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Abstract

CdS/Graphene Nano composites have been extetinsively investigated in the field of basic industrial
research and electronic device applications because of their unique physical, chemical properties and
photo stability under visible-light irradiation. In this study, we explore the electrical properties of
Cadmium sulfide with the addition of graphene. CdS/Graphene hybrid was fabricated by simple RF
magnetron sputtering method using CdS as a sputtering source. The hybrid material formation and
structural properties of Graphene, CdS, CdS/Graphene have been discussed using XRD, FTIR,
Raman, and UV-vis spectroscopy techniques. Herein, we present a facile and efficient method for
hybridization of CdS Nano-sphere with graphene Nano sheet and subsequent investigation of
enhancement of current of the hybrid material. Field emission scanning electron microscopy (FESEM)
micrographs reveal the formation of CdS nanospheres and homogeneous scattering on the surface of
graphene sheets. The UV absorption spectrum of CdS/Graphene hybrid presented a red-shifted. The
enhancement in the current of CdS/Graphene hybrid has been observed due to the generation of
electron-hole pairs. Also, current-voltage (I-V) characteristics of an as-grown thin film of the hybrid
are conducted using 4-point probe measurement and revealed their semiconducting nature with a
drastic enhancement of electrical conductivity.

1. Introduction

Semiconductor nanocrystals have received great interest in basic research and industrial development due to
their special electronic and physical properties [1, 2]. Various organic and inorganic broadband semiconductor
materials such as ZnS, ZnO, TiO,, GaN, CdS, quantum dots of graphene, and its compound have been
investigated in various electronic device applications due to their fascinating properties [3—8]. In particular, II-
VI semiconductor-multilayer structures have gained much attention as being suitable for various device
applications [9]. Among these semiconductors, cadmium sulfide (CdS) (AII-BVI compounds) shows excellent
applicability in various fields (photovoltaic devices, light-emitting diode, thin-film transistors, and
photocatalysts) due to its wide energy bandgap i.e. ~2.42 eV, emission tunability, good transparency, n-type
conductivity, excessive stability, excellent extinction coefficient and high dipole moment [10—13]. However, the
limitations associated with cadmium-based semiconductors are poor surface area and speedy recombination
rate of charge carrier generated throughout photo excitation method [14—19]. The simple and effective
technique to decrease fast recombination method is the coating of environment-friendly electron-transport
material, such as conductive polymer thin films, carbon nanotubes (CNTs), Graphene [17, 20-23].

Among others, Graphene received attention due to its great chemical and physical properties [24-27].
Because of various beneficial characteristics, Graphene is the most suitable support for developing a hybrid

©2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Graphene dispersion stages on the substrate.
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Figure 2. Address layer of cadmium sulfide sample grown on graphene.

material with improved features [28—30]. It was reported earlier that graphene played an important role in device
application due to close conduction distance and extensive transmission efficiency excessive transmission
performance [31-33].

Up to now a survey of the literature shows that various deposition techniques have been developed for CdS
thin films deposition among which pulsed laser deposition (PLD) [34], Chemical bath deposition [35, 36],
Molecular beam epitaxy (MBE) [37, 38], Spray Pyrolysis [39, 40], Sputtering [41—43] and Thermal evaporation
[44,45]. Herein, a series of CdS/Graphene hybrid was prepared via RF sputtering method to obtain optimum
experimental conditions to enhance the physical properties. RF sputtering method is a useful technique used in
CdS thin film deposition permitting a great control of film consistency, controlled morphology, contamination-
free environment, and thickness over large area substrates than other methods [46—48]. The kinetic energy of
atoms produced and their substrate interactions determine thin film growth in RF sputtering. The kinetics of
atoms incident on the substrate are influenced by sputtering parameters such as deposition pressure, time,
sputtering strength, and substrate temperature, which then affect the growth mechanism, resulting in improving
the overall performance of CdS thin films.

However, in terms of the electric current, optimization of CdS for exceptional amounts of Graphene has not
been reported. The synthesized thin film was characterized by relevant basic and performance tests essential and
execution tests. Additionally, a detailed study of the physical properties of CdS/Si, Graphene/Si, CdS/
Graphene/Si thin films are undertaken to optimize structural, electrical, and surface topographical properties
for CdS thin film for various device application like as an absorber layer of solar cells. The hybrid exhibit great
potential in various field of electronic devices having an overall performance having large sensitivity, maximum
quantum efficiency, and good response speed. Finally, we present our conclusion and perspectives.

2. Methods and characterization

2.1. Fabrication of film

CdS/Graphene hybrid material thin film was deposited via RF magnetron sputtering under controlled growth
conditions with RF power 150 W on n-type (422) single crystal silicon wafers substrates at room temperature
under high vacuum (2 ~ 10~ Torr). The resistivity and thickness of silicon wafers were (300 4 20 zzm) and
(3000 to 6000 £2m), respectively. Graphene nanoplates were dispersed in ethanol by sonication for 20 min to give
graphene ink with an approximate ratio of 5 mg 1~ ' as shown in figure 1.

