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Abstract
The accuracy of thematic information extracted from remote sensing image is assessed recurrently using the confusion

matrix method. But the accuracies have been criticized as a consequence of its aspatial nature. The work presented here

describes a geographically weighted method combined with logistic regression for producing and visualizing the spatially

distributed accuracy measures across the landscape. The outcomes compare the standard confusion matrix-based accuracy

measures with those that have been permitted to differ locally. Furthermore, statistical parameters, i.e. Akaike information

criterion, adjusted squared correlation coefficient (R2) and residual sum of squares (RSS) were employed to compare the

performance of geographically weighted logistic regression (GWLR) with global ordinary least square regression tech-

nique. The GWLR technique was found to provide more reliable performance in estimating spatially varying accuracy

measures. The results demonstrated that the geographically weighted approach offers additional and valuable insights for

examining spatial variation in the context of landscape mapping accuracy.
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Introduction

In recent years, remote sensing images have been

employed broadly to extract thematic information through

digital image classification techniques. Assessing the

accuracy of regional to global scale thematic maps derived

from remote sensing is recognized as an essential

requirement to support most of the mapping projects, sci-

entific applications and policy decisions (Foody 2002). In

remote sensing, the confusion matrix and its associated

measures, for instance, overall accuracy (OA), producer’s

accuracy (PA) and user’s accuracy (UA) have grown as a

conventional standard for describing the accuracy of the-

matic mapping (Congalton and Green 1999). The

descriptions of accuracy can help to appraise the uncer-

tainties coupled with the thematic data or to choose

between thematic data sets when there is an immense

accessibility of data having distinct properties (See and

Fritz 2006). Therefore, accuracy is considered to be a

leading feature of every remote sensing data outcome.

However, some restrictions are also linked with the para-

digm of a confusion matrix. Global estimates of accuracy

metrics are inadequate to express the overall quality of

thematic maps, as these do not reflect the spatial distribu-

tion of errors over the image. It may not be appropriate for

local sub-regions because of the possibility of much larger

or smaller error rates in comparison with global estimates

(McGwire and Fisher 2001; Foody 2005). Several studies

have reported different types of spatially distributed errors

and methods to conquer this problem (Foody 2005; Steele

et al. 1998; Riemann et al. 2010). The existing validation

and accuracy assessment methods have been largely dis-

regarded the advances supported by such methods by

remote sensing community.
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Therefore, the merits of thematic maps derived using

remotely sensed imagery needs to be budgeted and require

improved methods or tools for approximating and illus-

trating the spatial distribution of errors in landscape map-

ping. A phenomenon differs across a landscape because of

spatial non-stationarity or heterogeneity. This spatial vari-

ability restricts to employ any conventional global regres-

sion technique which assumes that the observations are

independent of the spatial location. The use of conven-

tional regression techniques, e.g. ordinary least square

regression (OLSR) lead to erroneous conclusions in spatial

analysis and produces spatially autocorrelated residuals

(LeSage and Pace 2001). Alternatively, the challenges

caused by spatial non-stationarity are addressed by several

local regression methods. One of the best recognized

approaches for spatial regression is the geographically

weighted regression (GWR) proposed by Brunsdon et al.

(1996). It is a statistical technique that notably covenants

with the spatial non-stationarity. GWR is a local regression

technique allows for the computation of relationships

among variables varying over geographical extent

(Fotheringham et al. 2002). It computes the local estimates

of regression coefficients for a moving geographic window

or kernel at every location. Unlike conventional regression

techniques which encapsulate the global relationship

among the variables in a single regression equation, GWR

creates spatially varying data for the relationships among

variables. In several studies, the better performance of

GWR has been reported for various applications (Leung

et al. 2000; Fotheringham et al. 2002; Zhang and Gove

2005).

