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Abstract
CdS/GrapheneNano composites have been extetinsively investigated in the field of basic industrial
research and electronic device applications because of their unique physical, chemical properties and
photo stability under visible‐light irradiation. In this study, we explore the electrical properties of
Cadmium sulfidewith the addition of graphene. CdS/Graphene hybrid was fabricated by simple RF
magnetron sputteringmethod usingCdS as a sputtering source. The hybridmaterial formation and
structural properties of Graphene, CdS, CdS/Graphene have been discussed using XRD, FTIR,
Raman, andUV–vis spectroscopy techniques. Herein, we present a facile and efficientmethod for
hybridization of CdSNano-spherewith grapheneNano sheet and subsequent investigation of
enhancement of current of the hybridmaterial. Field emission scanning electronmicroscopy (FESEM)
micrographs reveal the formation of CdS nanospheres and homogeneous scattering on the surface of
graphene sheets. TheUVabsorption spectrumofCdS/Graphene hybrid presented a red-shifted. The
enhancement in the current of CdS/Graphene hybrid has been observed due to the generation of
electron-hole pairs. Also, current-voltage (I-V) characteristics of an as-grown thinfilm of the hybrid
are conducted using 4-point probemeasurement and revealed their semiconducting naturewith a
drastic enhancement of electrical conductivity.

1. Introduction

Semiconductor nanocrystals have received great interest in basic research and industrial development due to
their special electronic and physical properties [1, 2]. Various organic and inorganic broadband semiconductor
materials such as ZnS, ZnO, TiO2, GaN, CdS, quantumdots of graphene, and its compound have been
investigated in various electronic device applications due to their fascinating properties [3–8]. In particular, II-
VI semiconductor-multilayer structures have gainedmuch attention as being suitable for various device
applications [9]. Among these semiconductors, cadmium sulfide (CdS) (AII-BVI compounds) shows excellent
applicability in various fields (photovoltaic devices, light-emitting diode, thin-film transistors, and
photocatalysts) due to its wide energy bandgap i.e.∼2.42 eV, emission tunability, good transparency, n-type
conductivity, excessive stability, excellent extinction coefficient and high dipolemoment [10–13]. However, the
limitations associatedwith cadmium-based semiconductors are poor surface area and speedy recombination
rate of charge carrier generated throughout photo excitationmethod [14–19]. The simple and effective
technique to decrease fast recombinationmethod is the coating of environment-friendly electron-transport
material, such as conductive polymer thinfilms, carbon nanotubes (CNTs), Graphene [17, 20–23].

Among others, Graphene received attention due to its great chemical and physical properties [24–27].
Because of various beneficial characteristics, Graphene is themost suitable support for developing a hybrid
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material with improved features [28–30]. It was reported earlier that graphene played an important role in device
application due to close conduction distance and extensive transmission efficiency excessive transmission
performance [31–33].

Up to now a survey of the literature shows that various deposition techniques have been developed for CdS
thinfilms deposition amongwhich pulsed laser deposition (PLD) [34], Chemical bath deposition [35, 36],
Molecular beam epitaxy (MBE) [37, 38], Spray Pyrolysis [39, 40], Sputtering [41–43] andThermal evaporation
[44, 45]. Herein, a series of CdS/Graphene hybrid was prepared via RF sputteringmethod to obtain optimum
experimental conditions to enhance the physical properties. RF sputteringmethod is a useful technique used in
CdS thin filmdeposition permitting a great control offilm consistency, controlledmorphology, contamination-
free environment, and thickness over large area substrates than othermethods [46–48]. The kinetic energy of
atoms produced and their substrate interactions determine thin film growth in RF sputtering. The kinetics of
atoms incident on the substrate are influenced by sputtering parameters such as deposition pressure, time,
sputtering strength, and substrate temperature, which then affect the growthmechanism, resulting in improving
the overall performance of CdS thinfilms.