Graphene Nanoplates with 99.5 wt% purity and volume resistivity 4 x 10~*.cm used as a growing layer
on silicon. We used a solid compact plate of CdS target. The dimension of silicon substrates was 1 cm x 1 cm.
Substrates were ultrasonically cleaned first using alcohol for 5 min then acetone for 10 min. The substrates have
been organized with a standard cleaning technique utilizing natural organic solvents earlier that being etched in
HCl for 30 s [49], rinsed for 10 min with de-ionized water, dried with nitrogen fuel to cast off surface
contamination, and fixed on the substrate holder. The CdS-nanoparticles decorated graphene Nanosheets
(CdS/Graphene on the silicon wafer) and on the silicon substrate were prepared by a Magnetron Sputtering with
the RF power of 150 W as shown in figure 2.
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Figure 3. FESEM images of (ay,a,) Graphene/Si, (b,,b;) Graphene/CdS/Si.

Table 1. The table of experiment
conditions and parameters.

Parameters Test conditions
Graphene Density 5mgml !
Solvents Ethanol (merck)
Sonication Time 20 min
Substrate temp. °40 4 5°C

The basic parameters like base pressure and deposition pressure have been setas10™° Torrand2 x 1072
Torr, respectively. The separation between the target and the substrate was ~7 cm for synthesizing uniform
consistent thin films, substrates had been kept rotating all through the sputtering process. And the deposition
time was set to 20 min (table 1).

2.2. Characterization

The sample was characterized by several techniques like UV—vis FTIR, Raman spectra, and I-V characteristics.
The morphology of Graphene/Si, CdS/Si, and CdS/Graphene/Si, and films were investigated under a Field
emission scanning electron microscope using a HITACHI S-4160. For structural analysis of Graphene/Si, CdS/
Si, and CdS/Graphene/Si thin films were carried out which was equipped focused by X-ray diffraction (Philips
Xpert, with Cu-Ka radiation (A = 0.15418 nm)). Further, a dual-beam UV—-vis spectrophotometer (Cary 500
UV/VIS/NIR spectrophotometer) was used utilized to investigate the absorption properties and transparency
over the spectral region of 200-800 nm. FTIR spectroscopy was used to investigate with an accuracy of 0.1 nm in
the range of UV/VIS and 0.4 nm in the range of NIR and wavelength ranging from 175 to 3300 nm using
Thermo Nicolet Nexus 870 spectrometer. Current-Voltage (I-V) measurements were also performed on
different samples. The voltage applied to the specimen from the stabilized DC power supply was increased from
—1Vto+1 V. The voltage connected to the sample and the current flowing through it was measured using
electrometers of type (Keithley-2361). Synthesized samples have been recorded using Thermo/Nicolet FT-
Raman 960, having a spectral range of 400 cm ™' t0 4000 cm ™' with a He/Ne laser (excitation wavelength of

633 nm). The electrical resistivity measurements on samples were determined by the four-point probe.

3. Results and discussion

3.1. Surface morphology

Figure 3 demonstrates the FESEM micrographs of Graphene/Si and CdS/Graphene/Si hybrid material. As seen
in figures 3a, and a, graphene show a 2D sheet-like surface, which plays an important role as a supporting
material in CdS growth. As seen in figures 3b; and b, hybrid show that CdS particle randomly stacked together
had a uniform distribution over graphene sheets. Hybrid indicates an appropriate interfacial interaction
between CdS particle and graphene sheets. The as-deposited thin films exhibits irregular grains and bubbles
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Figure 4. XRD results of pristine graphene, CdS/Graphene nanocomposite, and pure CdS NPs.
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Figure 5. (a) UV-vis spectra (b) UV—vis reflectance spectra graphene/Si, CdS/Si, CdS/graphene/Si hybrid.

exhibits in the surface because of their crystalline structure. Sheets of Graphene are curled and grooved and the
surface morphology of CdS particles shows spherical morphology with less aggregation and a smaller diameter,
which offers a large surface area that benefits various electronic device applications [50].

3.2. X-ray diffraction analysis

To study various phases and crystallinity of synthesized material, XRD was performed using Philips Xpert, with
Cu-Karadiation (A = 0.15418 nm). Figure 4 indicates the XRD pattern of the graphene, pure CdS, and CdS/
Graphene hybrid. The diffraction peaks of the graphene sheet at 20 ~ 26° and 54° matched properly with the
hexagonal crystal structure of graphene and were indexed as (002) and (004) facets, respectively [51, 52]. The
peaks at 20 values 0f 26.51, 38.51,43.71,47.81, and 54.81 can be ascribed to the (002), (220), (110), (103) and
(004) crystal planes of hexagonal CdS, respectively [53]. Additionally, all the XRD peaks of the pure CdS
coordinate similar to CdS with the hexagonal crystal structure and were identified as the (002), (220), (110),
(103), and (004) planes of the hexagonal structure [44].