The focus of our attention on GWR is motivated by

numerous studies which have demonstrated its potential in

the investigation of spatially varying relationships,

including climatology (Brunsdon et al. 2001; Khosravi and

Balyani 2019; Wehbe et al. 2020), health (Lin and Wen

2011; Ehlkes et al. 2014; Weber 2018; Hong et al. 2018;

Hasyim et al. 2018), real estate management (Lu et al.

2014; Liu et al. 2016), urban studies (Faisal and Shaker

2017; Wang et al. 2020) and land change analysis

(Maimaitijiang et al. 2015; Dadashpoor et al. 2019). GWR

can also be applied in combination with linear, logistic and

poisson regression techniques for various applications and

reported in many studies (Nakaya et al. 2005; Ehlkes et al.

2014; Mayfield et al. 2018). Lesiv et al. (2016) explored

geographically weighted logistic regression technique for

comparing the fusion of different remote sensing-based

land cover products. Recently Mollalo et al. (2020) have

successfully applied GWR and multiscale GWR (MGWR)

models for examining the spatial heterogeneity of the rate

of COVID-19 occurrence at local level in United States.

The geographically weighted method is useful to generate

the spatial surfaces of accuracy measures (Comber et al.

2012). It computes a sequence of local diagnostics of

accuracies to explore the spatial heterogeneity using

weighting functions that represent the distance to the centre

of a moving window or kernel (Gollini et al. 2015).

Nevertheless, the application of GWR integrated with

logistic regression for generating spatially varying accu-

racies of a heterogeneous landscape mapping using high

resolution remote sensing image is still limited. The error

matrix is unable to correspond the varying accuracies of

different sub-regions of the area under investigation

because of the systematic errors related to a specific sensor,

properties of the landscape categories and characteristics

(McGwire and Fisher 2001). Even though the studies

showed that the GWR results were evaluated with different

approaches. The capabilities of GWR are investigated

concerning other weighting function, its several band-

widths and selection criteria, etc. The present research

work aims to explore geographically weighted logistic

regression scheme for estimating spatial variation in

accuracy measures and compare it with a conventional

global OLSR technique. It may be used in different disci-

plines, for instance economics, environment, social and

earth sciences, where improved understanding about the

local behaviour of parameter relations is needed. Studies

like this can be viewed as beneficial at different levels such

as current mapping projects, future land use planning and

management. The information can be used to develop more

targeted ground survey interventions, and prioritize the

strategies that are most likely to be effective for a specific

part of the data, either involving a specific place or definite

landscape categories. The consequences of present work

may also be helpful for addressing perennial gaps in the

investigation and description of spatially explicit reliability

accuracy of thematic information of a heterogeneous

landscape.

Study Site and Materials

A portion of Varanasi district in Uttar Pradesh state, India

is the study site for this work. It is located along the left

semicircular shaped bank of divine River Ganga. This area

is highly heterogeneous that provides diverse landscape

categories and patterns making it a suitable site to inspect

the scheme of spatial heterogeneity. The study site covers a

total area of 25,327 ha and geographically extends from

82� 540 3000 to 83� 020 3000 E and from 25� 130 0800 to 25�
200 4300 N. A remote sensing image acquired from high

resolution LISS IV sensor of Resourcesat-2 satellite on 6

April 2013, was used in this study. The spatial, spectral,

radiometric and temporal resolutions of LISS IV image are

5.8 m, 3 bands, 10 bit, and 24 days, respectively, with a

swath width of 70 km. Its spectral resolution covers three
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bands including B2 (green, 520–590 nm), B3 (red,

620–680 nm) and B4 (NIR, 770–860 nm). It was classified

into six major classes viz. agricultural land, fallow land,

vegetation, water bodies, built up and sand according to the

landscape of study site using random forest (RF) classifier

(Breiman 2001). The mapping and regression analyses

were implemented in an open source software R version

3.4.0 (http://cran.rproject.org). The precise geolocation of

validation data set was collected at 551 locations by ran-

dom sampling method with the help of Trimble Juno 3B

GPS receiver. The study area with the sample point loca-

tions is shown in Fig. 1 as viewed on false colour com-

posite (FCC) of LISS IV image.

