LIST OF TABLES

Table No.	Table Caption	Page No.
Table 1.1	Estimate of global fresh-water distribution	6
Table 1.2	Occurrence of metals in industrial effluents of various industries	13
Table 1.3	Metals with their toxicities and MCL standards	14
Table 1.4	Limitations of various physico-chemical methods used for treatment of metal rich effluents	15
Table 1.5	Different methods of fabrication of nanoparticles used as an adsorbent for water treatment	33
Table 1.6	Characterization techniques of nano-particles synthesized as an adsorbent for water treatment	36
Table 2.1	Application of nanoparticles as adsorbent for the removal of metallic pollutants from water and wastewater by adsorption	47
Table 3.1	Experimental ranges and levels of independent factors	63
Table 5.1	Box-Behnken designed experimental runs for removal of chromium on nano-alumina	96
Table 5.2	Estimated regression coefficients for removal of chromium on nano-alumina	98
Table 5.3	Analysis of variance for removal of chromium on nano- alumina	99
Table 5.4	Confirmation experiments for removal of chromium on nano-alumina	105
Table 5.5	Langmuir and Freundlich isotherm parameters for linear analysis for adsorption of chromium from aqueous solution on nano-alumina	108
Table 5.6	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by in-built Microcal origin functions for adsorption of chromium from aqueous solution on nano-alumina	111

Table 5.7	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by customized Microcal origin functions for adsorption of chromium from aqueous solution on nano-alumina	112
Table 5.8	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by Microcal origin for adsorption of chromium from aqueous solution on nano-alumina	116
Table 5.9	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by customized Microcal origin for adsorption of chromium from aqueous solution on nano-alumina	120
Table 5.10	Intra-particle diffusion constant values for removal of chromium from aqueous solution on nano-alumina	121
Table 5.11	Thermodynamic parameters for adsorption of chromium from aqueous solution on nano-alumina	125
Table 5.12	Chromium removal after subsequent regeneration cycle (Initial conc.=5 mg/L, pH = 2.0, Dose = 10 g/L, Temperature =303 K)	128
Table 6.1	Box-Behnken designed experimental runs for removal of nickel on nano-alumina	137
Table 6.2	Estimated regression coefficients for removal of nickel on nano-alumina	139
Table 6.3	Analysis of variance for removal of nickel on nano- alumina	141
Table 6.4	Confirmation experiments for removal of nickel on nano- alumina	147
Table 6.5	Langmuir and Freundlich isotherm parameters for linear analysis for adsorption of nickel from aqueous solution on nano-alumina	150
Table 6.6	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by in-built Microcal origin functions for adsorption of chromium from aqueous solution on nano-alumina	153
Table 6.7	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by customized Microcal origin	154

functions for adsorption of chromium from aqueous solution on nano-alumina

- Table 6.8Pseudo-first order and pseudo-second order kinetic158parameters for linear analysis and non-linear analysis by
Microcal origin for adsorption of chromium from aqueous
solution on nano-alumina158
- Table 6.9Pseudo-first order and pseudo-second order kinetic161parameters for linear analysis and non-linear analysis by
customized Microcal origin for adsorption of chromium
from aqueous solution on nano-alumina
- **Table 6.10**Intra-particle diffusion constant values for removal of
chromium from aqueous solution on nano-alumina163
- **Table 6.11**Thermodynamic parameters for adsorption of chromium166from aqueous solution on nano-alumina
- Table 6.12Nickel removal after subsequent regeneration cycle169(Initial conc.=20 mg/L, pH = 7.0, Dose = 10 g/L,
Temperature =303 K)Temperature = 10 g/L,
- Table 7.1Box-Behnken designed experimental runs for removal of
chromium on nano-cupric oxide the data estimated by the
model)178
- **Table 7.2**Estimated regression coefficients for removal of180chromium on nano-cupric oxide
- **Table 7.3**Analysis of variance for removal of chromium on nano-
cupric oxide181
- Table 7.4Confirmation experiments for removal of chromium on187nano-cupric oxide
- **Table 7.5**Langmuir and Freundlich isotherm parameters for linear191analysis for adsorption of chromium from aqueous
solution on nano-cupric oxide
- **Table 7.6**Langmuir and Freundlich isotherm parameters for non-
linear analysis obtained by in-built Microcal origin
functions for adsorption of chromium from aqueous
solution on nano-cupric oxide**194**
- Table 7.7Langmuir and Freundlich isotherm parameters for non-
linear analysis obtained by customized Microcal origin
functions for adsorption of chromium from aqueous
solution on nano-cupric oxide195

Table 7.8	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by Microcal origin for adsorption of chromium from aqueous solution on nano-cupric oxide	199
Table 7.9	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by customized Microcal origin for adsorption of chromium from aqueous solution on nano-cupric oxide	202
Table 7.10	Intra-particle diffusion constant values for removal of chromium from aqueous solution on nano-cupric oxide	204
Table 7.11	Thermodynamic parameters for adsorption of chromium from aqueous solution on nano-cupric oxide	208
Table 7.12	Chromium removal after subsequent regeneration cycle (Initial conc.=10 mg/L, pH = 2.0, Dose = 8 g/L, Temperature =303 K)	210
Table 8.1	Box-Behnken designed experimental runs for removal of nickel on nano-cupric oxide	220
Table 8.2	Estimated regression coefficients for removal of nickel on nano-cupric oxide	222
Table 8.3	Analysis of variance for removal of nickel on nano- cupric oxide	223
Table 8.4	Confirmation experiments for removal of nickel on nano- cupric oxide	229
Table 8.5	Langmuir and Freundlich isotherm parameters for linear analysis for adsorption of nickel from aqueous solution on nano-cupric oxide	232
Table 8.6	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by in-built Microcal origin functions for adsorption of nickel from aqueous solution on nano-cupric oxide	236
Table 8.7	Langmuir and Freundlich isotherm parameters for non- linear analysis obtained by customized Microcal origin functions for adsorption of nickel from aqueous solution on nano-cupric oxide	236
Table 8.8	Pseudo-first order and pseudo-second order kinetic parameters for linear analysis and non-linear analysis by	240

Microcal origin for adsorption of nickel from aqueous solution on nano-cupric oxide

- **Table 8.9**Pseudo-first order and pseudo-second order kinetic244parameters for linear analysis and non-linear analysis by
customized Microcal origin for adsorption of nickel from
aqueous solution on nano-cupric oxide244
- **Table 8.10**Intra-particle diffusion constant values for removal of
nickel from aqueous solution on nano-cupric oxide246
- **Table 8.11**Thermodynamic parameters for adsorption of nickel from249aqueous solution on nano-cupric oxide
- Table 8.12Nickel removal after subsequent regeneration cycle252(Initial conc.=20 mg/L, pH = 7.0, Dose = 6 g/L,
Temperature =303 K)Temperature = 6 g/L,