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Abstract: In this paper, we present a convergent collocation method with which to find the numerical
solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is
based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms
of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other
fractional derivatives in special cases. The convergence and error analysis of the proposed method
are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved
and simulation results are presented to validate the theoretical results.

Keywords: collocation method; B-operator; Jacobi poly-fractonomials; fractional integro-differential
equations

1. Introduction

Fractional calculus is the branch of applied mathematics in which we deal with
integration and differentiation of arbitrary order [1–7]. Fractional-order derivatives and in-
tegrations arise in the modeling of several problems in various domains including physics,
engineering, and biology. In the last few decades, applications of fractional differential
equations (FDEs) have increased very rapidly in different fields like bioengineering [8],
fluid dynamics [9], electrochemistry [10], electromagnetism [11], Control theory [12], and
viscoelasticity [13]. Introductory overview of fractional order derivatives and recent de-
velopments are presented in [1]. In recent years, fractional integro-differential equations
(FIDEs) have been investigated to represent the physical phenomena in various fields such
as electromagnetics [14]. Several researchers have been concentrating on the development
of numerical and analytical techniques for FIDEs. For example, Angell and Olmstead [15]
solved integro-differential equation modeling filament stretching using by Singular pertur-
bation method. Khosro et al. [16] presented a numerical technique based on Bernstein’s
operational matrix for a family of FIDEs utilizing the trapezoidal rule. Kilbas et al. [17]
developed some basic concepts for solving FIDEs, and also provided the existence and
uniqueness theorem. In [18], a new set of functions was constructed to obtain the numerical
solution of FIDEs, called the fractional-order Euler function, which is based on the Euler
function. By using the property of the fractional-order Euler function, the authors found
the approximate solution using the operational matrix approach, and also discussed the
convergence analysis of the problem. Saddatmandi and Dehghan [19] developed a numeri-
cal method for solving linear and nonlinear FIDEs by defining the fractional derivative in

Mathematics 2021, 9, 979. https://doi.org/10.3390/math9090979 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8324-8412
https://orcid.org/0000-0002-9277-8092
https://orcid.org/0000-0002-5198-4340
https://doi.org/10.3390/math9090979
https://doi.org/10.3390/math9090979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9090979
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9090979?type=check_update&version=3


Mathematics 2021, 9, 979 2 of 17

the Caputo sense. The approximate solution was found by Legendre approximations. The
property of Legendre polynomials together with the Gaussian integration method were uti-
lized to convert the system of algebraic equations. In [20], two numerical approximations
for the generalized Abel integral were proposed, and a generalized Abel integral equation
was solved by two numerical schemes, i.e., linear and quadratic. The error and convergence
were also discussed. It was found that the quadratic scheme achieved a convergence order
up to three. Bonilla et al. [21] dealt with the linear system of the fractional differential
equation defined in the form of the Riemann-Liouville or Caputo fractional derivative.
In [22,23], Adomian’s decomposition method for solving the system of the nonlinear FIDEs
was discussed. In [24–29], the authors used the collocation method for solving the fractional
differential equations. Odibat [30] presented the analytical study on a linear system of
fractional differential equations with constant coefficient and briefly described the issue of
the existence and uniqueness of systems of fractional order differential equations. There
are many more methods to solve FIDEs, such as the Finite difference method and Finite-
element methods [31]. Kamal et al. [32] applied the spectral Tau method to solve general
fractional-order differential equations. In [33], a system of fractional differential equations
was solved by the homotopy analysis method. Some recent work in this field was done
by Hassani et al. [34]. The authors proposed a method for solving a system of nonlinear
fractional-order partial differential equations with initial conditions. First, they expanded
the solution by using the operational matrix method, and then the unknown coefficients
were evaluated by the optimization technique.

Here, we consider the GFIDEs in terms of the B-operator [35]. The B-operator reduces
to Caputo derivative and Riemann Liouville derivative for a particular choice of kernel
in B-operator. The GFIDEs are solved using the collocation method with Jacobi poly-
fractonomials. The details of the Jacobi poly-fractonomials are presented in [36]. It has been
noted that Jacobi poly-fractonomials, as basis functions, have an edge over the other known
standard polynomials, as the method achieves exponential convergence in approximating
fractional polynomial functions. The GFIDEs converted into a system of algebraic equations
and, by solving them we get the approximate solution of the GFIDEs. The main aim of
this study is to investigate an approximate method with higher accuracy in finding the
approximate solution of defined GFIDEs, which is close to the exact solution. Section
1 provides the basic definitions of the operator as given in [35], including some basic
properties of Jacobi poly-fractonomials [36].