Methodology

The regression analysis is the most commonly used sta-

tistical method to examine and explore the spatial rela-

tionships among the variables. In spatial data analysis,

several regression techniques have been described and

formulated over the years such as linear mixed models

(LMM) (Zhang and Gove 2005), generalized additive

models (GAM) (Zhang and Gove 2005), geographically

temporal weighted regression (GTWR) (Liu et al. 2016),

geographically weighted temporally correlated logistic

regression (GWTCLR) (Liu et al. 2018), geographically

weighted ordinal regression (GWOR) (Dong et al. 2018)

and multiscale GWR (MGWR) (Mollalo et al. 2020).

OLSR is a generalized linear regression technique. It may

be applied to single or multiple explanatory variables. This

regression technique estimates the coefficients by using

ordinary least squares. Since the OLSR technique has been

well formulated and documented in literatures, hence only

the GWR techniques have been briefly described.

Confusion Matrix

A confusion matrix was created to assess the accuracies of

landscape classes in a conventional manner before starting

to explore spatial non-stationarity. A confusion matrix was

created using high resolution LISS IV imagery with vali-

dation data sets reviews the accuracy of RF classifier. The

allocated classes against the reference information for the

sample sites are cross-tabulates using the confusion matrix

(Foody 2002).

GWR Method

GWR is a spatial statistical technique which extends the

framework of conventional regression statistics by revising

a globally defined model as a locally estimated model. It

enables meaningful analysis in modelling spatially

heterogeneous processes (Fotheringham et al. 2002).

The coefficients in GWR compared to the global

regression are functions of varying spatial position. The

basic GWR model is given by (Fotheringham et al. 2002)

and can be written as:

yi ¼ bi0 þ
Xm

k¼1

bikxik þ ei ð1Þ

where yi = dependent variable at location i; bi0 = intercept

variable at location i; bik = local regression coefficient for

Fig. 1 Location of the study site

with the validation points

(shaded circle)
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the kth independent variable at location i; xik = indepen-

dent variable k at location i; m = number of independent

variables; and ei = random error at location i. The coeffi-

cients in GWR differ continuously across the study land-

scape. The coefficients can be computed at any place by the

given dependent and one or more independent variables

that are measurable at spatial location with known coor-

dinates. For a given coordinates (ui; viÞ at the location i,

GWR equation can also be expressed as:

yi ¼ b0 ui; við Þ þ
Xm

k¼1

bk uivið Þxik þ ei ð2Þ

GWR determines the implicit relationships in the region

of each regression point i. The weighted least squares

approach was used to estimate all the regression coeffi-

cients, for which the matrix expression is given as:

b̂i ¼ XTW uivið ÞX
� ��1

XTW uivið ÞY ð3Þ

where X represents matrix of independent variables; b̂i ¼
bi0; . . .:bimð ÞT is the vector of m ? 1 local regression fac-

tors; and W ui; við Þ ¼ nbyn weighting matrix whose diag-

onal elements indicate geographical weights of each

observation for regression point and off-diagonal elements

are zero. It can be expressed as:

wi1 0 . . . 0

0 wi2 . . . 0

..

. ..
. ..

.

0 0 . . . wi3

2
6664

3
7775 ð4Þ

The weighting system Wi is computed via a kernel

function from the vicinities between regression point i and

its surrounding N data points.

The main two weighting functions are normal or

Gaussian and the Bi-square (Brunsdon et al. 1996;

Fotheringham et al. 2002). These two functions differ in

the method of choosing the bandwidth (b) parameter to be

used (whether fixed or adaptive). In this study, a fixed

Gaussian kernel is used and can be given as:

Gaussian : wij ¼ exp � 1

2

dij
b

� �2
" #

ð5Þ

where dij = distance between regression point i and

observation point j and b = kernel bandwidth. The fixed

bandwidth should be specified by its value in unit of dis-

tance when developing a GWR model. The bandwidth at

each centre i is assumed to be constant (fixed kernel) across

the study area (Zhang and Gove 2005).