However, in terms of the electric current, optimization of CdS for exceptional amounts of Graphene has not
been reported. The synthesized thinfilmwas characterized by relevant basic and performance tests essential and
execution tests. Additionally, a detailed study of the physical properties of CdS/Si, Graphene/Si, CdS/
Graphene/Si thin films are undertaken to optimize structural, electrical, and surface topographical properties
for CdS thin film for various device application like as an absorber layer of solar cells. The hybrid exhibit great
potential in various field of electronic devices having an overall performance having large sensitivity, maximum
quantum efficiency, and good response speed. Finally, we present our conclusion and perspectives.

2.Methods and characterization

2.1. Fabrication offilm
CdS/Graphene hybridmaterial thinfilmwas deposited via RFmagnetron sputtering under controlled growth
conditionswith RF power 150Wonn-type (422) single crystal siliconwafers substrates at room temperature
under high vacuum (2∼10−6 Torr). The resistivity and thickness of siliconwafers were (300±20 μm) and
(3000 to 6000Ωm), respectively. Graphene nanoplates were dispersed in ethanol by sonication for 20 min to give
graphene inkwith an approximate ratio of 5 mg l−1 as shown in figure 1.

GrapheneNanoplates with 99.5 wt%purity and volume resistivity 4×10−4Ω.cmused as a growing layer
on silicon.We used a solid compact plate of CdS target. The dimension of silicon substrates was 1 cm× 1 cm.
Substrates were ultrasonically cleaned first using alcohol for 5 min then acetone for 10 min. The substrates have
been organizedwith a standard cleaning technique utilizing natural organic solvents earlier that being etched in
HCl for 30 s [49], rinsed for 10 minwith de-ionizedwater, driedwith nitrogen fuel to cast off surface
contamination, andfixed on the substrate holder. TheCdS-nanoparticles decorated grapheneNanosheets
(CdS/Graphene on the siliconwafer) and on the silicon substrate were prepared by aMagnetron Sputtering with
the RF power of 150Was shown infigure 2.

Figure 1.Graphene dispersion stages on the substrate.

Figure 2.Address layer of cadmium sulfide sample grown on graphene.
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The basic parameters like base pressure and deposition pressure have been set as10−6 Torr and 2×10−2

Torr, respectively. The separation between the target and the substrate was∼7 cm for synthesizing uniform
consistent thinfilms, substrates had been kept rotating all through the sputtering process. And the deposition
timewas set to 20 min (table 1).

2.2. Characterization
The samplewas characterized by several techniques likeUV–vis FTIR, Raman spectra, and I-V characteristics.
Themorphology ofGraphene/Si, CdS/Si, andCdS/Graphene/Si, andfilmswere investigated under a Field
emission scanning electronmicroscope using aHITACHI S-4160. For structural analysis of Graphene/Si, CdS/
Si, andCdS/Graphene/Si thin filmswere carried outwhichwas equipped focused byX-ray diffraction (Philips
Xpert, with Cu-Ka radiation (λ=0.15418 nm)). Further, a dual-beamUV–vis spectrophotometer (Cary 500
UV/VIS/NIR spectrophotometer)was used utilized to investigate the absorption properties and transparency
over the spectral region of 200–800 nm. FTIR spectroscopywas used to investigate with an accuracy of 0.1 nm in
the range ofUV/VIS and 0.4 nm in the range ofNIR andwavelength ranging from175 to 3300 nmusing
ThermoNicolet Nexus 870 spectrometer. Current-Voltage (I-V)measurements were also performed on
different samples. The voltage applied to the specimen from the stabilizedDCpower supply was increased from
−1 V to+1 V. The voltage connected to the sample and the currentflowing through it wasmeasured using
electrometers of type (Keithley-2361). Synthesized samples have been recorded using Thermo/Nicolet FT-
Raman 960, having a spectral range of 400 cm−1 to 4000 cm−1 with aHe/Ne laser (excitationwavelength of
633 nm). The electrical resistivitymeasurements on samples were determined by the four-point probe.