The rest of the paper is organized as follows: Section 2 provides the procedure to
apply Collocation methods for solving GFIDEs. Section 3 provides a convergence analysis
of the method. In Section 4, we present an error analysis in two parts, by taking linear and
nonlinear cases of the GFIDEs. Section 5 presents five numerical examples that illustrate
the accuracy of the proposed method. Finally in Section 6, a conclusion is presented.

1.1. Generalized Fractional Integro-Differential Equations

We first define GFIDEs in terms of K and A/B-operators. These operators [35] are
defined as follows:

Kα
P f (x) = r

∫ x

a
wα(x, t) f (t)dt + s

∫ b

x
wα(t, x) f (t)dt , α > 0, (1)

where x ∈ [a, b] , P = 〈a, x, b, r, s〉 denote the all parameters, wα(x, t) is a kernel defined
on the space I × I. we assume that wα(x, t) and f (t) both are square integrable function
such that Equation (1) exists. K operator satisfies the linearity properties, i.e., for any two
functions f1(t) and f2(t), then

Kα
P ( f1(x) + f (x)) = Kα

P f1(x) + Kα
P f2(x) . (2)

Define A and B-operators [35] as follows,

Aα
P f (x) = DnKn−α

P f (x), (3)
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Bα
P f (x) = Kn−α

PD
n f (x) (4)

By using Equation (4), Equation (1) can be written as,

Bα
P f (x) = r

∫ x

0
ωm−α(x, t)Dn f (t)dt + s

∫ 1

x
ωm−α(t, x)Dn f (t)dt, α > 0,

where m− 1 < α < m, m is an integer and P = 〈a, x, b, r, s〉 and Dn f (t) denotes the nth
derivative of the function f (t). In the definition of B-operator, we assume that Dn f (x) is
integrable once on domain I. Details about all this operator can be found in [35].

Now, we will define GFIDEs using B-operator as follows.

(Bα
Py)(x) = (H y)(x), 0 < α < 1, (5)

y(0) = y0. (6)

where

(H y)(x) = φ(x) + g(x)y(x) +
∫ x

0
ρ(x, t)G(y(t))dt, 1 > α > 0, x ∈ I = [0, 1], (7)

(Bα
Py)(x) = r

∫ x

0
ωm−α(x, t)Dny(t)dt + s

∫ 1

x
ωm−α(t, x)Dny(t)dt, α > 0 (8)

where functions φ(x) and g(x) are square integrable functions in I with, g(x) 6= 0, and y(x)
is unknown. This problem is considered in the interval [0, 1] and kernel ρ(x, t) is weakly
singular of the form

ρ(x, t) = (x− t)−v0 < v < 1 (9)

Also, in our definition of B-operator, there is another kernel, ωα(x, t). We have taken
kernel ωα(x, t) ∈ L2(I × I), and G defined by Equation (7) can be either a linear or a
nonlinear operator.

We assume that Equations (5) and (6) have a unique solution for all real values of r and
s, either r = 0 for all s or s = 0 for all r, and one special case when r = 1 and s = 0 The objective
is to find the numerical method to solve GFIDEs, as given by Equations (5) and (6).

1.2. Preliminaries. Jacobi Poly-Fractonomials and Function Approximation
1.2.1. Definition and Properties of Shifted Jacobi Poly-Fractonomials

Jacobi poly-fractonomials are the eigenfunctions of the Fractional Sturm-Liouville
eigen-problems of first kind, which are defined by

Pa
n(x) = (1 + x)a J−a,a

n (x) ,x ∈ [−1, 1], n = 0, 1, 2, . . . (10)

where J−a,a
n denotes the standard Jacobi polynomial, and n is the degree. J−a,a

n Forms
Hilbert space in L2

w[−1, 1], with respect to the weight function w(t) = (1− t)−a (1 + t)a,
and satisfies orthogonal property with respect to the weight function w(x), i.e.,∫ 1

−1
Jab
m (x)Ja,b

n (x)w(x)dx = Ya,b
n δnm, (11)

where δnm is the Kronecker function, and Ya,b
n = 2a+b+1Γ(n+a+1)Γ(n+b+1)

(2n+a+b+1)Γ(n+1)Γ(n+a+b+1) , is an orthogo-
nally constant.

