List of Figures

Figure Number	Title	Page No.
Figure 3.1 a	Divided cannel method (Yen 2002).	67
Figure 3.1 b	Alternative way of dividing cannel (Yen 2002)	67
Figure 4.1	A fish school dividing into two groups for their survival	86
	in the presence of a predator	
Figure 4.2	Swarm diversity during search with (solid line) and without (dotted line) inertia weight (Adopted from	86
	Parsopoulos and Vrahatis 2010).	
Figure 5.1	Schematic diagram of the canal having side slopes	112
	lined with loose riprap and bottom unlined.	
Figure 5.2	Flow chart depicting Particle Swarm Optimization	113
	algorithm as applied to the problem.	
Figure 5.3 a	The convergence trend of mean, local, and global	114
	dimensionless costs with iteration number for angular	
	riprap stone for clear water flow condition near channel	
	bottom.	
Figure 5.3 b	The convergence trend of mean, local, and global	115
	dimensionless costs with iteration number for angular	
	riprap stone for sediment laden flow condition near	
	channel bottom.	

- Figure 5.4 a
 The convergence trend of mean, local, and global
 116

 dimensionless costs with iteration number for subround
 and subangular riprap stone for clear water flow

 condition near channel bottom.
- Figure 5.4 bThe convergence trend of mean, local, and global117dimensionless costs with iteration number for subround
and subangular riprap stone for sediment laden flow
condition near channel bottom.
- Figure 5.5 a
 The convergence trend of mean, local, and global
 118

 dimensionless costs with iteration number for round
 riprap stone for clear water flow condition near channel
 bottom.
- Figure 5.5 b
 The convergence trend of mean, local, and global
 119

 dimensionless costs with iteration number for round
 riprap stone for sediment laden flow condition near

 channel bottom.
- Figure 7.1Flow chart depicting application of fish shoal152optimization algorithm to the problem .
- Figure 7.2
 Shoal characteristics with iterations for flow rate
 153

 convergence representing involvement of members
 from all subgroups at each generation for canal without

 freeboard with parameter setting 1.

xv

- Figure 7.3
 The convergence trend of local, mean and global
 154

 leader costs with
 iterations
 for
 three
 freeboard

 scenarios with parameter setting 1.
- Figure 7.4 Convergence characteristics of FSO led by different 155 global leader (minima) from various subgroups with successive iterations for three freeboard scenarios with parameter setting 1.
- Figure 7.5
 The convergence characteristics for actual flow rate by
 156

 global leaders emerging out from various subgroups
 with successive iterations for three different freeboard
 scenarios with parameter setting 1.
- Figure 7.6 a The convergence characteristic of the actual shear 157 stress residual due to global leaders emerging out from different subgroups with iterations for the first side slope of the canal for three different freeboard scenarios with parameter setting 1.
- Figure 7.6 b
 The convergence characteristic of the actual shear
 158

 stress residual due to global leader emerging out from
 different
 subgroups with iteration number for the

 second side slope of the canal for three different
 freeboard scenarios with parameter setting 1.

xvi

- **Figure 7.7** Characteristics of the overall fish shoal after a 159 computational run involving maximum iteration number for freeboard scenario f = 0 with parameter setting 1.
- Figure 7.8Characteristics of the overall fish shoal after a 160
computational run involving maximum iteration
number for freeboard scenario f = 0.5 with parameter
setting 1.
- **Figure 7.9** Characteristics of the overall fish shoal after a 161 computational run involving maximum iteration number for freeboard scenario $f = 0.5 \text{ y}^{0.25}$ with parameter setting 1.
- **Figure 7.10** Characteristics of the overall fish shoal after a 162 computational run involving maximum iteration number for freeboard scenario $f = 0.25+0.25 \text{ y}^{0.25}$ with parameter setting 1.
- **Figure 7.11** Characteristics of the overall fish shoal after a 163 computation run involving maximum iteration number for freeboard scenario f = 0.25+0.25 y^{0.5} with parameter setting 1.