Bandwidth Selection

It is required to select the bandwidth parameter either by

the distance threshold or the number of nearest neighbours

while implementing GWR model. An optimal bandwidth

can normally be selected using goodness-of-fit measure.

There are two ways to automatically select the optimal

bandwidth size, namely golden-section search and interval

search. In this study, the interval search method is used at a

regular interval size bandwidth within a pre-specified

range. The interval search applied within a range of 10,000

to 20,000 m at a regular interval of 1000 m using a fixed

kernel. The bandwidth selection may be performed by the

user or optimized through a process that looks for mini-

mized cross-validation score. Here, the cross-validation

(CV) approach (Bowman 1984) was used in which band-

width is chosen by minimizing CV score. The CV score is

calculated by

CV ¼
Xn

i¼1

yi � ŷi6¼i

� �2 ð6Þ

where n = number of observations. The observation i is

excluded during the calculation process so that the model is

not calibrated on i only in the areas of sparse observations.

Logistic Regression

Since the existence or absence of a certain landscape cat-

egory is a binary outcome (1/0, Yes/No, True/False).

Therefore, a powerful analytical technique, namely logistic

regression or logit model is applied (Peng et al. 2002). The

logit function is defined by

log it Yð Þ ¼ ln
p

1� p

� �
¼ aþ bX ð7Þ

The probability of the occurrence of the result can be

calculated by taking the antilog of Eq. (7) and can be

written as follows:

p ¼ eaþbX

1þ eaþbX
ð8Þ

where p is the probability of an outcome (Y = outcome of

interest | X = x, a specific value of X), a = Y intercept,

b = regression coefficient and e = base of the natural log-

arithm. Here, Y is categorical at all times, and X can be

categorical or continuous. The logistic regression for Y can

be extended to multiple predictors by a complex expression

given as follows:

log it Yð Þ ¼ ln
p

1� p

� �
¼ aþ b1X1 þ b2X2 ð9Þ

Therefore,
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p ¼ eaþb1X1þb2X2

1þ eaþb1X1þb2X2
ð10Þ

where p is the probability, Xs = predictors; bs = regression

coefficients; and a = Y intercept. The logistic model offers

a probability varying between 0 and 1, indicates the

accurate prediction of the landscape category. A reduced

logistic regression model with an intercept term a only and

returns an approximation of its likelihood being equal to 1,

can be used to estimate the OA. When the confusion matrix

data (Table 1) is examined in the binary outcome, where

482 data points summed up by the diagonal constituents are

shown as 1 and 62 data points summed up by the off-

diagonal constituents are shown as 0, the outcome is the

measure of the OA as 0.875.

Geographically Weighted Logistic Regression
(GWLR)

The logistic regression, coupled with GWR permits to vary

local estimation of correctly and incorrectly classified

landscape categories spatially over the space. GWLR,

geographically weighted extension to the logistic regres-

sion, should be applied in case of binary response vari-

ables. It is applied to examine how the accuracy of

classified outcomes varied across geographical space.

GWLR is the geographically weighted extension to the

logistic regression model and similar to ordinary regres-

sion. But with the help of a moving window or kernel

function facility provided by geographically weighted

methods, local regression models are computed at locations

all over the study region. The GWR Eq. (2) can be

extended to GWLR with the help of a logit function in the

following way

ln
pi

1� pi

� �
¼ b0 ui; við Þ þ

Xm

k¼1

bk uivið ÞXik þ ei ð11Þ

or it may be written in the following way:

pi ¼
eb0 ui;við Þþ

Pm

k¼1
bk uivið Þxik

1þ eb0 ui;við Þþ
Pm

k¼1
bk uivið Þxik

ð12Þ

where pi is probability of prediction at location i, and other

terms are same as given in Eq. (1).

