List of Figures

Figure No.	Title	Page No.
Figure 2.1	Percentage contributions of different mining activities to total dust emissions from a typical Indian opencast coal mine	7
Figure 2.2	Residence times for homogeneously distributed dust particles of different aerodynamic diameters	11
Figure 2.3	Three regions of respiratory system and their parts	12
Figure 2.4	A comparison of the actual dust dispersion within a mine with Gaussian plume and CFD models	31
Figure 3.1	Satellite image of Mine 'A' Opencast Coal Project	50
Figure 3.2	Receptors location in the study area of Mine 'A'	55
Figure 3.3	Wind - rose diagram of Jharsuguda District for the month of January 2013	58
Figure 3.4	Wind - rose diagram of Jharsuguda District for the month of May 2013	59
Figure 3.5	Digital Elevation Model of Mine 'A' generated by AERMAP	61
Figure 3.6	1 st Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	63
Figure 3.7	2 nd Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	63
Figure 3.8	3^{rd} Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	64
Figure 3.9	4 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	64
Figure 3.10	5 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	65
Figure 3.11	6 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	65
Figure 3.12	7 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	66
Figure 3.13	8 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	66
Figure 3.14	9^{m} Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	67
Figure 3.15	10^{th} Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	67
Figure 3.16	11 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in January 2013	68

Figure 3.17	12 th Highest predicted concentration level of PM ₁₀ for daily	68
Figure 3.18	13^{th} Highest predicted concentration level of PM ₁₀ for daily	69
	averaging time period in January 2013	
Figure 3.19	14^{un} Highest predicted concentration level of PM ₁₀ for daily	69
Figure 3 20	15 th Highest predicted concentration level of PM ₁₀ for daily	70
1 19010 3120	averaging time period in January 2013	10
Figure 3.21	16 th Highest predicted concentration level of PM ₁₀ for daily	70
	averaging time period in January 2013	
Figure 3.22	17 th Highest predicted concentration level of PM ₁₀ for daily	71
E:	averaging time period in January 2013	71
Figure 3.23	18 th Highest predicted concentration level of PM ₁₀ for daily	/1
Figure 3 24	10 th Highest predicted concentration level of PM ₁₀ for daily	72
1 iguie 5.24	averaging time period in January 2013	12
Figure 3.25	20^{th} Highest predicted concentration level of PM ₁₀ for daily	72
C	averaging time period in January 2013	
Figure 3.26	21 st Highest predicted concentration level of PM ₁₀ for daily	73
T ' 2.27	averaging time period in January 2013	=0
Figure 3.27	22^{nd} Highest predicted concentration level of PM ₁₀ for daily	73
Figure 3 28	averaging time period in January 2013 23 rd Highest predicted concentration level of PM ₁₀ for daily	74
Figure 5.28	averaging time period in January 2013	/4
Figure 3.29	24^{th} Highest predicted concentration level of PM ₁₀ for daily	74
6	averaging time period in January 2013	
Figure 3.30	25 th Highest predicted concentration level of PM ₁₀ for daily	75
	averaging time period in January 2013	
Figure 3.31	26^{th} Highest predicted concentration level of PM ₁₀ for daily	75
Eigung 2 22	averaging time period in January 2013	76
Figure 5.52	averaging time period in January 2013	/0
Figure 3.33	1 st Highest predicted concentration level of PM ₁₀ for daily	76
1.8010 0100	averaging time period in May 2013	
Figure 3.34	2 nd Highest predicted concentration level of PM ₁₀ for daily	77
	averaging time period in May 2013	
Figure 3.35	3 rd Highest predicted concentration level of PM ₁₀ for daily	77
	averaging time period in May 2013	
Figure 3.36	4 th Highest predicted concentration level of PM ₁₀ for daily	78
1.8010 0.00	averaging time period in May 2013	10
Figure 3.37	5 th Highest predicted concentration level of PM ₁₀ for daily	78
	averaging time period in May 2013	
Figure 3.38	6 th Highest predicted concentration level of PM ₁₀ for daily	79
	averaging time period in May 2013	70
Figure 3.39	/" Hignest predicted concentration level of PM ₁₀ for daily	/9
	averaging time period in May 2015	