3. Results and discussion

3.1. Surfacemorphology
Figure 3 demonstrates the FESEMmicrographs ofGraphene/Si andCdS/Graphene/Si hybridmaterial. As seen
infigures 3a1 and a2 graphene show a 2D sheet-like surface, which plays an important role as a supporting
material in CdS growth. As seen infigures 3b1 and b2 hybrid show that CdS particle randomly stacked together
had a uniformdistribution over graphene sheets. Hybrid indicates an appropriate interfacial interaction
betweenCdS particle and graphene sheets. The as-deposited thinfilms exhibits irregular grains and bubbles

Figure 3. FESEM images of (a2,a1)Graphene/Si, (b2,b1)Graphene/CdS/Si.

Table 1.The table of experiment
conditions and parameters.

Parameters Test conditions

GrapheneDensity 5 mg ml−1

Solvents Ethanol (merck)
Sonication Time 20 min

Substrate temp. °40+5°C
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exhibits in the surface because of their crystalline structure. Sheets of Graphene are curled and grooved and the
surfacemorphology of CdS particles shows sphericalmorphology with less aggregation and a smaller diameter,
which offers a large surface area that benefits various electronic device applications [50].

3.2. X-ray diffraction analysis
To study various phases and crystallinity of synthesizedmaterial, XRDwas performed using Philips Xpert, with
Cu-Ka radiation (λ=0.15418 nm). Figure 4 indicates the XRDpattern of the graphene, pureCdS, andCdS/
Graphene hybrid. The diffraction peaks of the graphene sheet at 2θ∼26° and 54°matched properly with the
hexagonal crystal structure of graphene andwere indexed as (002) and (004) facets, respectively [51, 52]. The
peaks at 2θ values of 26.51, 38.51, 43.71, 47.81, and 54.81 can be ascribed to the (002), (220), (110), (103) and
(004) crystal planes of hexagonal CdS, respectively [53]. Additionally, all theXRDpeaks of the pure CdS
coordinate similar toCdSwith the hexagonal crystal structure andwere identified as the (002), (220), (110),
(103), and (004) planes of the hexagonal structure [44].

TheX-Ray diffraction pattern sample of theCdS/Graphene hybrid appears to be a simplemixture of the
reflection pattern ofGraphene and natural CdS, where no significantmodificationswere observed in the relative
intensity of every peak. The strongest peak, at 2θ∼26°, is believed to correspond to each carbon (002) andCdS
(002), which shows almost equal to identical positions. Synthesized hybridmaterial indicates decrease intensities
than those for natural CdS. This would be due to the graphenewrapped across the surface of theCdS particles.
Hybridmaterial exhibits comparable diffraction peakswith pureCdS particles, while no diffraction peak of
graphenewas examined because the regular stack of graphene sheets is destroyed by the intercalation of CdS
particles [54]. This indicates out the formation of a newphase throughout the hybrid formation.

Figure 4.XRD results of pristine graphene, CdS/Graphene nanocomposite, and pureCdSNPs.

Figure 5. (a)UV–vis spectra (b)UV–vis reflectance spectra graphene/Si, CdS/Si, CdS/graphene/Si hybrid.
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3.3. UV–vis spectra
TheUV–Vis of CdS, Graphene, andCdS/Graphene hybrid is demonstrated infigure 5. Figure 5(a) indicates UV
light absorption at different wavelengths andfigure 5(b) showsUV–Vis diffuse reflectance spectra (DRS) of pure
CdS andCdS/Graphene hybrid. the absorption spectra of pure CdS at 500 nmwhich correspond to the bandgap
of 2.48 eVusing the formula (Bandgap=1240/honest) [55].

After the introduction of graphene, CdS (CdS/graphene) undergo a redshift and enhanced absorption both
in the ultraviolet region and visible region. Furthermore, CdS/Graphene hybrid has a continuous absorbance
band is shown inCdS/Graphene hybridmatched properly with pure CdS in the visible range from500–900 nm
compared,Which is due to graphene can improve the surface electrical charge of CdS [56]. Hence, CdS/
Graphene hybrid ismore efficient to utilize visible light.