Spatially varying accuracy measures were estimated by

applying GWLR which compares the validation and clas-

sified data. Using Eq. (11), GWLR was applied to model

the relationship between the RF classifier-based classes and

the validation class data by logistic transformation (Tsut-

sumida and Comber 2015) given as:

ln
P Oi ¼ 1ð Þ

1� P Oi ¼ 1ð Þ

� �
¼ b0 ui;við Þ ð13Þ

ln
P yi ¼ 1ð Þ

1� P yi ¼ 1ð Þ

� �
¼ b0 ui;við Þ þ b1x1 ui;við Þ ð14Þ

ln
P xi ¼ 1ð Þ

1� P xi ¼ 1ð Þ

� �
¼ b0 ui;við Þ þ b1y1 ui;við Þ ð15Þ

where P Oi ¼ 1ð Þ, P yi ¼ 1ð Þ and P xi ¼ 1ð Þ are the proba-

bilities of OA, UA and PA, respectively, at location i. Here,

yi and xi are the dependent variable (reference data) and

independent variable (classified data), respectively. Here,

b0 = intercept, b1 = slope and ui; við Þ are the two-dimen-

sional coordinates representing the location of i. GWLR

coefficients are permitted to vary geographically over the

two-dimensional space characterized by the coordinates (u,

v) inside the region under investigation. Spatially dis-

tributed accuracy measures (OA, UA and PA) were esti-

mated for each landscape categories (viz. agricultural land,

fallow land, vegetation, water bodies, built up and sand).

Table 1 Comparison between the reference and classified landscape categories showing an overall agreement of 87.48%

Reference

Classified Sand Vegetation Water bodies Agricultural land Fallow land Built up Row total UA

Sand 19 0 0 0 5 10 34 0.559

Vegetation 0 100 1 9 0 0 110 0.909

Water bodies 0 0 91 0 0 0 91 1.000

Agricultural land 0 8 0 101 0 0 109 0.927

Fallow land 0 0 0 0 78 14 92 0.848

Built up 1 1 8 5 7 93 115 0.809

Column total 20 109 100 115 90 117 551

PA 0.950 0.917 0.910 0.878 0.867 0.795

OA 0.875

Kappa coefficient 0.846
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Comparison of OLSR and GWLR

To compare the model performance between GWLR and

OLSR, the statistical parameters, namely R2, RSS and AIC

were employed in this work. The R2 measures the good-

ness-of-fit and ranged between 0 and 1. It is likely to be

higher, having more variance explained by dependent

variable. The lower AIC value describes the robust capa-

bility of the regression technique in reflecting reality. The

RSS is used to measure the quantity of variance in the data

set that is not explained by the regression technique. It

computes the amount of error remaining between the

regression function and the data set. A small RSS signifies

the robust fit of the model and explains a more considerable

amount of the data. The better performance of regression

technique is indicated by getting higher R2 value with

lower RSS and AIC values.

Results

A standard confusion matrix was constructed to calculate

UA, PA and OA using validation data set (Table 1). The

computation of commission error (inclusion) confers the

UA specifying the probability of a classified pixel into a

certain class is truly correspond to that class on the field.

The computation of omission error (exclusion) delivers the

PA that specifies how well the training pixels of an

assumed class are classified. The total amount of pixels

classified correctly divided by the total amount of the

pixels is used to calculate OA of classification results

(Lillesand and Kiefer 1999). The UA ranged from 0.559

(sand class) to 1.000 (water bodies class), while the PA

ranged from 0.795 (built-up class) to 0.950 (sand class). At

the same time, it is perceptible that few landscape cate-

gories are classified more presumably than the others. It

may be due to imbalance in the selection of training data

for RF classifier. The classification results are very much

sensitive to the proportion of used training samples. The

RF classification-based classified outputs can be inconsis-

tent due to dependency on the input variables and selection

scheme of training data sets during the classification pro-

cess (Millard and Richardson 2015). It is also important to

design the training and validation data sets carefully to

elude the biasness in classification and inflated evaluation

of accuracy measures (Millard and Richardson 2015).

