LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Figure 1.1	Distribution of World's Water	3
Figure 1.2	The Water Cycle	4
Figure 1.3	Major sources of water pollution	8
Figure 1.4	Top down and bottom up approaches for the synthesis of nanomaterials	31
Figure 3.1	Speciation diagram of Chromium	53
Figure 3.2	Speciation diagram of Nickel	56
Figure 4.1	X-ray diffraction (XRD) pattern of nano-alumina	76
Figure 4.2	Fourier transform infra-red (FTIR) spectrum of nano-alumina	77
Figure 4.3	(A) Transmission electron micrograph; and (B) Selected area electron diffraction (SAED) pattern of nano-alumina	78
Figure 4.4	Scanning electron micrograph (SEM) of alumina nanoparticles	79
Figure 4.5	Energy dispersive x-ray (EDAX) pattern of alumina nanoparticles	79
Figure 4.6	X-ray diffraction pattern (XRD) pattern of nano-cupric oxide	83
Figure 4.7	Fourier transform infra-red (FTIR) spectrum of nano- cupric oxide	83
Figure 4.8	Transmission electron micrograph (TEM) of nano-cupric oxide	84
Figure 4.9	Scanning electron micrograph (SEM) of nano-cupric oxide	85
Figure 4.10	Energy dispersive x-ray (EDAX) pattern of nano-cupric	85

oxide

Figure 4.11	pHzpc of synthesized nano-alumina	86
Figure 4.12	pHzpc of synthesized nano-cupric oxide	87
Figure 5.1	XRD pattern of nano-alumina before and after adsorption of Cr(VI) ions	91
Figure 5.2	FT-IR spectra of nano-alumina before and after adsorption of Cr(VI) ions	91
Figure 5.3	EDS pattern of nano-alumina after adsorption of Cr(VI) ions	92
Figure 5.4	Effect of initial pH on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial concentration= 10 mg/L, adsorbent dose= 10g/L, Temperature= 303 K)	93
Figure 5.5	Effect of contact time on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial concentration=10mg/L, Initial pH=2.0, Initial dose=10g/L, Temperature= 303 K)	94
Figure 5.6	Effect of adsorbent dose on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial pH=2.0, Initial concentration=10mg/L, Temperature=303 K)	94
Figure 5.7	Effect of initial concentration on removal (%) of chromium from aqueous solution on nano-cupric oxide (Initial pH= 2.0, Initial dose =10g/L, Temperature=303 K)	95
Figure 5.8	(a) Surface plot; and (b) Contour plot of percentage removal vs. dose and concentration at hold value of pH at 10	101
Figure 5.9	(a) Surface plot; and (b) Contour plot of percentage removal vs. pH and dose at hold value of concentration at 25 mg/L	102
Figure 5.10	(a) Surface plot; and (b) Contour plot of percentage removal vs. pH and concentration at hold value of dose at 20 g/L	103
Figure 5.11	Response optimization plot for chromium removal on nano-alumina	104

Figure 5.12	Linear Langmuir isotherm plot of Cr(VI) removal on nano- alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	107
Figure 5.13	Linear Freundlich isotherm plot of Cr(VI) removal on nano- alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	107
Figure 5.14	Non-linear Langmuir isotherm plot of chromium removal on nano-alumina obtained by in-built Microcal origin function symbols (represent the experimental data and lines represent the data estimated by the model)	109
Figure 5.15	Non-linear Freundlich isotherm plot of chromium removal on nano-alumina obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	110
Figure 5.16	Non-linear Langmuir isotherm plot of chromium removal on nano-alumina obtained by customized Microcal origin function (symbols represent the experimental data and lines data represent the estimated by the model)	110
Figure 5.17	Non-linear Freundlich isotherm plot of chromium removal on nano-alumina obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	111
Figure 5.18	Linear pseudo-first order plot of chromium removal on nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	114
Figure 5.19	Linear pseudo-second order plot of chromium removal on nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)	115
Figure 5.20	Non-linear pseudo-first order plot of chromium removal on nano-alumina obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	117
Figure 5.21	Non-linear pseudo-second order plot of chromium removal on nano-alumina obtained by in-built Microcal origin	118

function (symbols represent the experimental data and lines represent the data estimated by the model)