The X-Ray diffraction pattern sample of the CdS/Graphene hybrid appears to be a simple mixture of the
reflection pattern of Graphene and natural CdS, where no significant modifications were observed in the relative
intensity of every peak. The strongest peak, at 20 ~ 26°, is believed to correspond to each carbon (002) and CdS
(002), which shows almost equal to identical positions. Synthesized hybrid material indicates decrease intensities
than those for natural CdS. This would be due to the graphene wrapped across the surface of the CdS particles.
Hybrid material exhibits comparable diffraction peaks with pure CdS particles, while no diffraction peak of
graphene was examined because the regular stack of graphene sheets is destroyed by the intercalation of CdS
particles [54]. This indicates out the formation of a new phase throughout the hybrid formation.

4
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Figure 7. FTIR spectra of graphene/Si and CdS/Graphene/Si.

3.3. UV-vis spectra

The UV-Vis of CdS, Graphene, and CdS/Graphene hybrid is demonstrated in figure 5. Figure 5(a) indicates UV
light absorption at different wavelengths and figure 5(b) shows UV-Vis diffuse reflectance spectra (DRS) of pure
CdS and CdS/Graphene hybrid. the absorption spectra of pure CdS at 500 nm which correspond to the bandgap
0f2.48 eV using the formula (Bandgap = 1240/honest) [55].

After the introduction of graphene, CdS (CdS/graphene) undergo a redshift and enhanced absorption both
in the ultraviolet region and visible region. Furthermore, CdS/Graphene hybrid has a continuous absorbance
band is shown in CdS/Graphene hybrid matched properly with pure CdS in the visible range from 500-900 nm
compared, Which is due to graphene can improve the surface electrical charge of CdS [56]. Hence, CdS/
Graphene hybrid is more efficient to utilize visible light.

3.4. Raman spectral analysis

Raman spectroscopy is a viable and non-destructive experimental method that is widely used to study structural
information of carbon-based materials [57]. Figure 6, appears the Raman spectra for graphene and CdS/
Graphene hybrid, respectively. The results showed the existence of G-band besides the imperfections D-band in
both the samples. The G-band is ascribed in-plane vibrations of sp” hybridized carbon atoms. The Raman
spectra of graphene sheets show D and G bands allotted to the K-point phonons of the A, symmetry and E,,
phonon of the sp® carbon at 1353 and 1593 cm ™, respectively which shifts to lower wavelength 1340 and

1577 cm ™ after reduction due to the formation of the CdS/Graphene hybrid. Further, the two peaks at 300 and
600 cm ™' have been related to the longitudinal optical (LO) phonon modes of CdS/Graphene hybrid.

Three extra characteristic peaks positioned at 1345, 1573, and 2711 cm™ ! were discovered, which compare
to D, G, and 2d peaks of graphene, respectively. 2D band appears at around 2711 cm ™' shows the multilayer
graphene structure, which was also moreover compared by other groups [58, 59]. The 2D band is originated due
to atwofold resonance transition which brought because of the generation of two phonons with inverse energy

5
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Figure 8. Current-voltage (I-V) characteristics of CdS/Si, graphene/Siand CdS/graphene/Si.

[60]. Moreover, D peak having lower intensity shows lower disorder in graphene structure [61, 62]. However,
the fundamental longitudinal optical phonon mode (LO) and the first-order (1LO) phonon modes peaks of the
CdS/Graphene hybrid have been decreased due to the decreasing CdS concentration in comparison to pure
CdS. This also confirms the formation of the CdS/Graphene hybrid. Because cadmium sulphide has been
deposited on a single-layer graphene structure, the D band intensity has increased relative to the G band, and
both bands shifted to higher wavenumbers [63].

3.5. FTIR study

To understand the presence of functional groups and chemical interactions involved between different graphene
and CdS functional groups, FTIR was performed using Thermo Nicolet Nexus 870 spectrometer. The FTIR
spectra of (a) graphene (b) CdS/graphene hybrid materials are represented in figure 7. At 2935 cm™ ' and

2880 cm ™', The existence of two absorption band doublet is shown by pure graphene spectra corresponding to
symmetric and antisymmetric stretching vibrations of the —CH, group, respectively [64]. Additionally, the peak
appears appeared peaks at 1730,1626,1230,1080, and 790 cm ™, respectively that confirms the presence of C=0
stretching, vibration from carbonyl groups, C=C vibration from aromatic carbon, C—-OH stretching vibrations,
C-O vibrations from epoxy groups, and C-O vibration from alkoxy group in graphene [65—67]. Existence of
C=O0 stretching, vibration from carbonyl groups, C=C vibration from aromatic carbon, C-OH stretching
vibrations, C—O vibrations from epoxy groups, and C-O vibration from alkoxy group in graphene [65—67]. The
spectrum of synthesized hybrid materials (CdS/Graphene) indicates the existence presence of C=C having
moderate bonding at 1600 cm™ !, C=Cbond having strong bond at 750 cm ™}, C-OH bond at 1350 cm ™!, C-O—
Cbond at 1230 cm ™~ '. Thus, the appearance of new peaks and shifting of peaks show the confirmation of the
existence of interaction between graphene and CdS.