Also, the table does not provide the information on

spatially distributed errors associated with different land-

scape classes. The GWLR was applied to examine the

spatially varying relationship between the classified data

from the image and the reference data collected through the

ground survey. Table 2 illustrates the spatial distribution of

accuracy measures (UA, PA and OA) of landscape cate-

gories in terms of minimum, maximum, and median, 1st

and 3rd quartiles along with the inter-quartile range (IQR).

The IQR is described as a representation of the overall

spatial variation in the accuracy measures. The probabili-

ties of the accurate class estimates are shown in terms of

the minimum, maximum, median and 1st and 3rd quartiles

(Table 2). This information, along with the global and IQR

exhibits the probabilities of correctly predicted reference

data by the RF-based image classification and their

variation.

The larger IQR values signify the higher variation in the

spatial distribution of accuracies (Comber et al. 2012). It

also exhibits the degree to which the observed ground truth

data are inferred by the predicted data based on remote

sensing image and the variation in GWLR method. The

IQR values of UA, PA and OA for various landscape

categories are listed in Table 2.

For agricultural land, OA was varied from 0.004 to

1.000 across the study region in comparison with the

conventional value of 0.875. While UA was found to vary

from 0.015 to 1.000 as compared to a global number of

0.927, and PA was found to vary between 0.533 and 0.998

as compared to a conventional measure of 0.878 across the

study area. For vegetation, OA was found to vary from

0.343 to 1.000 in sub-regions of the study area in com-

parison with a global figure of 0.875. While UA was found

to vary from 0.627 to 1.000 in comparison with a global

figure of 0.909, and PA was found to vary from 0.377 to

1.000 in contrast to a conventional measure of 0.917 across

the study area. For fallow land, OA was found to vary from

0.017 to 1.000 in diverse regions of study site in compar-

ison with a traditional value of 0.875. While UA was found

to vary from 0.041 to 1.000 compared to a traditional

measure of 0.848, and PA was found to vary from 0.381 to

1.000 in contrast to a traditional measure of 0.867 across

the study area. For built up, OA was found to vary from

0.069 to 0.998 over the study area in contrast to a tradi-

tional value of 0.875. While UA was found to vary from

0.271 to 1.000 compared to a conventional measure of

0.809, and PA was found to vary from 0.095 to 1.000 in

contrast to a traditional figure of 0.795 across the study

area. For water bodies, OA was found to vary from 0.530 to

1.000 in comparison with a global figure of 0.875 across

the study area. While UA was found to vary from 1.000 to

1.000 in comparison with a conventional value of 1.000

and PA was found to vary from 0.530 to 1.000 in contrast

to a conventional value of 0.910 across the study area. For

sand, OA was found to vary from 0.000 to 1.000 in com-

parison with a conventional value of 0.875 across the study

area. While UA was found to vary from 0.000 to 0.932, and

PA was found to vary from 0.494 to 0.010 in comparison

with global figures of 0.559 and 0.950, respectively, across
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the study area. In the context of UA, the sand class

exhibited larger, while the water bodies exhibited smaller

spatial variation. In the context of PA, the built-up class

exhibited larger, while the sand class exhibited smaller

spatial variation. It is remarkable to note that the distri-

bution of UA estimates reveals much larger variation fol-

lowed by the moderately distributed OA estimates, whereas

smaller dissimilarity was observed in the distribution of PA

estimates.