Ja,b
n (x) = Γ(n+a+1)

Γ(n+1)Γ(n+a+b+1) ∑n
r=0

(
n
r

)
Γ(a+b+n+r+1) Γ(n−a+1)

Γ(n+1) Γ(r+a+1)
(x−1)

2r

r
, is Jacobi polyno-

mial of degree n and
(

n
r

)
is binomial coefficient defined as,

(
n
r

)
= n(n−1)(n−2)...(n−r+1)

r !

and Γ denotes the Euler’s gamma function.
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It has been proved in [36] that Jacobi poly-fractonomials Pa
n(x) are orthogonal with

respect to the weight function, w(x) = (1− x)−a (1 + x)−a, and form Hilbert space in
L2

w[−1, 1]. We use the transformation, x =
( 2x

T − 1
)

which transforms the standard interval
[−1, 1] to [0, T]. Then we obtain the corresponding shifted Jacobi poly-fractonomials of the
first kind

P̃a
n(x) =

(
2
T

)a
xa J−a,a

n

(
2x
T
− 1
)

, x ∈ [0, T], n = 0, 1, 2, 3 . . . (12)

For interval [0, 1], Equation (12) takes the form,

P̃a
n(x)=

(
2)axa J−a,a

n (2x− 1 ), x ∈ [0, 1], n = 0, 1, 2, 3 . . .

P̃a
n(x) can be written in series combination using the definition of Jacobi polynomial,

P̃a
n(x)=

2a Γ(n− a + 1)
Γ(n + 1) ∑n

r=0

(
n
r

)
Γ(n + r + 1)
Γ(r− a + 1)

xa(x− 1)r. (13)

Corresponding to weight function, w̃(x) = (1− x)−a (x)−a, we get the orthogo-
nal property ∫ 1

−1
Pa

n(x)Pa
m(x)w(x)dx = Y−a,a

n δnm, (14)

∫ 1

−1
Pa

n(x)Pa
m(x)w(x)dx= 2−2a+1

∫ 1

0
P̃a

n(x)P̃a
m(x) w̃(x) dx. (15)

Let X = L2(I) be the square integrable over interval I, and for g1, g2 ∈ X, the inner
product is defined by

〈g1|g2〉 =
∫ 1

0
g1(t)g2(t)dt, (16)

and corresponding norm is defined as follows,

‖ g ‖2=

(∫ 1

0
|g(t)|2dt

)1/2

. (17)

1.2.2. Function Approximation Using Jacobi Poly-Fractonomials

Any function g(x) ∈ L2(I) can be written as,

g(x) = ∑∞
k=0 ck P̃a

k (x),

In practice, if we consider only the first (R + 1) terms of P̃a
k (x). Then

g(x) = gR(x) = ∑R
k=0 ck P̃a

k (x), (18)

where ck and P̃a
k (x) are given by

ck = [c1, c2, . . . cR]
T , (19)

P̃a
k (x) = [̃P

a
0(x), P̃a

1 (x), . . . , P̃a
R(x)]T . (20)

Theorem 1 [2]. Let g(t)be a real, sufficiently smooth function, and gR(x) = CT P̃a
n(x) denote the

shifted Jacobi poly-fractonomials in the expansion of g(x), where

C = [c0, c1, . . . cR]
T , and

cr =
2−2a+1

Y−a,a
n

∫ 1
0 g(x) w̃(x) P̃a

r (x) dx.
(21)
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Theorem 2. Let g(x) ∈ L2[0, 1]∩ C[0, 1], and suppose sup|g(x)| ≤ £, then Jacobi –approximation
of g(x) given by Equation (18) converges uniformly, and we have

||cr|| ≤ £
2−a(2n + 1)(n!)2 Γ(1− a)

Γ(n + a + 1) Γ(2− a + n)Γ(1− a + n)
. (22)

