect of PT treatment on the myocardial NF-κB expression and inflammasome in fructose-fed diabetic rats	110
5.2.7.	Effect of PT treatment on mitochondrial biogenesis in the hearts of fructose-fed diabetic rats	112
5.2.8.	Effect of PT treatment on the mRNA expression of Nrf2, HO-1 in cardiac tissues of fructose-fed diabetic rats	114
5.2.9.	Effect of PT on AMPK/Nrf2/HO-1 signalling pathway in fructose-fed diabetic rats	114
5.3.	To investigate the cardioprotective potential and mechanistic pathway of pterostilbene against myocardial ischemia- reperfusion injury in streptozotocin-induced diabetic rats (Objective-III)	117
5.3.1.	Effect of PT treatment on general characteristics of streptozotocin diabetic rats	117
5.3.2.	Effect of PT treatment on post-ischemic myocardial injury in streptozotocin-induced diabetic rats	118
5.3.3.	Effect of PT treatment on the phosphorylation of AMPK in diabetic rats	121
5.3.4.	Effect of PT treatment on cardiomyocytes viability exposed to hypoxia-reoxygenation under high glucose condition	123
5.3.5.	Effect of PT treatment on the phosphorylation of AMPK in primary cardiomyocytes subjected to HG+HR	127
5.3.6.	Effect of PT treatment on apoptosis in primary cardiomyocytes subjected to HG+HR	129
6. Discus		135
6.1.	To explore the efficacy of PT on insulin resistance, metabolic	135

	syndrome and hepatic oxidative stress in high fructose (65%)	
	diet-induced type 2 diabetic rats (Objective-I).	
6.2.	To investigate the therapeutic potency and signalling	143
	mechanism of pterostilbene against diabetes induced-cardiac	
	oxidative stress, inflammation and mitochondrial impairment in	
	fructose-fed diabetic rats (Objective-II).	
6.3.	To investigate the cardioprotective potential and mechanistic	151
	pathway of pterostilbene against myocardial ischemia-	
	reperfusion injury in streptozotocin-induced diabetic rats	
	(Objective-III).	
7. Conclusion		157
8. References		159
List of Publications		