The visual representation of spatial variations in UA, PA

and OA is illustrated in Figs. 2, 3 and 4, respectively. The

legend values in figures signify the probability of the

presence of the correct category. Yellow circles represent

locations correctly classified. Red circles represent loca-

tions incorrectly classified as given category (commission

error). Black circles represent locations incorrectly classi-

fied to other categories (omission error). For major land-

scape category agricultural land, the UA and PA are higher

in the southern and lower towards the northern parts of the

study area (Figs. 2a and 3a). Figure 3a shows the higher

variation in the estimates of PA of agricultural land, but the

marginally higher trend of variation towards the northern

part of the study area. Figure 4a shows that the OA for

agricultural land is found to be higher in the southern and

lower towards the northern regions of the study area. Fig-

ure 2d shows that the UA for other major landscape cate-

gory built up is higher in the middle of study area while,

lower in the south-eastern parts. Figure 3d shows that the

PA for built up is higher in the middle and lower in the

western reason of the study site. Figure 4d shows that the

OA for built up category is found to be higher in the middle

and lower in the south-east and western parts of the area

under investigation. Other landscape categories are also

showing spatial variation in the accuracy measures

(Figs. 2, 3, 4). The UA is the probability estimation of the

correctly classified pixels, representing the categories on

the site. It shows the commission error (inclusion), signi-

fying the probability of locating that category correctly on

the ground for the map user. Here, Fig. 2a would imply a

smaller amount of confidence in mapping areas as agri-

cultural land truly being that category on the ground. The

smaller amount of confidence in mapping land surface as

built up actually being that class on the ground would also

be implied by Fig. 2a. The PA is the probability estimation

of a reference pixel is being appropriately identified in the

classified output. It shows the omission error (exclusion),

signifying the probability that the classes of attention are

omitted from the output product for the map producer.

Therefore, it is convinced that the majority of existing

agricultural land was mapped with low omission error.

However, the commission error for agricultural land cate-

gory was found to be high in the northern part of the study

site as well. In case of built-up category, it is convinced

that majority of the area covered with the class of interest

was mapped with low omission error. However, the

Table 2 A summary of the

variation in GWLR representing

UA, PA and OA for various

landscape categories

Categories Min. 1st Quartile Median Mean 3rd Quartile Max. IQR

Agricultural land UA 0.015 0.800 0.999 0.851 1.000 1.000 0.200

PA 0.533 0.793 0.896 0.875 0.972 0.998 0.179

OA 0.004 0.644 0.807 0.751 0.976 1.000 0.333

Vegetation UA 0.627 0.872 0.955 0.921 0.995 1.000 0.124

PA 0.377 0.882 0.995 0.922 1.000 1.000 0.119

OA 0.343 0.780 0.911 0.859 0.979 1.000 0.199

Fallow land UA 0.041 0.802 0.997 0.874 1.000 1.000 0.198

PA 0.381 0.779 0.879 0.857 0.967 1.000 0.188

OA 0.017 0.636 0.874 0.782 0.995 1.000 0.359

Built up UA 0.271 0.741 0.880 0.845 0.975 1.000 0.234

PA 0.095 0.724 0.861 0.823 0.980 1.000 0.256

OA 0.069 0.580 0.717 0.724 0.918 0.998 0.338

Water bodies UA 1.000 1.000 1.000 1.000 1.000 1.000 0.000

PA 0.530 0.866 0.973 0.923 0.999 1.000 0.133

OA 0.530 0.866 0.977 0.923 0.999 1.000 0.133

Sand UA 0.000 0.002 0.374 0.381 0.737 0.932 0.735

PA 0.494 0.990 1.000 0.944 1.000 1.000 0.010

OA 0.000 0.000 0.008 0.308 0.721 1.000 0.721

IQR indicates the probability variation among pixels. 1st and 3rd quartiles indicate the probabilities with

25th and 75th percentile
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Fig. 2 GWLR-based maps of spatial variation in user’s accuracies of landscape categories

Fig. 3 GWLR-based maps of spatial variation in producer’s accuracies of landscape categories
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commission error for built up category was found to be

high in the south-east part of the study reason as well.