Proof. A function g(x) ∈ L2[0, 1]∩ C[0, 1] can be written by Equation (18), and the coeffi-
cient is determined by

cr=
1

||P̃a
r (x)||22

∫ 1

0
g(x) w̃(x) P̃a

r (x)dx,

|cr| ≤
1

||P̃a
r (x)||22

sup|g(x)|
∫ 1

0
| w̃(x) P̃a

r (x)|dx. (23)

Since sup |g(x)| ≤ £, so from Equation (23) we get,

|cr| ≤
£

||P̃a
r (x)||22

∫ 1

0
| w̃(x) P̃a

r (x)|dx,

≤ £
|| P̃a

r (x)||22

∫ 1

0
| w̃(x) P̃a

r (x)|dx. (24)

Substituting the value of w(x) and P̃a
r (x) in Equation (24), we have

|cr| ≤
£ 2a

||P̃a
r (x)||22 ∑n

r=0 A[r, a, n]
∫ 1

0
|(1− x)−a(x)−a(x− 1)r(x)a|dx, (25)

where A[r, a, n] = ∑n
r=0

(
n
r

)
Γ(n+r+1) Γ(n−a+1)

Γ(n+1) Γ(r−a+1) .

|cr| ≤
£ 2a

|| P̃a
r (x)||22 ∑n

r=0 A[r, a, n]
(−1)r

(1− a + r)
. (26)

Now, substituting the value of ||P̃a
r (x)||22 from Equation (13) and A[r, a, n] from

Equation (25) in Equation (26), we have

≤ £ 2a 2−2a+1

Y−a,a
n

∑n
r=0

(
n
r

)
Γ(n+r+1) Γ(n−a+1)

Γ(n+1) Γ(r−a+1)
(−1)r

(1−a+r) ,

≤ £ 2a 2−2a+1 Γ(n−a+1) Γ(1−a) Γ(n+1)(2n+1)Γ(n+1)Γ(n+1)
Γ(n+1) Γ(1−a+n) Γ(2−a+n)2Γ(n−a+1)Γ(n+a+1) ,

||cr|| ≤ £ 2−a Γ(1−a) (2n+1)(n!)2

Γ(n+a+1) Γ(1−a+n)Γ(2−a+n) .

From this calculation, we observe that the partial sum of the coefficient is bounded so
∑n

r=0 cr converges absolutely, and hence, ∑n
r=0 cr P̃a

r (x) converges uniformly to g(x). �

2. Collocation Method for GFIDEs

In this part, we describe the collocation method for solving GFIDEs given by Equa-
tions (5) and (6). Collocation methods are based on a projection method in which we take a
finite dimensional basis to express the approximate solution which is believed to be closed
to the true solution. With the help of this family of functions, we approximate the solution
of the GFIDEs given by Equations (5) and (6).

Using Equation (18), we now approximate y(x) as,

yR(x) = ∑R
r=0 cr P̃a

r (x) , (27)
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where cr are unkown expansion coefficients, which are to be determined. It should be noted
that the approximate solution yR(x) satisfies the homogeneous initial condition. Replacing
the exact solution y(x) by approximate solution yR(x) in Equation (5), we get

(Bα
PyR)(x) = (HyR)(x),0 < α < 1, (28)

and yR(0) = y0. (29)

If we are given nonhomogenous initial conditions, yR(0) = y0 6= 0, then we will first

make it homogenous by the transformation ỹR(x) = y(x)− y0 and then replace y(x) by

ỹR(x) . This transformation was considered as a Jacobi Poly-Fractonomial basis, and is
defined according to homogenous initial conditions.

From Equations (28) and (29), we have

Bα
P

(
∑R

r=0 cr P̃a
r (x)

)
= H

((
∑R

r=0 cr P̃a
r (x)

))
, (30)

∑R
r=0 cr P̃a

r (x0) = y0. (31)

To apply collocation method, the node points xt ∈ I = [0, 1], are chosen such that

Bα
P

(
∑R

r=0 cr P̃a
r (xt)

)
= H

((
∑R

r=0 cr P̃a
r (xt)

))
, t = 0, 1, 2, . . . . . . R− 1, (32)

and ∑R
r=0 cr P̃a

r (0) = y0. (33)

Equations (32) and (33) form a system of linear equations with unknown coefficients
{cr}. We solve this system using any standard method to find the coefficient {cr}. Hence, the
approximate solution is obtained.