Figure 3.40	8 th Highest predicted concentration level of PM ₁₀ for daily	80
Figure 3.41	9^{th} Highest predicted concentration level of PM ₁₀ for daily	80
Figure 3.42	averaging time period in May 2013 10^{th} Highest predicted concentration level of PM ₁₀ for daily	81
Figure 3.43	averaging time period in May 2013 11 th Highest predicted concentration level of PM ₁₀ for daily	81
Figure 3.44	averaging time period in May 2013 12 th Highest predicted concentration level of PM ₁₀ for daily	82
Figure 3.45	averaging time period in May 2013 13 th Highest predicted concentration level of PM ₁₀ for daily	82
Figure 3.46	averaging time period in May 2013 14 th Highest predicted concentration level of PM ₁₀ for daily	83
Figure 3.47	averaging time period in May 2013 15 th Highest predicted concentration level of PM ₁₀ for daily	83
Figure 3.48	averaging time period in May 2013 16 th Highest predicted concentration level of PM ₁₀ for daily	84
Figure 3.49	averaging time period in May 2013 17 th Highest predicted concentration level of PM ₁₀ for daily	84
Figure 3.50	averaging time period in May 2013 18 th Highest predicted concentration level of PM ₁₀ for daily	85
Figure 3.51	averaging time period in May 2013 19 th Highest predicted concentration level of PM ₁₀ for daily	85
Figure 3 52	averaging time period in May 2013 20 th Highest predicted concentration level of PM ₁₀ for daily	86
Figure 2.52	averaging time period in May 2013 21 st Highest predicted concentration level of PM ₁₀ for daily	86
Figure 2.54	averaging time period in May 2013	80 87
Figure 3.54	averaging time period in May 2013	87
Figure 3.55	averaging time period in May 2013	87
Figure 3.56	averaging time period in May 2013	88
Figure 3.57	25 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in May 2013	88
Figure 3.58	26 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in May 2013	89
Figure 3.59	27 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in May 2013	89
Figure 3.60	28 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in May 2013	90
Figure 3.61	29 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in May 2013	90
Figure 3.62	30 th Highest predicted concentration level of PM ₁₀ for daily averaging time period in May 2013	91
Figure 3.63	31 st Highest predicted concentration level of PM ₁₀ for daily averaging time period in May 2013	91

Figure 3.64	Predicted concentration level of PM_{10} for monthly averaging time period in the month of January 2013	92
Figure 3.65	Predicted concentration level of PM_{10} for monthly averaging time period in the month of May 2013	93
Figure 3.66	Q-Q plots of predicted and observed concentration for daily averaging time for all four receptors in the month of January 2013	109
Figure 3.67	Q-Q plots of predicted and observed concentration for monthly averaging time for all four receptors in the month of January 2013	110
Figure 3.68	Q-Q plots of predicted and observed concentration for daily averaging time for all four receptors in the month of May 2013	111
Figure 3.69	Q-Q plots of predicted and observed concentration for monthly averaging time for all four receptors in the month of May 2013	112
Figure 4.1	Terrain Contours of Mine 'B' at 50 m depth	115
Figure 4.2	Terrain Contours of Mine 'B' at 100 m depth	116
Figure 4.3	Terrain Contours of Mine 'B' at 150 m depth	117
Figure 4.4	Terrain Contours of Mine 'B' at 200 m depth	118
Figure 4.5	Terrain Contours of Mine 'B' at 250 m depth	119
Figure 4.6	50 m, 100 m and 150 m depth section of Mine 'B'	120
Figure 4.7	200 m and 250 m depth section of Mine 'B'	121
Figure 4.8	Wind - rose diagram of Easterly wind variation	126
Figure 4.9	Wind - rose diagram of Westerly wind variation	127
Figure 4.10	Wind - rose diagram of Southerly wind variation	128
Figure 5.1	Contours of PM_{10} concentrations generated from the dust sources at 50 m depth of mine 'B' with the easterly wind	129
Figure 5.2	Contours of PM_{10} concentrations generated from the dust sources at 100 m depth of mine 'B' with the easterly wind	130
Figure 5.3	Contours of PM_{10} concentrations generated from the dust sources at 150 m depth of mine 'B' with the easterly wind	131
Figure 5.4	Contours of PM_{10} concentrations generated from the dust sources at 200 m depth of mine 'B' with the easterly wind	132
Figure 5.5	Contours of PM_{10} concentrations generated from the dust sources at 250 m depth of mine 'B' with the easterly wind	134
Figure 5.6	Contours of PM_{10} concentrations generated from the dust sources at 50 m depth of mine 'B' with the westerly wind	135
Figure 5.7	Contours of PM_{10} concentrations generated from the dust sources at 100 m depth of mine 'B' with the westerly wind	136
Figure 5.8	Contours of PM_{10} concentrations generated from the dust sources at 150 m depth of mine 'B' with the westerly wind	137
Figure 5.9	Contours of PM_{10} concentrations generated from the dust sources at 200 m depth of mine 'B' with the westerly wind	138