- Figure 5.22Non-linear pseudo-first order plot of chromium removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)118
- Figure 5.23Non-linear pseudo-second order plot of chromium removal
on nano-alumina obtained by in-built Microcal origin
function (symbols represent the experimental data and
straight lines represent the data estimated by the model)119
- Figure 5.24A) Intra-particle diffusion plot for removal of chromium122from aqueous solution on nano-alumina. B) Boyd modelplot for removal of chromium from aqueous solution on
nano-alumina
- Figure 5.25Effect of temperature on removal of Cr(VI) from aqueous124solutions on nano-alumina
- Figure 5.26Arrhenius plot for removal of chromium from aqueous127solution on nano-alumina
- Figure 6.1XRD pattern of nano-alumina before and after adsorption132of Ni(II) ions
- Figure 6.2FT-IR spectra of nano-alumina before and after adsorption132of Ni(II) ions
- Figure 6.3EDS pattern of nano-alumina after adsorption of Ni(II)133ions
- Figure 6.4Effect of initial pH on removal (%) of nickel from aqueous
solution on nano-alumina (Initial concentration= 20 mg/L,
adsorbent dose= 10g/L, Temperature= 303 K)135
- Figure 6.5Effect of adsorbent dose on removal (%) of nickel from
aqueous solution on nano-alumina (Initial pH=7.0, Initial
concentration=20mg/L, Temperature=303 K)135
- Figure 6.6 Effect of contact time on removal (%) of nickel from 136 aqueous solution on nano-alumina (Initial concentration=10mg/L, Initial pH=7.0, Initial dose=10g/L, Temperature= 303 K)
 Figure 6.7 Effect of initial concentration on removal (%) of nickel 136
- Figure 6.7Effect of initial concentration on removal (%) of nickel13from aqueous solution on nano-alumina (Initial pH= 7.0,

Initial dose=10g/L, Temperature=303 K)

- Figure 6.8(a) Surface plot; and (b) Contour plot of percentage142removal vs. dose and concentration at hold value of pH at
- Figure 6.9 (a) Surface plot; and (b) Contour plot of percentage 143 removal vs. pH and dose at hold value of concentration at 25 mg/L
- Figure 6.10 (a) Surface plot; and (b) Contour plot of percentage 145 removal vs. pH and concentration at hold value of dose at 20 g/L
- Figure 6.11Response optimization plot for nickel removal on nano-146alumina
- Figure 6.12Linear Langmuir isotherm plot of nickel removal on nano-
alumina (symbols represent the experimental data and
straight lines represent the data estimated by the model)149
- Figure 6.13 Linear Freundlich isotherm plot of nickel removal on 149 nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the model)
- Figure 6.14Non-linear Langmuir isotherm plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)151
- Figure 6.15Non-linear Freundlich isotherm plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)152
- Figure 6.16Non-linear Langmuir isotherm plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)152
- Figure 6.17Non-linear Freundlich isotherm plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)153
- Figure 6.18Linear pseudo-first order plot of nickel removal on nano-
alumina (symbols represent the experimental data and
straight lines represent the data estimated by the model)156

Figure 6.19	Linear pseudo-second order plot of nickel removal on	157
	nano-alumina (symbols represent the experimental data and straight lines represent the data estimated by the	
	model)	

- Figure 6.20Non-linear pseudo-first order plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)159
- Figure 6.21Non-linear pseudo-second order plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)160
- Figure 6.22Non-linear pseudo-first order plot of nickel removal on
nano-alumina obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)160
- Figure 6.23Non-linear pseudo-second order plot of nickel removal on
nano-alumina obtained by in-built Microcal origin function
(symbols represent the experimental data and lines
represent the data estimated by the model)161
- Figure 6.24A) Intra-particle diffusion plot for removal of nickel from
aqueous data solution on nano-alumina. B) Boyd model
plot for removal of nickel from aqueous solution on nano-
alumina162
- Figure 6.25Effect of temperature on removal of nickel from aqueous165solutions on nano-alumina
- Figure 6.26Arrhenius plot for removal of nickel from aqueous solution168on nano-alumina
- Figure 7.1XRD pattern of nano-cupric oxide before and after173adsorption of Cr(VI) ions
- Figure 7.2FT-IR spectra of nano-cupric oxide before and after173adsorption of Cr(VI) ions
- Figure 7.3EDS pattern of nano- nano-cupric oxide after adsorption of
Cr(VI) ions174
- Figure 7.4 Effect of initial pH on removal (%) of chromium from 175

aqueous solution on nano-cupric oxide (Initial concentration=10 mg/L, adsorbent dose= 8g/L, Temperature= 303 K)

- Figure 7.5Effect of adsorbent dose on removal (%) of chromium
from aqueous solution on nano-cupric oxide (Initial
pH=2.0, Initial concentration=10mg/L, Temperature=303
K)176
- Figure 7.6Effect of contact time on removal (%) of chromium from
aqueous solution on nano-cupric oxide (Initial
concentration=10mg/L, Initial pH=2.0, Initial dose=8g/L,
Temperature= 303 K)176
- Figure 7.7Effect of initial concentration on removal (%) of chromium
from aqueous solution on nano-cupric oxide (Initial pH=
2.0, Initial dose=8g/L, Temperature=303 K)177
- **Figure 7.8** (a) Surface plot; and (b) Contour plot of percentage **182** removal vs. dose and concentration at hold value of pH at 10
- Figure 7.9(a) Surface plot; and (b) Contour plot of percentage184removal vs. pH and dose at hold value of concentration at
25 mg/L25 mg/L
- Figure 7.10(a) Surface plot; and (b) Contour plot of percentage185removal vs. pH and concentration at hold value of dose at
20 g/L20 g/L
- Figure 7.11 Response optimization plot for chromium removal on 186 nano-cupric oxide
- Figure 7.12Linear Langmuir isotherm plot of Cr(VI) removal on nano-
cupric oxide (symbols represent the experimental data and
straight lines represent the data estimated by the model)189
- Figure 7.13 Linear Freundlich isotherm plot of Cr(VI) removal on 190 nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)
- Figure 7.14Non-linear Langmuir isotherm plot of chromium removal
on nano-cupric oxide obtained by in-built Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)192