3. Convergence Analysis

In this part, we calculate the convergence analysis of the proposed method. For this,
we approximate the function by its derivative and try to show that its infinite sum is
bounded. To study the convergence analysis of the presented method for solving GFIDEs,
we will use the following Lemmas:

Lemma 1 [29]. Let X = L2(I) denote the vector space of square-integrable functions on I = [0, 1]
and ξ be a Volterra integral operator on X defined by

ξ (g(x)) =
∫ x

0
ρ(x, t)g(t)dt ∀ g ∈ X, (34)

with kernel ρ(x, t) satisfying
∫ 1

0

∫ 1
0 |ρ(x, t)|dxdt = L2 or sup

x,t ρ(x, t) = L, where L is a constant.

Then K is bounded in L2(I).That is,

|| ξ(g(x))||2 ≤ L|| g||2. (35)

Lemma 2. Let y(x) be a sufficiently differentiable function in L2(I), and
(

dyR
dx

)
be the approxima-

tion of dy
dx . Assume that dy

dx is bounded by a constant C, i.e., | dy
dx | ≤ C, then we have

‖ dy
dx
−
(

dyR

dx

)
‖2

2 ≤ (C)2 Γ(1− a) (1 + 2R) (R!)2 (1 + a
R
)

Γ(1− a + R) Γ(2− a + R) Γ(1 + a + R)
.
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Proof . Let
dy
dx

= ∑∞
r=0 cr P̃a

r (x). (36)

Taking the sum of the above series up to R − 1 level, and replacing the exact solution
by approximate solution, we get(

dyR

dx

)
= ∑R−1

r=0 cr P̃a
r (x). (37)

Subtracting Equation (37) from the Equation (36), we get

dy
dx
−
(

dyR
dx

)
= ∑∞

r=R cr P̃a
r (x),

‖ dy
dx
−
(

dyR
dx

)
‖2

2 =
∫ 1

0

(
dy
dx
−
(

dyR
dx

))2
dx =

∫ 1

0

(
∑∞

r=R cr P̃a
r (x)

)2
dx,

or,

‖ dy
dx
−
(

dyR
dx

)
‖2

2 = ∑∞
r=R

cr
2

2−2a+1 Y−a,a
r . (38)

From Equation (36), we get

cr =
2−2a+1

Y−a,a
r

∫ 1

0

dy
dx

P̃a
r (t) w̃(t) dt, (39)

Substituting the value of P̃a
r (t) from Equation (13) and w̃(t) = (1− t)−a (t)−a in

Equation (39), we get

cr ≤ 2−2a+1

Y−a,a
r

C
∫ 1

0 P̃a
r (t) w̃(t) dt ≤ C 2−a Γ(1−a) (2r+1)( Γ(r+1) )2

Γ(r+a+1) Γ(1−a+r) Γ(2−a+r) ,

|cr|2 ≤
(

C 2−a Γ(1−a) (2r+1) (r!)2

Γ(r+a+1) Γ(1−a+r) Γ(2−a+r)

)2
.

(40)

Thus,

∑∞
r=R

cr
2

2−2a+1 Y−a,a
r ≤ Γ(1− a)∑∞

r=R(C)2 (r!)2 (2r + 1)
Γ(r + a + 1) Γ(1− a + r) Γ(2− a + r)

,

∑∞
r=R

cr
2

2−2a+1 Y−a,a
r ≤ (C)2 Γ(1− a) (1 + 2R) (R!)2 (1 + a

R
)

Γ(R + a + 1) Γ(1− a + R) Γ(2− a + R)
, 0 < a < 1. (41)

which completes the proof of Lemma 2. �

4. Error Analysis

In this part, we estimate the error analysis by considering the different cases. In the
linear case, it is done by calculating exact and approximate solution. In the nonlinear case,
first we prove that it satisfies the Lipschitz condition, and then apply the usual process to
estimate the error.