3.6. Electrical analysis

For electrical analysis, the 4-point probe conductivity measurements of as-prepared films with graphene, CdS/
Graphene hybrid were performed using Current-Voltage (I-V) measurements (figure 8). The current-voltage (I-
V) characteristics of the CdS/Graphene hybrid showed a semiconducting behavior. The voltage across the
sample and the current flowing through it were measured using electrometers of type (Keithley- 2361).
Transverse current-voltage measurement was also performed employing a high-precision source meter.

Figure 8 and table 2 indicate that the current is increased in presence of graphene due to an increment in grain
size which further reveals an improvement in crystallinity.

In comparison with CdS, the enhancement in the current of CdS/Graphene hybrid has been observed that
confirms the generation of photo induced charge carriers, which can be explained in figure 8. Therefore,
electrical conductivity is observed to increase due to the variance of charge carrier density and mobility as well as
the crystallization of grains.

The electrical resistivity of CdS/Si, Graphene/Si, and CdS/Graphene/Si Thin films measured using the DC
four-point probe technique. The resistivity follows the relation-

p=— x (Z) = 4532 x (K)
In@2)  \I I
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Table 2. Variation of sheet resistivity of CdS/Si, graphene/Si, and CdS/

graphene/Si thin films.
Samples CdS/Si Graphene/Si CdS/Graphene/Si
Sheet resistivity 350 6.5 3.4

3.7. MECHANISM/ THEOREM section-

The above analysis is based on the excitation mechanism of charge transfer. The physical and chemical
properties of Cadmium sulfide (CdS) (II-VI semiconductor) are well known [68]. Which has a suitable band gap
that could accelerate photo-induced electron transfer and electron-hole pair separation. A similar mechanism
hasbeen reported previously for TiO,-graphene and ZnO-graphene composites [69, 70]. The schematic
diagram of the charge transfer mechanism is shown briefly in figure 9. When CdS is exposed to visible light, it
absorbed visible light considerably. Generation of photo-induced electron-hole has been taken place, which
causes the appreciable enhancement of local EM-Field near the rough surface of CdS by photo-excited
‘electrons’ and ‘holes’. It was previously reported that the electrons stored properties in CdS and charge transfer
mechanism are readily scavenged by carbon nanomaterials such as graphene, fullerenes, and carbon nanotubes
[71-73]. Additionally, because of physical and chemical properties i.e. high conductivity Graphene could
promote charge separation and impede the electron-hole pair generation. The energy barrier between CdS and
Graphene is about 1 eV. Therefore, Graphene acts as an electron acceptor in our system which was reported in
previous studies [74, 75].

CdS + h¥ — CdS(h + e)
CdS(e) + Graphene — CdS/Graphene hybrid

In the present study, Graphene interacts with CdS undergo visible irradiation. The slow addition of Graphene
with Cd*" ionand $*~ ion provides uniform solubility, better adhesion, and maximum substitution of ion on
the surface of Graphene sheets. Graphene has an excellent capability in capturing, storing the charge carriers and
offers them to provide more opportunities to contact with a reactant in various photo-catalytic activities.
Therefore, Graphene tends to enhance the availability and lifetime of charge carriers. Thus improve the photo
catalytic and optoelectronic properties of CdS. Therefore, Graphene largely enhances the availability and lifetime
of charge carriers, and thus improves the physical properties of CdS.
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4. Conclusion

We proposed a simple and productive method for the hybridization of CdS nanospheres with graphene
nanosheets to enhance photocurrent. A hybrid CdS/Graphene via RF sputtering method was synthesized. The
electron exchange from energized CdS nanoparticles to graphene is effective in reducing the resistivity of
graphene nanofilms.

Synthesized hybrid showed excellent optoelectronic properties and graphene has helped in the promotion of
charge carrier, separation, and transfer, responsible for the aggregation and overgrowth of CdS and enhancing
photocurrent, and improving the photo stability. The current-voltage characteristics of hybrid composite films
appear straight linear behavior and the resistivity was observed to be decreased. Thus, synthesized hybrid is
selective for the light source and can be utilized for various device applications including solar cells, biosensors
like photo detector.
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