3.4. Raman spectral analysis
Raman spectroscopy is a viable and non-destructive experimentalmethod that is widely used to study structural
information of carbon-basedmaterials [57]. Figure 6, appears the Raman spectra for graphene andCdS/
Graphene hybrid, respectively. The results showed the existence ofG-band besides the imperfectionsD-band in
both the samples. TheG-band is ascribed in-plane vibrations of sp2 hybridized carbon atoms. The Raman
spectra of graphene sheets showDandGbands allotted to the қ-point phonons of the A1g symmetry and E2g
phonon of the sp2 carbon at 1353 and 1593 cm−1, respectively which shifts to lowerwavelength 1340 and
1577 cm−1 after reduction due to the formation of theCdS/Graphene hybrid. Further, the two peaks at 300 and
600 cm−1 have been related to the longitudinal optical (LO) phononmodes of CdS/Graphene hybrid.

Three extra characteristic peaks positioned at 1345, 1573, and 2711 cm−1 were discovered, which compare
toD,G, and 2d peaks of graphene, respectively. 2Dband appears at around 2711 cm−1 shows themultilayer
graphene structure, whichwas alsomoreover compared by other groups [58, 59]. The 2Dband is originated due
to a twofold resonance transitionwhich brought because of the generation of two phononswith inverse energy

Figure 6.Raman spectra of (a) graphene and (b)CdS/Graphene hybridmaterial.

Figure 7. FTIR spectra of graphene/Si andCdS/Graphene/Si.
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[60].Moreover, D peak having lower intensity shows lower disorder in graphene structure [61, 62]. However,
the fundamental longitudinal optical phononmode (LO) and thefirst-order (1LO) phononmodes peaks of the
CdS/Graphene hybrid have been decreased due to the decreasingCdS concentration in comparison to pure
CdS. This also confirms the formation of theCdS/Graphene hybrid. Because cadmium sulphide has been
deposited on a single-layer graphene structure, theD band intensity has increased relative to theG band, and
both bands shifted to higher wavenumbers [63].

3.5. FTIR study
Tounderstand the presence of functional groups and chemical interactions involved between different graphene
andCdS functional groups, FTIRwas performed using ThermoNicolet Nexus 870 spectrometer. The FTIR
spectra of (a) graphene (b)CdS/graphene hybridmaterials are represented infigure 7. At 2935 cm−1 and
2880 cm−1, The existence of two absorption band doublet is shown by pure graphene spectra corresponding to
symmetric and antisymmetric stretching vibrations of the−CH2 group, respectively [64]. Additionally, the peak
appears appeared peaks at 1730,1626,1230,1080, and 790 cm−1, respectively that confirms the presence of C=O
stretching, vibration from carbonyl groups, C=Cvibration from aromatic carbon, C–OHstretching vibrations,
C–Ovibrations from epoxy groups, andC–Ovibration from alkoxy group in graphene [65–67]. Existence of
C=Ostretching, vibration from carbonyl groups, C=Cvibration fromaromatic carbon, C–OHstretching
vibrations, C–Ovibrations from epoxy groups, andC–Ovibration from alkoxy group in graphene [65–67]. The
spectrumof synthesized hybridmaterials (CdS/Graphene) indicates the existence presence of C=Chaving
moderate bonding at 1600 cm−1, C=Cbond having strong bond at 750 cm−1, C–OHbond at 1350 cm−1, C–O–
Cbond at 1230 cm−1. Thus, the appearance of newpeaks and shifting of peaks show the confirmation of the
existence of interaction between graphene andCdS.

3.6. Electrical analysis
For electrical analysis, the 4-point probe conductivitymeasurements of as-prepared filmswith graphene, CdS/
Graphene hybrid were performed using Current-Voltage (I-V)measurements (figure 8). The current-voltage (I-
V) characteristics of theCdS/Graphene hybrid showed a semiconducting behavior. The voltage across the
sample and the currentflowing through it weremeasured using electrometers of type (Keithley- 2361).
Transverse current-voltagemeasurement was also performed employing a high-precision sourcemeter.
Figure 8 and table 2 indicate that the current is increased in presence of graphene due to an increment in grain
sizewhich further reveals an improvement in crystallinity.