Let ER(x) = y(x)− yR(x) be the error function, where y(x) is exact solution and yR is
the approximate solution. From Equation (5), we get,

(Bα
PyR)(x) = H(yR(x)) = ϕ(x) + g(x)yR(x) +

∫ x

0
ρ(x, t)G(yR(t))dt , (42)

subtracting Equation (42) from the Equation (5), and after simplifying, we get,

g(x)(y(x)− yR(x) )=
∫ x

0
ρ(x, t)G(y(t)− yR(t) )dt− (Bα

P(y− yR))(x). (43)
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After substituting all values,

g(x)(ER(x))=
∫ x

0
ρ(x, t)G(ER(t))dt− (Bα

P(y− yR))(x), (44)

|g(x)ER(x)|≤ |
∫ x

0
ρ(x, t)G(ER(t))dt|+ |(Bα

P(y− yR))(x)|, (45)

Here, we consider two case for the function G.

Case 1. When G satisfies linearity condition, we have,

|g(x)ER(x)| ≤ Q|
∫ x

0
ER(t)dt|+ |(Bα

P(y− yR))(x)| ,

where Q = maxρ(x, t).

Now, by using Gronwall’s inequality,

‖ g(x)ER(x) ‖2≤‖ (Bα
P(y− yR))(x) ‖2 . (46)

Now, ‖ (Bα
P(y− yR))(x) ‖2≤‖ K1 ‖2 + ‖ K2 ‖2, (47)

where K1 and K2 are defined by

K1 = r
∫ x

0
w1−α(x, t)D(y(t)− yR(t))dt, and K2 = s

∫ 1

x
w1−α(t, x)D(y(x)− yR(x))dx.

(48)
Since w1−α(x, t) ∈ L2, then by Lemma 1, there are constants k1, k2 such that,

‖ K1 ‖2≤ k1 ‖ D(y(x)− yR(x)) ‖2,

and
‖ K2 ‖2≤ k2 ‖ D(y(x)− yR(x)) ‖2 .

Thus, ‖
(

Bα
P(y− yR)

)
(x) ‖2≤ Λ ‖ D(y(x)− yR(x)) ‖2, Λ = k1 + k2.

(49)

Using Lemma 2,

‖ (Bα
P(y− yR))(x) ‖2≤ Λ(C)2 Γ(1− a) (1 + 2R) (R!)2 (1 + a

R
)

Γ(R + a + 1) Γ(1− a + R) Γ(2− a + R)
. (50)

From Equations (46) and (49), we have,

‖ g(x)ER(x) ‖2≤ k(C)2 Γ(1− a) (1 + 2R) (R!)2 (1 + a
R
)

Γ(R + a + 1) Γ(1− a + R) Γ(2− a + R)
. (51)

Since g(x) 6= 0, therefore ER(x)→ 0 or y(x)→ yR(x) as R→ ∞ .

Case 2. When G is nonlinear.

Lipschitz condition: A function f (x, y) satisfies a Lipschitz condition in the variable
y on a set D subset of R2 if there is a constant L > 0, such that,

| f (x, y1 )− f (x, y2)| ≤ L|y1 − y2| .

We assume that G satisfies the Lipschitz condition in variable y, so,

|G(y1(t))− G(y2(t))|≤ L|y1(t)− y2(t)|, (52)

where L is a Lipschitz constant.
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From Equation (43), we have

|g(x)ER(x)| ≤ |
∫ x

0
ρ(x, t)G(ER(t))dt|+ |(Bα

P(y− yR))(x)|,

or
|g(x)ER(x)| ≤ L Q|

∫ x

0
ER(t)dt|+ |(Bα

P(y− yR))(x)|. (53)

Now, following similar steps as those discussed for Equation (44), the convergence
bound can be proved, as in Equation (51).

Error Estimate

In this section, we discuss the calculation of the error of the given problem. Let
ER(x) = y(x)− yR(x) denote the error function of yR(x) to the exact solution y(x). Replacing
y(x) by the approximate solution yR(x) in Equation (5), we obtain

(Bα
PγR)(x) + yR(x) = ϕ(x) + g(x)yR(x) +

∫ x

0
ρ(x, t)G(yR(t))dt, (54)

with y(0) = (y)R.
Here, yR(x) is the perturbation function that can be calculated as

yR(x) = ϕ(x) + g(x)yR(x) +
∫ x

0
ρ(x, t)G(yR(t))dt− (Bα

PyR)(x).