Figure 7.15	Non-linear Freundlich isotherm plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	193
Figure 7.16	Non-linear Langmuir isotherm plot of chromium removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	193
Figure 7.17	Non-linear Freundlich isotherm plot of chromium removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	194
Figure 7.18	Linear pseudo-first order plot of chromium removal on nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	197
Figure 7.19	Linear pseudo-second order plot of chromium removal on nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	198
Figure 7.20	Non-linear pseudo-first order plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	200
Figure 7.21	Non-linear pseudo-second order plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	200
Figure 7.22	Non-linear pseudo-first order plot of chromium removal on nano-cupric oxide obtained by customized Microcal origin function represent the experimental data and lines represent the data estimated by the model)	201
Figure 7.23	Non-linear pseudo-second order plot of chromium removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	201
Figure 7.24	A) Intra-particle diffusion plot for removal of chromium from aqueous solution on nano- cupric oxide. B) Boyd	203

model plot for removal of chromium from aqueous solution on nano-cupric oxide

Figure 7.25 Effect of temperature on removal of chromium from 206 aqueous solutions on nano-cupric oxide Arrhenius plot for removal of chromium from aqueous 209 Figure 7.26 solution on nano-cupric oxide XRD pattern of nano-cupric oxide before and after Figure 8.1 215 adsorption of Ni(II) ions Figure 8.2 FT-IR spectra of nano-cupric oxide before and after 215 adsorption of Ni(II) ions Figure 8.3 EDS pattern of nano-cupric oxide after adsorption of Ni(II) 216 ions Figure 8.4 Effect of initial pH on removal (%) of nickel from aqueous 217 solution on nano-cupric oxide (Initial concentration= 20 mg/L, adsorbent dose= 6g/L, Temperature= 303K) Figure 8.5 Effect of adsorbent dose on removal (%) of nickel from 218 aqueous solution on nano-cupric oxide (Initial pH=7.0, Initial concentration=20 mg/L, Temperature=303K) Effect of contact time on removal (%) of nickel from 219 Figure 8.6 aqueous solution on nano-cupric oxide (Initial concentration=20mg/L, Initial pH=7.0, Initial dose=8g/L, Temperature= 303K) Figure 8.7 Effect of initial concentration on removal (%) of nickel 219 from aqueous solution on nano-cupric oxide (Initial pH= 7.0, Initial dose=6g/L, Temperature=303 K) 225 Figure 8.8 (a) Surface plot; and (b) Contour plot of percentage removal vs. dose and concentration at hold value of pH at 7.0 Figure 8.9 226 (a) Surface plot; and (b) Contour plot of percentage removal vs. pH and dose at hold value of concentration at 25 mg/L Figure 8.10 (a) Surface plot; and (b) Contour plot of percentage 227 removal vs. pH and concentration at hold value of dose at 20 g/L

Figure 8.11	Response optimization plot for nickel removal on nano- cupric oxide	228
Figure 8.12	Linear Langmuir isotherm plot of nickel removal on nano- cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	231
Figure 8.13	Linear Freundlich isotherm plot of nickel removal on nano-cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	232
Figure 8.14	Non-linear Langmuir isotherm plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	233
Figure 8.15	Non-linear Freundlich isotherm plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	234
Figure 8.16	Non-linear Langmuir isotherm plot of nickel removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	234
Figure 8.17	Non-linear Freundlich isotherm plot of nickel removal on nano-cupric oxide obtained by customized Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	235
Figure 8.18	Linear pseudo-first order plot of nickel removal on nano- cupric oxide (symbols represent the experimental data and straight lines represent the data estimated by the model)	238
Figure 8.19	Linear pseudo-second order plot of nickel removal on nano-cupric oxide (symbols represent the experimental data and lines represent the data estimated by the model)	239
Figure 8.20	Non-linear pseudo-first order plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin function (symbols represent the experimental data and lines represent the data estimated by the model)	241
Figure 8.21	Non-linear pseudo-second order plot of nickel removal on nano-cupric oxide obtained by in-built Microcal origin	242

function (symbols represent the experimental data and lines represent the data estimated by the model)

- Figure 8.22Non-linear pseudo-first order plot of nickel removal on
nano-cupric oxide obtained by customized Microcal origin
function (symbols represent the experimental data and
lines represent the data estimated by the model)242
- Figure 8.23Non-linear pseudo-second order plot of nickel removal on
nano-cupric oxide obtained by in-built Microcal origin
function (symbol represent the experimental data and lines
represent the data estimated by the model)243
- Figure 8.24A) Intra-particle diffusion plot for removal of nickel from
aqueous solution on nano-cupric oxide. B) Boyd model
plot for removal of nickel from aqueous solution on nano-
cupric oxide245
- Figure 8.25Effect of temperature on removal of nickel from aqueous247solutions on nano-cupric oxide
- Figure 8.26Arrhenius plot for removal of nickel from aqueous solution251on nano-cupric oxide