The performance of estimating spatial variation in

overall accuracies was compared using OLSR and GWLR

for different landscape categories. Table 3 reveals that

GWLR produced lower AIC and RSS values in comparison

with OLSR, indicating a better fit to the observed statistics.

The higher R2 values for GWLR in comparison with OLSR

showed that the dependent variables are described by more

variance. The detailed information is shown in Table 3.

Overall, the performance of GWLR technique was found to

be better in comparison with OLSR for estimation of

spatially varying accuracy of landscape mapping.

Discussion

The confusion matrix, a convenient way to summarize

errors in landscape mapping, is aspatial in nature. The

landscape mapping with comparatively high accuracy may

not be necessarily applicable in analyzing spatially varying

accuracy at the local level. The spatial representation,

however, could be beneficial in landscape mapping with

low accuracy or intricate categories having inferior accu-

racies. Geographical analyses can be used to understand

how and why the processes reflect spatially varying nature.

The locational characteristics of data are used explicitly to

recognize relationships varying at the local scale. It is not

similar as analyzing spatial data in itself under the

hypothesis that it represents a spatial analysis as the data

Fig. 4 GWLR-based maps of spatial variation in overall accuracies of landscape categories

Table 3 Comparison of GWLR

and OLSR techniques for

estimating spatial variation in

overall accuracies of various

landscape categories

Model GWLR OLSR

Parameters Adjusted R2 RSS AIC Adjusted R2 RSS AIC

Landscape categories Agricultural land 0.241 11.81 64.81 0.077 18.07 117.12

Vegetation 0.179 10.48 52.55 0.097 15.97 102.68

Fallow land 0.450 7.64 27.62 0.011 19.50 125.05

Built up 0.197 19.52 125.57 0.032 30.78 188.89

Water bodies 0.155 6.08 7.71 0.049 8.19 37.56

Sand 0.647 1.65 -3.68 0.075 8.69 54.55
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are spatial in nature. It is confusing to implement spatially

evident approach because the error cluster of land cover

features is well identified for a variety of well-reported

causes. Therefore, it is needed to evaluate the local error

frequently by familiar visual and qualitative techniques

(Friedl et al. 2002). This work demonstrates the utility of

logistic regression in producing the probabilities of accu-

racy measures and the ability of its geographically

weighted extension to generate spatially distributed varia-

tions in probabilities as well. The remote sensing society is

perhaps well known with the concepts of OA, PA and UA

and the method proposed here may better reflect their

needs.

This study does not attempt to surpass the entire limi-

tations associated with the confusion matrix. This study

somewhat investigated spatially distinct approach for

describing accuracies using geographically weighted

approach to identify a relationship vary between classified

and reference data over geographical space. The capability

of estimating accuracy measures and errors from the data

gathered during a standard validation practice, recom-

mends that the maps of distributed accuracies could assist

confusion matrices. The geographically weighted methods

can be used to produce spatially explicit outputs which

point out the potential precedence of incorporating any

validation results in conjunction with remote sensing

imagery based land cover outcomes. Finally, the method

proposed in this study addresses one of the elementary

beliefs of geographical analyses that the process under

examination varies over space continuously.

Conclusions

The geographically weighted technique was utilized in

describing the spatial variations in the accuracies by ran-

dom forest classification using high resolution remote

sensing data. It addresses major concerns in the analysis

and description of accuracy and errors associated with

heterogeneous landscape mapping. The information of

non-stationarity associated with the frequently varying

landscape errors can be observed by analysing its spatial

distribution. This study also compared the performance of

GWLR with conventional OLSR technique. The investi-

gation showed better performance of GWLR in estimating

and analysing spatially varying accuracy measures com-

pared to OLSR. Finally, the denouement of this study is

that the spatially explicit accuracy measures are more

informative and precise. They offer better support for

appraisal of data accuracy compared to the global measures

based on the confusion matrix. The results of this work also

suggest that there is a need to reconsider the tenets of

accuracy and errors prevalent in the spatial science

community.
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