Subtracting Equation (52) from Equation (5), we get

(Bα
PER)(x) + yR(x) = ϕ(x) + g(x)ER(x) +

∫ ξ

0
ρ(x, t)G(ER(t))dt,

or
(Bα

PER)(x) = ϕ(x) + g(x)ER(x) +
∫ x

0
ρ(x, t)G(ER(t))dt− yR(x), (55)

with the initial condition ER(0) = (E0)R.
Equation (54) can be solved by applying general methods, as discussed in the Section 4.

5. Numerical Examples

To verify the theoretical approximation of the discussed problem, we consider convo-
lution type kernels in GFIDE. Jacobi poly-fractonomials are considered as a basis to find the
approximate solution. We calculate the maximum absolute error by changing the number
of elements in the basis in the collocation method. In all numerical results, the number of
basis elements and maximum absolute error are denoted by R and MAE respectively. The
simulation results and figures are performed on a computer with (a) RAM: 4.00 GB (3.88 GB
usable), and (b) System type: 64-bit Operating System, x64-based processor, running on
MATLAB R2015a (The MathWorks, Inc., Natick, MA, USA).

Example 1. Consider the problem with α = 2
3 , n = 1,∫ x

0
{a+(1−a)(x−t)}−α

Γ(α) Dn(y(t))dt+
∫ b

x
{a+(1−a)(t−x)}−α

Γ(α) Dn(y(t))dt− y(x) –∫ x
0 {(x− t)}−1/2G(y(t))dt = −x2 − 16x

5
2

15 + 9x
4
3

2Γ( 1
3 )

+ 3(1−x)
1
3 (1+3x)

2Γ( 1
3 )

,

with y(0) = 0 This GFIDE has exact solution is y(x) = x2 for a = 0.

In this Example, the exact solution of the problem is given as the second degree
polynomial, so in the approximation, the basis R = 2, 3, 4 is chosen, and the corresponding
maximum absolute error is calculated for the different choices of basis; these findings are
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shown in the Table 1. We also observe the variation in the approximate solution for the
different values of a = 1

4 , 1
8 , 1

16 , 1
32 , as shown in Figure 1 The MAE is calculated and the

graph of the error is shown in Figure 2. We observe that when a tends to zero, the error is
reduced and the approximate solution approaches the exact solution.

Table 1. MAE of Example 1 and Example 2 for different values of R.

R Example 1 Example 2

2 5.55112× 10−17 5.55112× 10−17

3 2.77556× 10−17 5.55112× 10−17

4 8.32667× 10−17 3.33067× 10−16
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Example 2. Consider the equation with α = 1
4 , n = 1,∫ x

0 (1− α)(x− t)Dn(y(t))dt+
∫ b

x (1− α)(t− x)Dn(y(t))dt−y(x) –∫ x
0 {(x− t)}−1/3G(y(t))dt = 17

16 −
3x
2 − x2 − x3

2 + 3x4

8 −
27

440 x8/3(11 + 9x),

with initial condition y(0) = 0 and exact solution x2 + x3.

We solved this problem by choosing a different number of basis elements R = 2, 3,
4. The corresponding MAE for the different value of R are presented in the Table 1, and
the corresponding graph is shown in Figure 3 for R = 3. The approximated solutions of
Example 2 are presented in Figure 4 by taking the different value of α = 1

4 , 1
8 , 1

16 , 1
32

and 1
64 . For α = 1

4 , the numerical solution overlaps the exact solution. Figure 5 shows the
relationship between the exact and the approximate solutions of the present example. It is
clear that whenever α approaches 1

4 , the numerical solution converges to the exact solution.
Table 2 represents the comparison of the MAEs with the method proposed in [29].
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Table 2. Comparision of MAEs for Example 2 with the method proposed in [29] for different values
of R.

R Present Method Method [29]

2 5.55112× 10−17 2.2891× 10−2

3 5.55112× 10−17 2.0455× 10−16

Example 3. Consider the nonlinear case of the problem Equations (5)–(6) with α = 1
2 , n = 1,

∫ x
0 (

(x−t)−α

Γ(α) Dn(y(t))dt – q(x).y(x)−
∫ x

0 {(x)}1/2G(y(t))dt=
2ArcSinh(

√
x)√

π
√

1+x

−
√

x(−x+(1 + x)ln(1 + x)) – ln(1 + x)
(

2
√

x + 2x3/2 −
(√

x + x3/2
)

ln(1 + x)
)

,

with y(0) = 0, q(x) = 2
√

x + 2x3/2 −
(√

x + x3/2
)

ln(1 + x) and the exact solution is
ln(1 + x).