- Figure 5.10 Contours of PM₁₀ concentrations generated from the dust 139 sources at 250 m depth of mine 'B' with the westerly wind
- Figure 5.11 Contours of PM_{10} concentrations generated from the dust 141 sources at 50 m depth of mine 'B' with the southerly wind
- Figure 5.12 Contours of PM_{10} concentrations generated from the dust sources at 100 m depth of mine 'B' with the southerly wind
- Figure 5.13 Contours of PM_{10} concentrations generated from the dust sources at 150 m depth of mine 'B' with the southerly wind
- Figure 5.14 Contours of PM_{10} concentrations generated from the dust sources at 200 m depth of mine 'B' with the southerly wind
- Figure 5.15 Contours of PM_{10} concentrations generated from the dust sources at 250 m depth of mine 'B' with the southerly wind
- Figure 5.16 Comparative variation of the maximum dust concentration 146 generated from the dust sources for the different depths of the mine 'B' with the different wind directions
- Figure 5.17 Contours of PM_{10} concentrations generated from the 148 internal overburden dump at 50 m depth of the mine 'B' with the easterly wind
- Figure 5.18 Contours of PM₁₀ concentrations generated from the 149 internal overburden dump at 100 m depth of the mine 'B' with the easterly wind
- Figure 5.19 Contours of PM_{10} concentrations generated from the 150 internal overburden dump at 150 m depth of the mine 'B' with the easterly wind
- Figure 5.20 Contours of PM_{10} concentrations generated from the 151 internal overburden dump at 200 m depth of the mine 'B' with the easterly wind
- Figure 5.21 Contours of PM_{10} concentrations generated from the 152 internal overburden dump at 250 m depth of the mine 'B' with the easterly wind
- Figure 5.22 Contours of PM₁₀ concentrations generated from the 154 internal overburden dump at 50 m depth of the mine 'B' with the westerly wind
- Figure 5.23 Contours of PM_{10} concentrations generated from the 155 internal overburden dump at 100 m depth of the mine 'B' with the westerly wind
- Figure 5.24 Contours of PM_{10} concentrations generated from the 156 internal overburden dump at 150 m depth of the mine 'B' with the westerly wind
- Figure 5.25 Contours of PM_{10} concentrations generated from the 157 internal overburden dump at 200 m depth of the mine 'B' with the westerly wind
- Figure 5.26 Contours of PM_{10} concentrations generated from the 158 internal overburden dump at 250 m depth of the mine 'B' with the westerly wind
- Figure 5.27 Contours of PM_{10} concentrations generated from the 160 internal overburden dump at 50 m depth of the mine 'B' with the southerly wind

Figure 5.28	Contours of PM_{10} concentrations generated from the internal overburden dump at 100 m depth of the mine 'B' with the southerly wind	161
Figure 5.29	Contours of PM_{10} concentrations generated from the internal overburden dump at 150 m depth of the mine 'B' with the southerly wind	162
Figure 5.30	Contours of PM_{10} concentrations generated from the internal overburden dump at 200 m depth of the mine 'B' with the southerly wind	163
Figure 5.31	Contours of PM_{10} concentrations generated from the internal overburden dump at 250 m depth of the mine 'B' with the southerly wind	165
Figure 5.32	Comparative variation of the maximum dust concentration generated from the internal overburden dumps at the different depths of the mine 'B' with the different wind directions	166
Figure 5.33	Contours of PM_{10} concentrations generated from the haul road at 50 m depth of the mine 'B' with the easterly wind	168
Figure 5.34	Contours of PM ₁₀ concentrations generated from the haul road at 100 m depth of the mine 'B' with the easterly wind	169
Figure 5.35	Contours of PM_{10} concentrations generated from the haul road at 150 m depth of the mine 'B' with the easterly wind	170
Figure 5.36	Contours of PM_{10} concentrations generated from the haul road at 200 m depth of the mine 'B' with the easterly wind	171
Figure 5.37	Contours of PM_{10} concentrations generated from the haul road at 250 m depth of the mine 'B' with the easterly wind	172
Figure 5.38	Contours of PM_{10} concentrations generated from the haul road at 50 m depth of the mine 'B' with the westerly wind	174
Figure 5.39	Contours of PM_{10} concentrations generated from the haul road at 100 m depth of the mine 'B' with the westerly wind	175
Figure 5.40	Contours of PM_{10} concentrations generated from the haul road at 150 m depth of the mine 'B' with the westerly wind	176
Figure 5.41	Contours of PM_{10} concentrations generated from the haul road at 200 m depth of the mine 'B' with the westerly wind	177
Figure 5.42	Contours of PM_{10} concentrations generated from the haul road at 250 m depth of the mine 'B' with the westerly wind	179
Figure 5.43	Contours of PM_{10} concentrations generated from the haul road at 50 m depth of the mine 'B' with the southerly wind	180
Figure 5.44	Contours of PM_{10} concentrations generated from the haul road at 100 m depth of the mine 'B' with the southerly wind	181
Figure 5.45	Contours of PM_{10} concentrations generated from the haul road at 150 m depth of the mine 'B' with the southerly wind	182
Figure 5.46	Contours of PM_{10} concentrations generated from the haul road at 200 m depth of the mine 'B' with the southerly wind	183
Figure 5.47	Contours of PM_{10} concentrations generated from the haul road at 250 m depth of the mine 'B' with the southerly wind	184

Figure 5.48 Comparative variations of the maximum dust concentration 186 generated from the haul roads at the different depth of the mine 'B' with the different wind directions