In comparisonwithCdS, the enhancement in the current of CdS/Graphene hybrid has been observed that
confirms the generation of photo induced charge carriers, which can be explained infigure 8. Therefore,
electrical conductivity is observed to increase due to the variance of charge carrier density andmobility as well as
the crystallization of grains.

The electrical resistivity of CdS/Si, Graphene/Si, andCdS/Graphene/Si Thin filmsmeasured using theDC
four-point probe technique. The resistivity follows the relation-

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( )

r
p

= ´ = ´
V

I

V

Iln 2
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Figure 8.Current-voltage (I-V) characteristics of CdS/Si, graphene/Si andCdS/graphene/Si.
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3.7.MECHANISM/THEOREMsection-
The above analysis is based on the excitationmechanismof charge transfer. The physical and chemical
properties of Cadmium sulfide (CdS) (II-VI semiconductor) arewell known [68].Which has a suitable band gap
that could accelerate photo-induced electron transfer and electron-hole pair separation. A similarmechanism
has been reported previously for TiO2-graphene andZnO-graphene composites [69, 70]. The schematic
diagramof the charge transfermechanism is shown briefly in figure 9.WhenCdS is exposed to visible light, it
absorbed visible light considerably. Generation of photo-induced electron-hole has been taken place, which
causes the appreciable enhancement of local EM-Field near the rough surface of CdS by photo-excited
‘electrons’ and ‘holes’. It was previously reported that the electrons stored properties inCdS and charge transfer
mechanism are readily scavenged by carbon nanomaterials such as graphene, fullerenes, and carbon nanotubes
[71–73]. Additionally, because of physical and chemical properties i.e. high conductivity Graphene could
promote charge separation and impede the electron-hole pair generation. The energy barrier betweenCdS and
Graphene is about 1 eV. Therefore, Graphene acts as an electron acceptor in our systemwhichwas reported in
previous studies [74, 75].

( )J+  +CdS h CdS h e

( ) /+ CdS e Graphene CdS Graphene hybrid

In the present study, Graphene interacts withCdS undergo visible irradiation. The slow addition ofGraphene
withCd2+ ion and S2− ion provides uniform solubility, better adhesion, andmaximum substitution of ion on
the surface ofGraphene sheets. Graphene has an excellent capability in capturing, storing the charge carriers and
offers them to providemore opportunities to contact with a reactant in various photo-catalytic activities.
Therefore, Graphene tends to enhance the availability and lifetime of charge carriers. Thus improve the photo
catalytic and optoelectronic properties of CdS. Therefore, Graphene largely enhances the availability and lifetime
of charge carriers, and thus improves the physical properties of CdS.

Figure 9. Schematic diagramof the charge separation and transfer in theGraphene– cadmium sulfide (Gr–CdS) systemunder visible
light.

Table 2.Variation of sheet resistivity of CdS/Si, graphene/Si, andCdS/
graphene/Si thin films.

Samples CdS/Si Graphene/Si CdS/Graphene/Si

Sheet resistivity 350 6.5 3.4
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4. Conclusion

Weproposed a simple and productivemethod for the hybridization of CdS nanospheres with graphene
nanosheets to enhance photocurrent. A hybrid CdS/Graphene via RF sputteringmethodwas synthesized. The
electron exchange from energizedCdS nanoparticles to graphene is effective in reducing the resistivity of
graphene nanofilms.

Synthesized hybrid showed excellent optoelectronic properties and graphene has helped in the promotion of
charge carrier, separation, and transfer, responsible for the aggregation and overgrowth of CdS and enhancing
photocurrent, and improving the photo stability. The current-voltage characteristics of hybrid composite films
appear straight linear behavior and the resistivity was observed to be decreased. Thus, synthesized hybrid is
selective for the light source and can be utilized for various device applications including solar cells, biosensors
like photo detector.
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