In this case, the approximation solution is obtained by selecting different values of
R = 2, 3, 4, 5, 6, 7, 8, 9, 10 & 11. MAEs corresponding to these cases are calculated, and
the corresponding MAE comparison with other polynomials is shown in Table 3. We also
plotted the graph of MAE versus R, as shown in Figure 6. It can be observed that as R
increases, MAE tends to zero. A graph between the exact and approximate solutions is
presented in Figure 7.

Table 3. Comparision of MAEs for Example 3 with the method given in [29] for different values of R.

R Present Method Method [29]

3 2.3832× 10−3 2.2891× 10−3

4 4.3205× 10−4 2.0455× 10−5

5 3.7277× 10−5 4.0699× 10−5

6 1.8326× 10−6 4.1765× 10−6
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Example 4. Consider the problem:∫ x
0
{d+(1−d)(x−t)}−α

Γ(α) Dn(y(t))dt+
∫ b

x
{d+(1−d)(t−x)}−α

Γ(α) Dn(y(t))dt−y(x)

−
∫ x

0 {(x− t)}−
1
2 G(y(t))dt −x− x3 − 4

105 x
3
2
(
35 + 24x2)+ 3

(
x

1
3 + 27x

7
3

14

)
Γ( 1

3 )

+
3
(
(1−x)

1
3 + 3

14 (1−x)
1
3 (2+3x+9x2)

)
Γ( 1

3 )
,

with α = 2
3 , n = 1, y(0) = 0. The exact solution of this problem is x3 + x.

Here, as in previous cases, we calculate the MAE corresponding to different values
of R = 3, 4, 5; the case for R = 4 is shown in Figure 8. We also depict the behavior of the
solution by changing the value of d = 1

4 , 1
8 , 1

16 , 1
32 and 1

64 . Furthermore, as d tends to
zero, the approximate solution converges to exact solution, which is shown in Figure 9. In
Figure 5, a graph of the exact and the approximate solutions is given.
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Example 5. Consider,∫ x
0 (1− α)(x− t) Dn(y(t))dt+

∫ 1
x (1− α)(t− x)Dn(y(t))dt− y(x) −∫ x

0 {(x− t)}−
1
3 G(y(t))dt = −e−x− 3(−3+x+e1−x(1+x))

4e + 3
4 (1− e−x(1 + x)) −

5(−1)
1
3 e−x Γ( 2

3 )
(

3ex(−x)
5
3−(2+3x)(Γ( 5

3 )−Γ( 5
3 ,−x))

)
9 Γ( 8

3 )
.

This problem has the exact solution y(x) = xe−x with y(0) = 0.

For the given problem, we find the approximate solution by varying the number
of elements in the basis and also calculating the corresponding MAEs which are shown
in Table 4. The graph of MAE verses R is shown in Figure 10. We notice that the MAE
decreases as we increase R, and for R ≥ 11, no change in MAE is observed. In Figure 7,
a graph of the exact and the approximate solutions is shown. We also plotted a graph for
the MAE for R = 12, as shown in Figure 11.
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Table 4. MAEs of Examples 5 and 3 for different values of R.

R Example 3 Example 5

3 2.3832× 10−3 3.35215× 10−3

4 4.3205× 10−4 4.78585× 10−5

5 3.7277× 10−5 6.86289× 10−6

6 1.8326× 10−6 3.02317× 10−7

7 2.29402× 10−7 1.23070× 10−8

8 1.2832× 10−8 4.513474× 10−10

9 1.41703× 10−9 4.58358× 10−11

10 6.19955× 10−10 1.906378× 10−12

11 2.467× 10−10 1.68061× 10−13

12 3.2156× 10−10 1.22863× 10−13
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6. Conclusions

A convergent collocation method is developed in this paper with which to solve
GFIDEs in terms of the B-operator. Jacobi poly-fractonomials are used as the basis in the
proposed collocation method. The choice of the Jacobi poly-fractonomials helps to increase
the accuracy in the approximated solution. The presented method works well on linear
and nonlinear types of the GFIDEs and produces accurate solutions.
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